Magnetic and Electronic Properties of Rapidly Quenched Materials

  • R. C. O’Handley
  • H. H. Liebermann
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 29)


Magnetic materials derive their usefulness from the fact that the magnetization, Ms = Nμm/V i. e. the volume density of atomic magnetic moments, μm, can be changed by application of a magnetic field. As temperature increases it becomes increasingly more difficult for an applied field to orient the atomic moments. The net spontaneous magnetization, vanishes at the Curie temperature, T c (Fig. 6.1). Above T c, atomic magnetic moments may still exist but their long-range orientations are no longer correlated. Of course with a strong enough field, one could overcome the effects of k B T and fully align these paramagnetic moments, but at room temperature such fields do not exist. Below T c, the ability to change the orientation of the saturation magnetization by application of a magnetic field is limited by the magnetic anisotropy (the preference for M to lie in a particular direction dictated by crystallography, shape and strain). The M(H) curves shown indicate nothing about magnetic anisotropy as they stand; magnetic anisotropy implies a difference in the field needed to magnetize a sample in different directions. If significant anisotropy were present, saturation in a hard direction would require a larger field than saturation in an easy direction. Magnetostriction is the strain (typically measured in parts per million) that accompanies a change in magnetization. The inverse effect, piezomagnetism, a change in the direction of preferred magnetization induced by a stress, is also very important.


Domain Wall Metallic Glass Amorphous Alloy Magnetic Anisotropy Magnetocrystalline Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 6.1
    S. Mader, A. Nowick: Appl. Phys. Lett. 17, 57 (1965)ADSCrossRefGoogle Scholar
  2. 6.2
    C.C. Tsuei, P. Duwez: J. Appl. Phys. 37, 435 (1966)ADSCrossRefGoogle Scholar
  3. 6.3
    P. Duwez, S. Lin: J. Appl. Phys. 38, 4096 (1967)ADSCrossRefGoogle Scholar
  4. 6.4
    R.C. O’Handley: Fundamental magnetic properties, in Amorphous Metallic Alloys, ed. by F.E. Luborsky (Butterworths, London 1983) p. 257Google Scholar
  5. 6.5
    R.C. O’Handley: J. Appl. Phys. 62, R15 (1987)CrossRefGoogle Scholar
  6. 6.6
    CL. Chien, K.M. Unruh: Phys. Rev. Lett. B 24, 1556 (1981)ADSGoogle Scholar
  7. 6.7
    R. Hasegawa, R. Ray: J. Appl. Phys. 49, 4174 (1978)ADSCrossRefGoogle Scholar
  8. 6.8
    R.C. O’Handley: Phys. Rev. B 18, 930 (1978)ADSCrossRefGoogle Scholar
  9. 6.9
    R.C. O’Handley, L.I. Mendelsohn, E.A. Nesbitt: IEEE Trans. MAG-12, 942 (1976)ADSCrossRefGoogle Scholar
  10. 6.10
    K. Inomata, T. Kobayashi, M. Hasegawa, T. Sawa: J. Magn. Magn. Mater. 31-34, 1577 (1983)ADSCrossRefGoogle Scholar
  11. 6.11
    N. Hasegawa, M. Saito, N. Kataoka, H. Fujimori: J. Mater. Eng. Perf. 2, 181 (1993)CrossRefGoogle Scholar
  12. 6.12
    G. Herzer: J. Magn. Magn. Mater. 157, 133 (1996)ADSCrossRefGoogle Scholar
  13. 6.13
    Polycrystalline permalloy, L.E. Tanner; amorphous FeBSi, RJ. Celotta, J. Unguris, MJ. Scheinfein, D.T. Pierce: Personal commun. (1997)Google Scholar
  14. 6.14
    H. Unguris, RJ. Celotta, D.T. Pierce: Phys. Rev. Lett. 67, 140 (1991)ADSCrossRefGoogle Scholar
  15. 6.15
    D.I. Paul: J. Appl. Phys. 53, 1649 (1982)ADSCrossRefGoogle Scholar
  16. 6.16
    R.C. O’Handley, J. Megusar, S.-W. Sun, Y. Hara, N.J. Grant: J. Appl. Phys. 57, 3563 (1985)ADSCrossRefGoogle Scholar
  17. 6.17
    H.S. Chen, S.D. Ferris, H.J. Leamy, R.C. Sherwood, E.M. Gyorgy: Appl. Phys. Lett. 26, 405 (1975)ADSCrossRefGoogle Scholar
  18. 6.18
    Y. Imry, S.-K. Ma: Phys. Rev. Lett. 35, 1399 (1975)ADSCrossRefGoogle Scholar
  19. 6.19
    R. Alben, J.I. Budnick, G.S. Cargill III: In Metallic Glasses, ed. by J.J. Gilman, N.J. Leaney (Am. Soc. Metals, Metals Park, OH 1978)Google Scholar
  20. 6.20
    F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, NY 1965) pp. 4–40Google Scholar
  21. 6.21
    P. Oelhafen, E. Hauser, H.-J. Güntherodt, K. Benneman: Phys. Rev. Lett. 43, 1134 (1979)ADSCrossRefGoogle Scholar
  22. 6.22
    V.L. Moruzzi, P. Oelhafen, A.R. Williams, R. Lapka, H.-J. Güntherodt: Phys. Rev. B 27, 2049 (1983)ADSCrossRefGoogle Scholar
  23. 6.23
    P. Oelhafen, E. Hauser, H.-J. Güntherodt: Solid State Commun. 35, 1017 (1980)ADSCrossRefGoogle Scholar
  24. 6.24
    A. Amamou, G. Krill: Solid State Commun. 23, 1087 (1980)ADSCrossRefGoogle Scholar
  25. 6.25
    R.P. Messmer: Phys. Rev. B 23, 1616 (1981)ADSCrossRefGoogle Scholar
  26. 6.26
    T. Fujiwara: J. Non-Cryst. Solids 61&62, 1039 (1984)CrossRefGoogle Scholar
  27. 6.27
    A. Collins, R.C. O’Handley, K.H. Johnson: Phys. Rev. B 38, 3665 (1988)ADSCrossRefGoogle Scholar
  28. 6.28
    K.HJ. Buschow: J Physique C 13, 563 (1989)ADSGoogle Scholar
  29. 6.29
    H.J. Güntherodt, H.V. Kiinzi: In Metallic Glasses, ed. by JJ. Gilman, HJ. Leany (ASM, Metals Park, OH 1978) p. 247Google Scholar
  30. 6.30
    R.C. O’Handley: Phys. Rev. B 18, 2577 (1978)ADSCrossRefGoogle Scholar
  31. 6.31
    G. Fish: Proc. IEEE 78, 947 (1990)MathSciNetADSCrossRefGoogle Scholar
  32. 6.32
    F.E. Lubarsky (ed.): Amorphous Metallic Alloys (Butterworths, London 1983)Google Scholar
  33. 6.33
    R.C. O’Handley, C.-P. Chou, N. Cristofaro: J. Appl. Phys. 50, 3603 (1979)ADSCrossRefGoogle Scholar
  34. 6.34
    A. Datta, N.J. De Cristofaro, L.A. Davis: In iProc. of Rapidly Quenched Metals IV, ed. by T. Masumoto, K. Suzuki, Jpn. Inst. Metals (Sendai) 2, 107 (1982)Google Scholar
  35. 6.35
    R.C. O’Handley: J. Met. Eng. Perf. 2, 211 (1993)CrossRefGoogle Scholar
  36. 6.36
    R. Schafer, W. Ho, J. Yamasaki, A. Hubert, F.B. Humphrey: IEEE Trans. MAG-27, 3678 (1991)ADSCrossRefGoogle Scholar
  37. 6.37
    J.H. Judy: Mater. Res. Bulletin 15, 63 (1990)Google Scholar
  38. 6.38
    J.J. Croat, J.F. Herbert, R.W. Lee, F.E. Pinkerton: J. Appl. Phys. 55, 2078 (1984)ADSCrossRefGoogle Scholar
  39. M. Sagawa, M. Fujimura, M. Togawa, Y. Matsuura: J. Appl. Phys. 55, 2083 (1984)ADSCrossRefGoogle Scholar
  40. M. Sagawa, S. Hirozawa, H. Yamamoto, S. Fujimura, Y. Matsuura: Jpn. J. Appl. Phys. 26, 785 (1987)ADSCrossRefGoogle Scholar
  41. 6.39
    E. Kneller, R. Hawig: IEEE Trans. MAG-27, 3588 (1991)ADSCrossRefGoogle Scholar

