Advertisement

Atomic Transport and Relaxation in Rapidly Solidified Alloys

  • H. Kronmüller
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 29)

Abstract

Diffusion processes in solids play a central role in tailoring high-quality materials for technical applications. Whereas in crystalline solids a number of intrinsic self-diffusion processes could be identified previously, it is just recently that the situation in amorphous materials could be clarified. In crystalline solids self-diffusion may be controlled by vacancies in thermal equilibrium (noble metals, transition and refractory metals) [4.1, 2], by self-interstitial atoms as in Si [4.3], or by direct atomic exchange and by ring mechanisms as discussed recently for alkaline metals and some transition metals [4.2, 4]. None of these mechanisms seems to apply directly to amorphous alloys. Diffusion in amorphous alloys has been reviewed by several authors concentrating on different aspects. Cahn [4.5], Egami [4.6], and Egami and Waseda [4.7]considered the relations between diffusional properties and the glass-forming ability. Johnson [4.8]considered the relations between diffusion and diffusion-controlled amorphization processes. Cantor [4.9]emphasized that the diffusivity of metals and metalloids in glasses scales with the glass transition temperature. Taub and Spaepen [4.10]studied the relations between viscosity and diffusional properties, Kronmüller and co-workers [4.11–13]as well as Faupel et al. [4.14]concentrated on the self-diffusion of metallic components and magnetic and mechanical relaxation phenomena.

