Skip to main content

Convergence of Interactive Procedures of Multiobjective Optimization and Decision Support

  • Chapter
Book cover Trends in Multicriteria Decision Making

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 465))

  • 214 Accesses

Abstract

The paper presents an overview of issues of convergence of interactive procedures in multiobjective optimization and decision support. The issue of convergence itself depends on assumptions concerning the behavior of the decision maker — who, more specifically, is understood as a user of a decision support system. Known procedures with guaranteed convergence under classic assumptions are reviewed. Some effective procedures of accelerated practical convergence but without precise convergence proofs are recalled. An alternative approach to convergence based on an indifference threshold for increases of value functions or on outranking relations is proposed and illustrated by a new procedure called Outranking Trials.

Article Note

The research reported in this paper was partly supported by the grant No. 3P 40301806 of the Committee for Scientific Research of Poland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bogetoft, P., Å. Hallefjord and M. Kok (1988) On the convergence of reference point methods in multiobjective-programming. European Journal of Operations Research 34, 56–68.

    Article  Google Scholar 

  2. Brans, J.P. and Ph. Vincke (1985) A preference ranking organization method. Management Science 31, 647–656.

    Article  Google Scholar 

  3. Charnes, A. and W.W. Cooper (1977) Goal programming and multiple objective optimization. J. Oper. Res. Soc. 1 39–54.

    Article  Google Scholar 

  4. Dinkelbach, W. and H. Isermann (1973) On decision making under multiple criteria and under incomplete information. In J.L. Cochrane, M. Zeleny (eds.) Multiple Criteria Decision Making. University of South Carolina Press, Columbia SC.

    Google Scholar 

  5. Ermolev, Yu., and R. J-B. Wets (1988) Numerical Techniques for Stochastic Optimization. Springer Verlag, Berlin-Heidelberg.

    Book  Google Scholar 

  6. Geoffrion, A.M., J.S. Dyer and A. Feinberg (1972) An Interactive Approach for Multicriterion Optimization, with an Application to the Operation of an Academic Department. Management Science 19, 357–368.

    Article  Google Scholar 

  7. Granat, J and A.P. Wierzbicki (1994) Interactive Specification of DSS User Preferences in Terms of Fuzzy Sets. Working Paper of the International Institute for Applied Systems Analysis, WP-94–29, Laxenburg, Austria.

    Google Scholar 

  8. Granat, J., T. Kręglewski, J. Paczyñski and A. Stachurski (1994) IAC-DIDAS-N++ Modular Modeling and Optimization System. Part I: Theoretical Foundations, Part II: Users Guide. Report of the Institute of Automatic Control, Warsaw University of Technology, March 1994, Warsaw, Poland.

    Google Scholar 

  9. Jaszkiewicz, A. and R. Slowiñski (1985) The LBS package — a microcomputer implementation of the Light Beam Search method for multi-objective nonlinear mathematical programming. Working Paper of the International Institute for Applied Systems Analysis, WP-94–07, Laxenburg, Austria.

    Google Scholar 

  10. Kahneman, D. and A. Tversky (1982) The Psychology of Preferences. Scientific American 246 160–173.

    Article  Google Scholar 

  11. Kaliszewski, I. (1994) Quantitative Pareto Analysis by Cone Separation Techniques. Kluwer Academic Publishers, Dordrecht.

    Book  Google Scholar 

  12. Kok, M. and F.A. Lootsma (1985) Pairwise comparison methods in multiple objective programming. European Journal of Operational Research 22, 44–55.

    Article  Google Scholar 

  13. Korhonen, P. and J. Laakso (1985) A Visual Interactive Method for Solving the Multiple Criteria Problem. European Journal of Operational Research 24 277–287.

    Article  Google Scholar 

  14. Lewandowski, A. and A.P. Wierzbicki (1989), eds. Aspiration Based Decision Support Systems. Lecture Notes in Economics and Mathematical Systems 331, Springer- Verlag, Berlin-Heidelberg.

    Google Scholar 

  15. Lootsma, F.A. (1993) Scale sensitivity in multiplicative AHP and SMART. Journal of Multi-Criteria Decision Analysis 2, 87–110.