General Reading

  1. Beck H., H.-J. Güntherodt (eds.): Glassy Metals II, Topics Appl. Phys., Vol. 53 (Springer, Berlin, Heidelberg 1983)Google Scholar
  2. Beck H., H.-J. Güntherodt: Glassy Metals HI, Topics Appl. Phys., Vol. 72 (Springer, Berlin, Heidelberg 1994)Google Scholar
  3. Gilman J.J., H.J. Leamy (eds.): Metallic Glasses (ASM, Metal Park, OH 1978)Google Scholar
  4. Güntherodt HJ., H. Beck (eds.): Glassy Metals I, Topics Appl. Phys., Vol. 46 (Springer, Berlin, Heidelberg 1981)Google Scholar
  5. Hasegawa R. (ed.): Metallic Glasses: Magnetic, Chemical and Structural Properties (CRC Press, Boca Raton, FL 1983)Google Scholar
  6. Hasegawa R., R.A. Levy (eds.): Amorphous Magnetism II (Plenum, New York 1977)Google Scholar
  7. Hooper H.O., A.M. de Graaf (eds.): Amorphous Magetism I (Plenum, New York 1973)Google Scholar
  8. Liebermann H.H.: Rapidly Solidified Alloys (Dekker, New York 1993)Google Scholar
  9. Moorjami K., J.M.D. Coey (eds): Magnetic Glasses (Elsevier, Amsterdam 1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • R. C. O’Handley
  • H. H. Liebermann

There are no affiliations available

Personalised recommendations