Keywords

Internal Friction Amorphous Alloy Arrhenius Plot Activation Enthalpy Diffusion Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 4.1
    K. Maier, M. Peo, B. Salle, H.-E. Schaefer, A. Seeger: Philos. Mag. A 40, 701 (1979)ADSCrossRefGoogle Scholar
  2. 4.2
    A. Seeger: In DIMAT-92, ed. by M. Koiwa, K. Hirano, H. Nakajima, T. Okada, Defect and Diffusion Forum 95-98, 147 (1993)CrossRefGoogle Scholar
  3. 4.3
    A. Seeger, K.P. Chik: Phys. Status Solidi 29, 455 (1968)CrossRefGoogle Scholar
  4. 4.4
    U. Breier, W. Frank, C. Elsässer, M. Fähnle, A. Seeger: Phys. Rev. B 50, 5928 (1994)ADSCrossRefGoogle Scholar
  5. 4.5
    R.W. Cahn: 2nd Int’l Workshop on Noncrystalline Solids (San Sebastian 1989)Google Scholar
  6. 4.6
    T. Egami: In Amorphous Metals and Semiconductors, ed. by Haasen, R.I. Jaffee (Pergamon, Oxford 1986) p. 222Google Scholar
  7. 4.7
    T. Egami, Y. Waseda: J. Non-Cryst. Solids 64, 113 (1984)ADSCrossRefGoogle Scholar
  8. 4.8
    W.L. Johnson: Mater. Sci. Eng. 97, 1 (1988)CrossRefGoogle Scholar
  9. W.L. Johnson, A. Peker: In Science and Technology of Rapid Solidification and Processing, ed. by M.A. Otooni (Kluwer, Dordrecht 1995) p. 25Google Scholar
  10. 4.9
    B. Cantor: In [Ref. 4.6, p. 108]Google Scholar
  11. 4.10
    A.I. Taub, F. Spaepen: Acta Met. 28, 1781 (1980)CrossRefGoogle Scholar
  12. 4.11
    H. Kronmüller, W. Frank: Rad Eff. Def. Solids 108, 81 (1991)CrossRefGoogle Scholar
  13. 4.12
    H. Kronmüller, W. Frank, A. Hörner: Mater. Sci. Eng. A 133, 410 (1991)CrossRefGoogle Scholar
  14. 4.13
    W. Frank, A. Hörner, P. Scharwaechter, H. Kronmüller: Mater. Sci. Eng. A 179/180, 36 (1994)CrossRefGoogle Scholar
  15. 4.14
    F. Faupel: Phys. Status Solidi (a) 134, 9 (1992)ADSCrossRefGoogle Scholar
  16. 4.15
    J. Crank: The Mathematics of Diffusion, 2nd edn. (Clarendon, Oxford 1975)Google Scholar
  17. 4.16
    Th. Heumann: Diffusion in Metallen (Springer, Berlin, Heidelberg 1992)Google Scholar
  18. 4.17
    H. Horvath, J. Ott, K. Pfahler, W. Ulfert: J. Mater. Sci. Eng. 97, 409 (1988)CrossRefGoogle Scholar
  19. 4.18
    J. Horvath, H. Mehrer: Cryst. Latt. Def. Amorph. Mater. 13, 1 (1986)Google Scholar
  20. 4.19
    K. Pfahler, J. Horvath, W. Frank, H. Mehrer: In Rapidly Quenched Metals, ed. by S. Steeb, H. Warlimont (Elsevier, Amsterdam 1985) p. 755Google Scholar
  21. 4.20
    K. Pfahler, J. Horvath, W. Frank: Cryst. Latt. def. Amorph. Mater. 17, 249 (1987)Google Scholar
  22. 4.21
    J. Horvath, K. Pfahler, W. Ulfert: In Rapidly Quenched Metals, ed. by R.W. Cochrane, J.O. Ström-Olsen (Elsevier, New York 1988) p. 409Google Scholar
  23. 4.22
    P. Scharwaechter, W. Frank, H. Kronmüller: Z. Metallkunde 87, 885 (1996)Google Scholar
  24. 4.23
    R. Sizmann: J. Nucl. Mater. 69-70, 386 (1968)ADSCrossRefGoogle Scholar
  25. 4.24
    R.S. Averback, H. Hahn: Mater. Sci. Eng. Forum 37, 245 (1989)CrossRefGoogle Scholar
  26. 4.25
    A.K. Tyagi, M.-P. Macht, V. Naundorf: J. Nucl. Mater. 179-181, 1026 (1991)ADSCrossRefGoogle Scholar
  27. 4.26
    P. Scharwaechter, W. Frank, H. Kronmüller: Z. Metallkunde 87, 892 (1996)Google Scholar
  28. 4.27
    C. Rank: Untersuchungen von Diffusions-und Relaxationsvorgängen in metallischen Gläsern durch Kurzzeit-Tempern in einem Spiegelofen. Dissertation, University of Stuttgart (1992)Google Scholar
  29. 4.28
    W. Frank, J. Horvath, H. Kronmüller: Mater. Sci. Eng. 97, 415 (1988)CrossRefGoogle Scholar
  30. 4.29
    H. Mehrer, A. Seeger; Crys. Lattice Def. 3, 1 (1972)Google Scholar
  31. 4.30
    R.M. Emrick, P.B. McArdle: Phys. Rev. 168, 1156 (1969)ADSCrossRefGoogle Scholar
  32. 4.31
    F. Faupel, P.W. Hüppe, U. Rätzke: Phys. Rev. Lett. 65, 1219 (1990)ADSCrossRefGoogle Scholar
  33. 4.32
    U. Rätzke, F. Faupel: Phys. Rev. B 45, 7459 (1992)ADSCrossRefGoogle Scholar
  34. 4.33
    K. Rätzke, F. Faupel: J. Non-Cryst. Sol. 181, 261 (1995)CrossRefGoogle Scholar
  35. 4.34
    U. Rätzke, F. Faupel: Scripta Metall. 25, 2233 (1991)CrossRefGoogle Scholar
  36. 4.35
    G. Rein, H. Mehrer: Philos. Mag. A 45, 467 (1982)ADSCrossRefGoogle Scholar
  37. 4.36
    M. Beyler, Y. Adda: J. Physique 29, 345 (1968)CrossRefGoogle Scholar
  38. 4.37
    N.H. Nachtrieb, H. Resing, S. Rice: J. Chem. Phys. 31, 135 (1959)ADSCrossRefGoogle Scholar
  39. 4.38
    K. Rätzke, H. Heesemann, F. Faupel: J. Phys.: Condens. Matter 7, 7663 (1995)ADSCrossRefGoogle Scholar
  40. 4.39
    K. Rätzke, P.W. Hüppe, F. Faupel: Phys. Rev. Lett. 68, 2347 (1992)ADSCrossRefGoogle Scholar
  41. 4.40
    I. Webmann, J. Klafter: Phys. Rev. B 26, 5950 (1982)ADSCrossRefGoogle Scholar
  42. 4.41
    J.W. Haus, K.W. Kehr, J.W. Lyklema: Phys. Rev. 25, 2905 (1982)ADSCrossRefGoogle Scholar
  43. 4.42
    R. Zwanzig: J. Stat. Phys. 28, 127 (1982)MathSciNetADSCrossRefGoogle Scholar
  44. 4.43
    J.W. Haus, K.W. Kehr: Phys. Rpts. 150, 263 (1987)ADSCrossRefGoogle Scholar
  45. 4.44
    Y. Limoge, J.-L. Bocquet: J. Non-Cryst. Solids 117, 605 (1990)ADSCrossRefGoogle Scholar
  46. 4.45
    A. Hörner: Selbstdiffusion in metallischen Gläsern: Näherung des effektiven Mediums und molekulardynamische Simulation. Dissertation, University of Stuttgart (1993)Google Scholar
  47. 4.46
    W. Frank, A. Hömer, P. Scharwaechter, H. Kronmüller: Mater. Sci. Eng. A 179/180, 36 (1994)CrossRefGoogle Scholar
  48. 4.47
    E.H. Brandt: J. Phys., Condensed Matter 1, 9985 (1989)ADSCrossRefGoogle Scholar
  49. 4.48
    S. Nosé: J. Chem. Phys. 81, 511 (1984)ADSCrossRefGoogle Scholar
  50. 4.49
    H.R. Schober: Physica A 201, 14 (1993)ADSCrossRefGoogle Scholar
  51. 4.50
    H.R. Schober, C. Oligschleger: Phys. Rev. B 53, 11469 (1996)ADSCrossRefGoogle Scholar
  52. 4.51
    R. Kirchheim: Acta metall. 30, 1069 (1982); Prog. Mater. Sci. 32, 262 (1988)CrossRefGoogle Scholar
  53. 4.52
    H. Kronmüller: Nachwirkung in Ferromagnetika (Springer, Berlin, Heidelberg 1968)Google Scholar
  54. 4.53
    A. Hofmann, H. Kronmüller: Phys. Status Solidi (a) 104, 381 and 619 (1987)Google Scholar
  55. 4.54
    M. Hirscher, S. Zimmer, H. Kronmüller. Z. Phys. Chem. 183, 51 (1994)Google Scholar
  56. 4.55
    H. Kronmüller: In [ref. 4.6, p. 259]Google Scholar
  57. 4.56
    M. Bourrous, H. Kronmüller: Phys. Status Solidi (a) 113, 169 (1989)Google Scholar
  58. 4.57
    H. Kronmüller: Phys. Status Solidi (b) 127, 531 (1985); ibid 118, 661 (1983); see [Ref, 4.6, p. 259]ADSCrossRefGoogle Scholar
  59. 4.58
    H. Kronmüller, H.-Q. Guo, W. Fernengel, A. Hofmann, N. Moser: Cryst. Latt. Def. Amorph. Mater. 11, 136 (1985)Google Scholar
  60. 4.59
    F. Spaepen, S.S. Tsao, T.W. Wu: In [Ref. 4.6, p. 365]Google Scholar
  61. 4.60
    H.S. Chen: In [Ref. 4.6, p. 126]Google Scholar
  62. 4.61
    N. Morito: Mater. Sci. Eng. 60, 261 (1983)CrossRefGoogle Scholar
  63. 4.62
    M.H. Cohen, D. Turnbull: J. Chem. Phys. 31, 1164 (1959)ADSCrossRefGoogle Scholar
  64. 4.63
    A.S. Nowick: Adv. Phys. 16, 1 (1967)ADSCrossRefGoogle Scholar
  65. 4.64
    W. Ulfert: Innere Reibung von Wasserstoff in amorphen Metallen. Dissertation, University of Stuttgart (1989)Google Scholar
  66. 4.65
    W. Ulfert, H. Kronmüller: Proc. Int’l Conf. on Internal Friction and Ultrasonic Attenuation in Solids, Poitiers, France (1996). J. Physique, to be publishedGoogle Scholar
  67. 4.66
    H. Mehrer, K. Maier, G. Hettich, HJ. Mayer, G. Rein: J. Nucl. Mater. 69/70, 545 (1978)ADSCrossRefGoogle Scholar
  68. 4.67
    J. Horvath, J. Ott, K. Pfahler, W. Ulfert: Mater. Sci. Eng. 97, 409 (1988)CrossRefGoogle Scholar
  69. 4.68
    R. Blüher, P. Scharwaechter, W. Frank, H. Kronmüller: to be publishedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • H. Kronmüller

There are no affiliations available

Personalised recommendations