Skip to main content

Position and Controller Optimization for Robotic Parts Mating

  • Conference paper
Stochastic Programming Methods and Technical Applications

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 458))

  • 555 Accesses

Abstract

If a robot has to perform a specified manipulation task involving intentional environmental contacts, a certain response behavior is desired to reduce strains and ensure successful completion without damage of the contacting bodies. On the other hand, the dynamic behavior of a manipulator depends strongly on its position and the gains of its joint controllers. Hence, varying these parameters for an optimized performance during manipulation seems to be an obvious task. In order to deal with impacts, oscillations and constrained motion, a model-based optimization approach is suggested, which relies on a detailled dynamic model of the manipulator incorporating finite gear stiffnesses and damping. These models are used to define an optimization problem, which is then solved using numerical programming methods. It is illustrated with an assembly task, namely inserting a rigid peg into a hole with a PUMA 562 manipulator. The expected advantage in industrial applications is a comparatively easy implementation, because performance can be improved by simply adjusting ’external’ parameters as mating position and coefficients of the standard joint controller. Particularly, no modifications of the control architecture and no additional hardware are required. Application of the proposed approach to a rigid peg-in-hole insertion under practical constraints can reduce the measure for impact sensitivity by 17%, that for mating tolerances by 78% and the damping of end-effector oscillations and motor torques by up to 79%. These improvements are shown to be reproducable experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asada H., Ogawa K.: On the Dynamic Analysis of a Manipulator and its End Effector Interacting with the Environment; Proc. of the 1987 Int. Conf. on Robotics and Automation, Raleigh, NC, March 31-April 3, 1987, pp. 751–756.

    Google Scholar 

  2. Barcio B. T., Walker I. D.: Impact Ellipsoids and Measures for Robot Manipulators; Proc. of the 1994 Int. Conf. on Robotics and Automation, San Diego, CA, May 8–13, 1994, pp. 1588–1594.

    Google Scholar 

  3. Caine M. E., Lozano-Pérez T., Seering W. P.: Assembly Strategies for Chamferless Parts;–In: Proc. of IEEE Int. Conf. on Robotics and Automation, Scottsdale, Arizona, May 14–19, 1989, pp. 472–477.

    Google Scholar 

  4. Da Cunha N. O., Polak E.: Constrained Minimization Under Vector-valued Criteria in Finite Dimensional Spaces; - In: J. Math. Anal. Appl., Vol. 19, pp. 103–124, 1967.

    Google Scholar 

  5. Eschenauer H. A., Koski J., Osyczka A.: Multicriteria Optimization-Fundamentals and Motivation In: Multicriteria Design Optimization, Eds. H. Eschenauer, J. Koski, A. Osyczka, Springer, Berlin, 1990, pp. 1–32.

    Chapter  Google Scholar 

  6. Kiguchi K., Fukuda T.: Fuzzy Neural Friction Compensation Method of Robot Manipulation During Position/Force Control;–In: Proc. IEEE Int. Conf. on Robotics and Automation, Minneapolis, MS, April 22–28, 1996, pp. 372–377.

    Google Scholar 

  7. Laval L., M’Sirdi N. K., Cadiou J.-Ch.: H°°-Force Control of a Hydraulic Servo-Actuator with Environmental Uncertainties;–In: Proc. IEEE Intl. Conf. on Robotics and Automation, Minneapolis, MS, April 22–28, 1996, pp. 1566–1571.

    Google Scholar 

  8. Meitinger Th., Pfeiffer F.: Dynamic Simulation of Assembly Processes;–In: Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, Pittsburgh, PA, August, 5–9, 1995, pp. 298–304.

    Google Scholar 

  9. Pfeiffer F., Wapenhans H., Seyfferth W.: Dynamics and Control of Automated Assembly Processes;–In: Smart Structures, Nonlinear Dynamics and Control, Eds. A. Guran, D. J. Inman, Prentice Hall PTR, New Jersey, 1994, pp. 190–225.

    Google Scholar 

  10. Powell, M. J. D.: Variable Metric Methods for Constrained Optimization;–In: Mathematical Programming: The State of the Art, Eds. A. Bachem, M. Grotschel, B. Korte, Berlin: Springer, 1983, pp. 288–311

    Chapter  Google Scholar 

  11. Prokop G., Pfeiffer F.: Improved Robotic Assembly by Position and Controller Optimization;–In: Proc. IEEE Int. Conf. on Robotics and Automation, Minneapolis, MS, April 22–28, 1996, pp. 2182–2187.

    Google Scholar 

  12. Schittkowski K.: NLQPL: A Fortran-subroutine Solving Constrained Nonlinear Programming Problems;–In: Operations Research, Vol. 5, 1985, pp. 485–500.

    Google Scholar 

  13. Seyfferth W., Pfeiffer F.: Dynamics of Assembly Processes with a Manipulator;–In: Proc. of the 1992 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), July 7–10, 1992, Raleigh, NC, USA, pp. 1303–1310.

    Google Scholar 

  14. Steinle J.: Entwicklung einer prozeßangepaßten Roboterregelung für Montagevorgänge; Fortschrittberichte VDI, Reihe 8, Nr. 548, Düsseldorf, 1996.

    Google Scholar 

  15. Sturges R. H., Laowattana S.: Virtual Wedging in Three Dimensional Peg Insertion Tasks;–In: Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, Raleigh, NC, July 7–10, 1992, pp. 1295–1302.

    Google Scholar 

  16. Tarokh M., Bailey S.: Force Tracking with Unknown Environmental Parameters using Adaptive Fuzzy Controllers;–In: Proc. IEEE Int. Conf. on Robotics and Automation, Minneapolis, MS, April 22–28, 1996, pp. 270–275.

    Google Scholar 

  17. Wapenhans H.: Optimierung von Roboterbewegungen bei Manipulationsvorgängen; Fortschrittberichte VDI, Reihe 2, Nr. 304, Düsseldorf, 1994.

    Google Scholar 

  18. Whitney D. E., Gustayson R. E., Hennessey M. P.: Designing Chamfers;–In: Intl. J. of Robotics Research, Vol. 2, No. 4, 1983, pp. 3–18.

    Google Scholar 

  19. de Wit C., Noël P., Aubin A., Brobliato B.: Adaptive Friction Compensation in Robot Manipulation at Low Velocities;–In: Int. J. of Robotics Research, Vol. 10–3, 1991, pp. 189–199.

    Google Scholar 

  20. Yoshikawa T.: Dynamic Manipulability of Robot Manipulators; Proc. of the 1985 IEEE Int. Conf. on Robotics and Automation, 1985, pp. 1033–1038.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prokop, G., Pfeiffer, F. (1998). Position and Controller Optimization for Robotic Parts Mating. In: Marti, K., Kall, P. (eds) Stochastic Programming Methods and Technical Applications. Lecture Notes in Economics and Mathematical Systems, vol 458. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45767-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45767-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63924-4

  • Online ISBN: 978-3-642-45767-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics