Skip to main content

Viewing a Plant Layout Problem as a Multiobjective Case to Enhance Manufacturing Flexibility

  • Chapter
Trends in Multicriteria Decision Making

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 465))

  • 217 Accesses

Abstract

Traditionally, plant layout is viewed as a single-objective optimization problem, oftentimes minimizing total transport distance of in-process materials. This is no longer valid if we were to remain efficient in the contemporary competitive environment. Three objectives which are important in setting up the layout of a plant are material handling cost, physical closeness of machines and other facilities, and production routing flexibility especially in a Flexible Manufacturing Systems Environment. The three-objective nonlinear programming model is solved using Genetic Algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdou, G. and Dutta S. P. (1990), “An integrated approach to facilities layout using Expert Systems”, Int. J. Prod. Res. 28/4, pp. 685–708.

    Article  Google Scholar 

  2. Apple, J. M. (1977), Plant Layout and Material Handling, 3rd ed., John Wiley & Sons.

    Google Scholar 

  3. Brill, P. H. and Mandelbaum, M. (1990), “Measurement of adaptivity and flexibility in Production Systems.”, European Journal of Operational Research 49, pp. 325–332. Elsevier Science Publishers B. V.

    Article  Google Scholar 

  4. Davis, L. (1987), Genetic Algorithms and Simulated Annealing. Pitman.

    Google Scholar 

  5. Downlatshahi, S. (1992), “Product Design in a Concurrent Engineering Environment: an Optimization Approach”, Int. J. Prod. Res. 30/8, pp. 1803–1818.

    Article  Google Scholar 

  6. Fortenberry, J. C. and Cox, J. F. (1985), “Multiple citeria approach to the facilities layout problem”. Int. J. Prod. Res. 23/4, pp. 773–782.

    Article  Google Scholar 

  7. Francis, R. L. and White, J. A. (1974), “Facility Layout and Location: An analytical approach”, Prentice-Hall Inc., New Jersey, USA.

    Google Scholar 

  8. Francis, R. L. et. al. (1992), “Facility Layout and Location: An analytical approach”, (2nd ed.), Prentice-Hall Inc., New Jersey, USA.

    Google Scholar 

  9. Goldberg, D. E. (1989), Genetic Algorithms in search, optimization and machine learning. Addison-Wesley.

    Google Scholar 

  10. Harmonosky, C. M., Tothero, G. K. (1992), “A multi-factor plant layout methodology”, Int. J. Prod. Res. 30/8, pp. 1773–1789.

    Article  Google Scholar 

  11. Heragu, S. S. and Dutta S. P. (1990), “Machine layout: an optimization and knowledge-based approach”, Int. J. Prod. Res. 28/4, pp. 615–635.

    Article  Google Scholar 

  12. Heragu, S. S. and Kusiak, A. (1988), “Machine layout problem in Flexible Manufacturing Systems”, Operations Research 36/2, 258–268

    Article  Google Scholar 

  13. Heragu, S. S. and Kusiak, A. (1990), “Machine layout: an optimization and knowledge-based approach”, Int. J. Prod. Res. 28/2, 615–635.

    Article  Google Scholar 

  14. Kumar, V. (1987), “Entropic Measures of Manufacturing Flexibility.”, Int. J. Prod. Res. 25/7, pp. 957–966.

    Article  Google Scholar 

  15. Kumar, V. (1988), “Measurement of Loading and Operations Flexibility in Flexible Manufacturing Systems: An Information Theoretic Approach”. Annals of Oper. Res. Vol. 15, pp. 65–80.

    Article  Google Scholar 

  16. Kusiak, A. (1990), Intelligent Manufacturing Systems Prentice Hall, Englewood Cliffs, New Jersey, USA.

    Google Scholar 

  17. Kusiak, A. (1993), Concurrent Engineering: Automation, Tools and Techniques, John Willey and Sons, Inc. Pub., 1993.

    Google Scholar 

  18. Malakooti, B. (1989), “Multiple objective facility layout: a heuristic to generate efficient alternatives”, Int. J. Prod. Res. 23/4, pp. 773–782

    Google Scholar 

  19. Malakooti, B. and D’Souza, G. L (1985), “Multiple objective programming for the quadratic assignment problem”, Int. J. Prod. Res. 25/2, pp. 285–300.

    Article  Google Scholar 

  20. Malakooti, B. and Tsurushima, A. (1989), “An expert system using priorities for solving multiple-criteria facility layout problems”, Int. J. Prod. Res. 27/5, pp. 793–808.

    Article  Google Scholar 

  21. Muther, R. (1973), Systematic Layout Planning 2nd ed. Cahners Books, Boston.

    Google Scholar 

  22. Partovi F. Y. and Burton J. (1992), “An Analytical Hierarchy Approach to facility layout.”, Computers Ind. Eng. 22/4, pp. 447–457.

    Article  Google Scholar 

  23. Rosenblatt, M. J. (1979), “The facilities layout problem: A multigoal approach”, Int. J. Prod. Res. 17/4,pp. 323–332.

    Article  Google Scholar 

  24. Ross S. M. (1985), “Introduction to Probability Models”, Academic Press Inc., USA.

    Google Scholar 

  25. Saaty T. L. (1980), The Analytic Hierarchy Process, McGraw-Hill, New York.

    Google Scholar 

  26. Shang, J. S. (1993), “Multicriteria facility layout problem: An integrated approach”, European J. of Opl. Res. Vol. 66, pp. 291–304.

    Article  Google Scholar 

  27. Smith G. F. and Browne, G. (1993), “Conceptual Foundations of Design Problem Solving”, IEEE Transactions on System, Manufacturing and Cybernetics 23/5, pp. 1209–1219.

    Article  Google Scholar 

  28. Spano M. R, Sr., Ogrady, P. J. and Young, R. E. (1993), “The design of flexible manufacturing systems”, Comp. in Industry Vol. 21, pp. 185–198.

    Article  Google Scholar 

  29. Tabucanon, M.T. (1988), Multiple Criteria Decision Making in Industry, The Netherlands Elsevier.

    Google Scholar 

  30. Thurston, D.L. (1990), “Multiattribute Uitlity Analysis in Design Management”, IEEE Trans, on Eng. Management 3774, 296–301.

    Article  Google Scholar 

  31. Thurston, D. L. and Locascio, A. (1993), Chapter 11: Multiattribute Design Optimization and Concurrent Engineering, Concurrent Engineering: Contemporary Issues and Modern Design Tools Chapman and Hall Pub, pp. 207–230.

    Google Scholar 

  32. Urban T. L. (1987), “A multiple criteria model for the facilities layout problem”, Intl. J. Prod. Res. Vol. 25, No. 12, pp. 1805–1812

    Google Scholar 

  33. Yao, D. D. (1985), “Material and Information Flows in Flexible Manufacturing Systems”, Material Flow No. 2, pp.143–149. Elsevier Science Publishers B. V.

    Google Scholar 

  34. Yao D. D. and Pei F. F. (1990), “Flexible Parts Routing in Manufacturing Systems.”, HE Transactions Vol. 22, No. 1, pp.48–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Phong, H.T., Tabucanon, M.T. (1998). Viewing a Plant Layout Problem as a Multiobjective Case to Enhance Manufacturing Flexibility. In: Stewart, T.J., van den Honert, R.C. (eds) Trends in Multicriteria Decision Making. Lecture Notes in Economics and Mathematical Systems, vol 465. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45772-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45772-2_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64741-6

  • Online ISBN: 978-3-642-45772-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics