An Algorithm for Solving Intransitivities without Repeating Trials

  • Jacinto González-Pachón
  • Ma̱ Isabel Rodrìguez-Galiano
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 465)


Based on a recent method for solving intransitivities in repeated pair wise choice, we present how this algorithm is applied when there are no repeated trials. The new method assumption is: The more repetitions of an arc there are in the MMQO, the more original transitivities are based on this element, i.e., the more stable this arc is.


Paired comparisons Intransitivities quasi order preference modelling transitive closure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Fishburn, P.C. (1982) ’Nontransitive Measurable Utility’, J. Math Psycholg., 26, pp. 31–67.CrossRefGoogle Scholar
  2. Fishburn, P.C. (1991) ’Nontransitive Preferences in Decision Theory’, J. Risk and Uncert., 4, pp. 113–134.CrossRefGoogle Scholar
  3. González-Pachón, J. and Ríos-Insua, S. (1996) ’Mixture of Maximal Quasi Orders: A New Approach to Preference Modelling’, (submitted)Google Scholar
  4. González-Pachón, J. and Ríos-Insua, S. (1997) ’A Method for Searching Rationality in a Pairwise Choices’. In G. Fandel and T. Gal (Eds.), Multiple Criteria Decision Making, LNEMS 448, Springer, pp. 374–382.CrossRefGoogle Scholar
  5. Kahneman, D. and A Tversky (1979), A. ’Prospect Theory: An Analysis of Decision under Risk’, Econometrica, 47, pp. 263–291.CrossRefGoogle Scholar
  6. Loomes, G. and Sugden, R. (1982) ’Regret Theory: An Alternative Theory of Rational Choice under Uncertainty’, Econ. J., 92, pp. 805–824.CrossRefGoogle Scholar
  7. Mass, A., Bezembinder, T. and Wakker, P. (1995) ’On Solving Intransitivities in Repeated Pairwise Choices’, Mathematical Social Sciences, 29, pp. 83–101.CrossRefGoogle Scholar
  8. Roubens, M. and Vincke, Ph. (1985) Preference Modelling. Springer.CrossRefGoogle Scholar
  9. Roy, B. (1996) Multicriteria Methodology for Decision Aiding. Kluwer.CrossRefGoogle Scholar
  10. Slater, P. (1961) ’Inconsistencies in a Schedule of Paired Comparisons’, Bio- métrica, 48, pp. 303–312.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Jacinto González-Pachón
    • 1
  • Ma̱ Isabel Rodrìguez-Galiano
    • 1
  1. 1.Department of Artificial IntelligenceUniversidad Politécnica de MadridMadridSpain

Personalised recommendations