    Article  Google Scholar 

  16. Lootsma, F.A., T.W. Äthan and P.Y. Papalambros (1985) Controlling the Search for a Compromise Solution in Multi-Objective Optimization. To appear in

    Google Scholar 

  17. Luenberger, D.G. (1973) Introduction to Linear and Nonlinear Programming. Addison-Wesley, Reading, Ma.

    Google Scholar 

  18. Michalevich, M.V. (1986) Stochastic approaches to interactive multicriteria optimizar tion problems. WP-86–10, IIASA, Laxenburg.

    Google Scholar 

  19. Ogryczak, W., K. Studzinski and K. Zorychta (1989) A generalized reference point approach to multiobjective transshipment problem with facility location. In A. Lewandowski and A. Wierzbicki, eds.: Aspiration Based Decision Support Systems Lecture Notes in Economics and Mathematical Systems, 331, Springer-Verlag, Berlin- Heidelberg.

    Google Scholar 

  20. Rios, S. (1994) Decision Theory and Decision Analysis: Trends and Challenges. Kluwer Academic Publishers, Boston-Dordrecht.

    Book  Google Scholar 

  21. Roy, B. and Ph. Vincke (1981) Multicriteria Analysis: Survey and New Directions. European Journal of Operational Research 8, 207–218.

    Article  Google Scholar 

  22. Saaty, T. (1980) The Analytical Hierarchy Process. McGraw-Hill, New York.

    Google Scholar 

  23. Sawaragi, Y., H. Nakayamaand, T. Tanino (1985) Theory of Multiobjective Optimization. Academic Press, New York.

    Google Scholar 

  24. Steuer, R.E. and E.V. Choo (1983) An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical Programming 26, 326–344.

    Article  Google Scholar 

  25. Steuer, R.E. (1986) Multiple Criteria Optimization: Theory, Computation, and Application. J. Wiley & Sons, New York.

    Google Scholar 

  26. Vincke, Ph. (1992) Multicriteria Decision Aid. J. Wiley, Chichester-New York.

    Google Scholar 

  27. Wierzbicki, A.P. (1980) The use of reference objectives in multiobjective optimization. In G. Fandel, T. Gal (eds.): Multiple Criteria Decision Making; Theory and Applications, Lecture Notes in Economic and Mathematical Systems 177, 468–486, Springer-Verlag, Berlin-Heidelberg.

    Chapter  Google Scholar 

  28. Wierzbicki, A.P. (1984) Models and Sensitivity of Control Systems. Elsevier-WNT, Amsterdam.

    Google Scholar 

  29. Wierzbicki, A.P. (1986) On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR-Spektrum, 8 73–87.

    Article  Google Scholar 

  30. Wierzbicki, A.P. (1992a) The Role of Intuition and Creativity in Decision Making. WP-92–078, IIASA, Laxenburg.

    Google Scholar 

  31. Wierzbicki, A.P. (1992b) Multiple Criteria Games: Theory and Applications. WP-92–079, IIASA, Laxenburg.

    Google Scholar 

  32. Zeleny, M. (1974) A concept of compromise solutions and the method of the displaced ideal. Comput. Oper. Res. Vol 1, 479–496.

    Article  Google Scholar 

  33. Zeleny, M. (1973) Compromise Programming. In J.L. Cochrane and M. Zeleny (eds.) Multiple Criteria Decision Making. University of Carolina Press, Columbia, SC.

    Google Scholar 

  34. Zionts, S. and J. Wallenius (1976) An Interactive Programming Method for Solving the Multicriteria Problem. Management Science 22 653–663.

    Article  Google Scholar 

  35. Zionts, S. and J. Wallenius (1983) An Interactive Multiple Objective Linear Programming Method for a Class of Underlying Nonlinear Utility Functions. Management Science 29 519–529.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wierzbicki, A.P. (1998). Convergence of Interactive Procedures of Multiobjective Optimization and Decision Support. In: Stewart, T.J., van den Honert, R.C. (eds) Trends in Multicriteria Decision Making. Lecture Notes in Economics and Mathematical Systems, vol 465. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45772-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45772-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64741-6

  • Online ISBN: 978-3-642-45772-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics