Advertisement

Mechanical Properties and Behaviour

  • H. Jones
  • E. J. Lavernia
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 29)

Abstract

The glassy or fine scale crystalline microstructures and extended or novel composition ranges of rapidly solidified materials might be expected to exhibit interesting behaviour under applied mechanical stress. Metallic glasses exhibit flow stress σ y as high as E/50, where E is Young’s modulus (Table 5.1), approaching the levels ≈E/30 found for perfect dislocation-free single-crystal metallic whiskers. The associated high values of hardness and wear resistance have been put to good use, for example, in recording/replay or read/write heads for audio, video, computer or instrumental recording machinery, where their high electrical resistivity and, for particular compositions, high magnetic permeability and good corrosion resistance are also critical for the application. Plastic flow at stress σ > σ y and temperature T < T g , the glass transition temperature, is localized in shear bands giving way to more homogeneous time-dependent flow at high temperatures, allowing hot forming to be carried out with or without inducing crystallization. The corresponding microcrystalline products of rapid solidification can also exhibit ultrahigh strengths and durability because of combinations of very fine matrix grain size, high volume fraction of hard intermetallic precipitates or dispersoid phases, and/or extended concentrations of hardening alloy additions in solid solution in the matrix phase. Such ultrafine dual or multiphase microstructures are also ideal candidates for superplastic forming and/or diffusion bonding at elevated temperature and low stress, while intermetallic dispersoids can be incorporated that exhibit excellent resistance to dissolution or coarsening, so imparting quite exceptional micro-structural stability at elevated temperature. Wide ranging reviews of the mechanical performance of rapidly solidified materials have been published by Gilman [5.1], by Davis [5.2], by Li [5.3], by Rama Rao and Radhakrishnan [5.4], by Taub [5.5], by Das and Froes [5.6]and by Davis et al. [5.7]. References [5.1–5.4]are confined to metallic glasses, [5.5]and [5.6]feature microcrystalline alloys while [5.7]embraces both categories.

Keywords

Shear Band Metallic Glass Rapid Solidification Fatigue Limit High Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 5.1
    J.J. Gilman: J. Appl. Phys. 46, 1625–1633 (1975)ADSCrossRefGoogle Scholar
  2. 5.2(a)
    L.A. Davis: In Rapidly Quenched Metals, ed. by N.J. Grant, B.C. Giessen (MIT Press, Cambridge, MA 1976) pp. 369–391Google Scholar
  3. (b).
    L.A. Davis: In Glass — Current Issues, ed. by A.F. Wright, J. Dupuy (Nijhoff, Amsterdam 1985) pp. 94–124Google Scholar
  4. 5.3(a)
    J.C.M. Li: In Treatise on Material Science and Technology, ed. by H. Herman (Academic, New York 1986)Google Scholar
  5. (b).
    J.C.M. Li: In Chemistry and Physics of Rapidly Solidified Materials, ed. by B.J. Berkowitz and R.O. Scattergood (TMS, Warrendale, PA 1983) pp. 173–196Google Scholar
  6. (c).
    J.C.M. Li: In Rapidly Solidified Alloys, ed. by H.H. Liebermann (Dekker, New York 1993) pp. 379–430Google Scholar
  7. 5.4
    P.R. Rao, V.M. Radhakrishnan: In Metallic Glasses, ed. by T.R. Anantharaman (Trans. Tech., Aedermansdorf 1984) pp. 225–248Google Scholar
  8. 5.5
    A.I. Taub: In Rapidly Quenched Metals, ed. by S. Steeb, H. Warlimont (Elsevier, Amsterdam 1985) pp. 1611–1618Google Scholar
  9. 5.6
    S.K. Das, F.H. Froes: In Rapidly Solidified Alloys, ed. by H.H. Liebermann (Dekker, New York 1993) pp. 339–377Google Scholar
  10. 5.7
    L.A. Davis, S.K. Das, J.C.M. Li, M.S. Zedalis: Int’l J. Rapid Solidication 8, 73–131 (1994)Google Scholar
  11. 5.8
    M. Dutoit, H.S. Chen: Appl. Phys. Lett. 23, 357–358 (1973)ADSCrossRefGoogle Scholar
  12. 5.9
    L.A. Davis, S. Kavesh: J. Mater. Sci. 10, 453–459 (1975)ADSCrossRefGoogle Scholar
  13. 5.10
    Y.H. Kim, A. Inoue, T. Masumoto: Mater. Trans. JIM 31, 747–749 (1990)Google Scholar
  14. 5.11
    H. Nagahama, K. Ohtera, K. Higashi, A. Inoue, T. Masumoto: Philos. Mag. Lett. 67, 225–230 (1993)ADSCrossRefGoogle Scholar
  15. 5.12
    A.I. Taub, M.R. Jackson, S.C. Huang, E.L. Hall: In Rapidly Solidified Metastable Materials, ed. by B.H. Kear, B.C. Giessen (North-Holland, Amsterdam 1984) pp. 389–394Google Scholar
  16. 5.13
    H. Jones: Proc. 6th Int’l Symp. on Plasticity of Metals and Alloys, Prague (1994). Key Eng. Mater. 97/98, 1–12 (1995)CrossRefGoogle Scholar
  17. 5.14
    P. Gilman: Met. Mater. 6, 504–507 (1990)Google Scholar
  18. 5.15
    A.I. Taub, S.C. Huang, K.M. Chang: Met. Trans. A 15, 399–402 (1984)CrossRefGoogle Scholar
  19. 5.16
    D.J. Skinner: In Dispersion Strengthened Aluminium Alloys, ed. by Y.-W. Kim, W.M. Griffith, (TMS Warrendale, PA, 1988) pp. 181–197Google Scholar
  20. 5.17
    W.S. Cebulak, E.W. Johnson, H. Markus: Met Eng Quart. 16(4), 37–44 (1976)Google Scholar
  21. 5.18
    D.G. Morris: In Rapidly Quenched Metals, ed. by S. Steeb, H. Warlimont (North-Holland, Amsterdam, 1985) pp. 1775–1778Google Scholar
  22. 5.19
    D. Raybould: The Carbide and Tool J. 16(6), 27–30 (1984)Google Scholar
  23. 5.20
    Anon: Met. Powder Rep. 46(11), 3 (1991)Google Scholar
  24. 5.21
    N. Amano, Y. Odani, Y. Takeda, K. Akechi: Met. Powder Rep. 44(3), 186–190 (1989)Google Scholar
  25. 5.22
    T. Hayashi, Y. Takeda, K. Akechi, T. Fujiwara: Met. Powder Rep. 46(2), 23–29 (1991)CrossRefGoogle Scholar
  26. 5.23
    J. Duszczyk, J.L. Estrada, B.M. Korevaar, T.L.J. de Haan, D. Bialo, A.G. Leatham, A.J.W. Ogilvy: Proc. P/M Aerospace Materials Conference (MPR Publ. Services, Shrewsbury 1987) Paper 26Google Scholar
  27. 5.24
    A. Inoue: Mater. Trans. JIM 36, 866–875 (1995)Google Scholar
  28. 5.25
    T. Masumoto, A. Inoue, H. Yamamoto, J. Nagahora, T. Shibata: Europ. Pat. Appl. 0513654A1 (19th Nov 1992)Google Scholar
  29. 5.26
    T. Masumoto, A. Inoue, N. Nishiyama, H. Horimura, T. Shibata: Europ. Pat. Appl. 0517094A2 (9th Dec 1992)Google Scholar
  30. 5.27
    R.S. Mishra, H. Jones, G.W. Greenwood: Int’l J. Rapid Solidification 5, 149–162 (1990)Google Scholar
  31. 5.28
    O.A. Ruano, L.E. Eiselstein, O.D. Sherby: Met. Trans. A 13A, 1785–92 (1982)CrossRefGoogle Scholar
  32. 5.29
    J.K. Solberg, J. Tørklep, Ø. Bauger, H. Gjestlund: Mater. Sci. Eng. A A134, 1201–1203 (1991)Google Scholar
  33. 5.30
    K. Higashi: Mater. Sci. Forum 113/115, 231–236 (1993)CrossRefGoogle Scholar
  34. 5.31
    K. Higashi: In Aspects of High Temperature Deformation and Fracture (The Jap. Inst. of Metals, Sendai 1993) pp. 447–454Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • H. Jones
  • E. J. Lavernia

There are no affiliations available

Personalised recommendations