Advertisement

Synthesis and Processing

  • N. J. Grant
  • H. Jones
  • E. J. Lavernia
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 29)

Abstract

Rapid Solidification (RS) involves propagation of a solidification front at high velocity. This is most readily achieved by suitable treatment of a volume of melt. Suitable treatments include: (i) dividing it up into a multitude of small droplets (atomisation, emulsification or spray-forming) so that most of them can under-cool deeply prior to solidification; (ii) stabilising a meltstream of small cross section in contact with an effective heat sink (melt-spinning or thin-section continuous casting); (iii) rapid melting of a thin layer of material in good contact with an extensive heat sink, which may be the same or related material (electron or laser beam surface pulse or traverse melting). In each case rapid solidification results from rapid extraction of the heat of transformation either directly by the external heat sink and/or internally by the undercooled melt (in which case the system rapidly reheats, i. e., recalesces during solidification). The large undercoolings developed amount to large departures from equilibrium leading to formation of extended solid solutions and new non-equilibrium phases (crystalline, quasicrystalline or glassy) while the short freezing times give rise to sizerefined and compositionally rather uniform microstructures as well as relatively high rates of throughput of material. The products of RS range from powder or flake particulate, through thin discontinuous or continuous ribbon or filament to thick spray deposits containing some trapped porosity. These products can sometimes be applied directly as in the cases of finely divided light metal particulate used as the basis for space shuttle and satellite launch rocket fuel and signalling flares, and planar-flow-cast strip used in certain magnetic applications or for braze assembly of engine components. For most applications, however, they must be suitably incorporated or consolidated into full size, fully dense sections or components. This may involve processes such as polymer bonding or liquid metal infiltration but most commonly involves powder metallurgy techniques such as die or isostatic pressing and/or hot working.

Keywords

Heat Transfer Coefficient Rapid Solidification Solidification Front Liquid Sheet Rapid Solidification Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.1
    P. Duwez: In Techniques of Metals Research, ed. by R.F. Bunshah (Interscience, New York 1968) Vol. 1, Pt. 1, pp. 343–358Google Scholar
  2. 2.2
    H. Jones: Treatise on Materials Science and Technology 20, 1–72 (Academic, New York 1981)Google Scholar
  3. 2.3
    H. Jones: Rapid Solidification of Metals and Alloys (Institutions of Metallurgists, London 1982) Chaps. 1 and 2Google Scholar
  4. 2.4
    H. Jones: In Enhanced Properties in Structural Metals via Rapid Solidification, ed. by F.H. Froes, S.J. Savage (ASM International, Metals Park, OH 1987) pp. 77–93Google Scholar
  5. 2.5
    S.J. Savage, F.H. Froes: J. Met. 36(2), 20–33 (1984)Google Scholar
  6. 2.6
    T.R. Anantharaman, C. Suryanarayana: Rapidly Solidified Metals: A Technological Overview, (Trans. Tech., Aldermansdorf 1987) Chap. 2Google Scholar
  7. 2.7
    C. Suryanarayana: in Materials Science and Technology: A Comprehensive Treatment 15, 57–110 (VCH, Weinheim 1991)Google Scholar
  8. 2.8
    R. Willnecker, P.M. Herlach, B. Feuerbacher: Phys. Rev. Lett. 62, 2707–2710 (1989)ADSCrossRefGoogle Scholar
  9. 2.9
    C.G. Levi, R. Mehrabian: Met. Trans. A 13, 13–23 (1982)CrossRefGoogle Scholar
  10. 2.10
    W.J. Boettinger, L. Bendersky, J.G. Early: Met. Trans. A 17, 781–790 (1986)CrossRefGoogle Scholar
  11. 2.11
    R.C. Ruhl: Mater. Sci. Eng. 2, 314–319 (1968)CrossRefGoogle Scholar
  12. 2.12
    D.M. Herlach, F. Gillessen, T. Volkmann, M. Wollgarten, K. Urban: Phys. Rev. B 46, 5203–5210 (1992)ADSCrossRefGoogle Scholar
  13. 2.13
    U. Feurer, R. Wunderlin: Fachberichte Nr. 23 (DGM, Oberursel 1977)Google Scholar
  14. 2.14
    H. Schmitt: Powd. Met. Int’l 11, 17–21 (1979)Google Scholar
  15. 2.15
    M. Ogushi, A. Inoue, H. Yamaguchi, T. Masumoto: Mater. Trans. JIM 31, 1005–1010 (1990)Google Scholar
  16. 2.16
    An Adv. Mater. Proc. 135 (b), 12 (1989)Google Scholar
  17. 2.17
    N. Dombrowski, W.R. Johns: Chem. Eng. Sci. 118, 203 (1963)Google Scholar
  18. 2.18
    H. Lubanska: J. Met. 22(2), 45–49 (1970)Google Scholar
  19. 2.19
    O.S. Nichiporenko, I. Naida: Sov. Powd. Met. Met. Ceram, 67, 5099 (1968)Google Scholar
  20. O.S. Nichiporenko: Sov. Powd. Met. Met. Ceram. 15, 665 (1976)CrossRefGoogle Scholar
  21. 2.20
    B.P. Bewlay, B. Cantor: Met. Trans. B 2, 866–912 (1990)Google Scholar
  22. 2.21
    H.L. Liu, R.H. Rangel, E.J. Lavernia: Acta Mater. 42, 3277–3289 (1994)CrossRefGoogle Scholar
  23. 2.22
    E.J. Lavernia, E.M. Gutierrez, J. Szekely, N.J. Grant: Int’l J. Rapid Solidification 4, 69–124 (1988)Google Scholar
  24. 2.23
    B.A. Rickinson, F.A. Kirk, D.R.G. Davies: Powd. Met. 15, 116–124 (1981)Google Scholar
  25. 2.24
    D.H. Kirkwood: Int’l Mater. Rev. 39, 173–189 (1994)CrossRefGoogle Scholar
  26. 2.25
    S. Annavarapu, D. Apelina, A. Lawley: Met. Trans. A 21, 3237–3256 (1990)CrossRefGoogle Scholar
  27. 2.26
    K.J. Overshott: Electron. Power 25, 347–350 (1979)CrossRefGoogle Scholar
  28. 2.27
    J. Edgington: In Fibre-Reinforced Materials (Inst. Civil Engineers, London 1977) pp. 129–140Google Scholar
  29. 2.28
    I. Ohnaka: Int’l Rapid Solidification 1, 219–236 (1985)Google Scholar
  30. 2.29
    R.V. Raman, A.N. Patel, R.S. Carbonara: Proc. Powd. Met. 38, 99–105 (1982)Google Scholar
  31. 2.30
    A.L. Holbrook: Proc. Powd. Met. 41, 679–684 (1986); Int’l J. Powd. Met. 22, 39-45 (1986)Google Scholar
  32. 2.31
    C. Gélinas, R. Angers, S. Pelletier: Mater. Lett. 6, 359–361 (1988)CrossRefGoogle Scholar
  33. 2.32
    S. Pelletier, C. Gélinas, R. Angers: Int’l J. Powd. Met. 26, 51–54 (1990)Google Scholar
  34. 2.33
    S. Kavesh: In Metallic Glasses (Am. Soc. Met., Metals Park, OH 1978) pp. 36-73Google Scholar
  35. 2.34
    P.H. Shingu, K.N. Ishihara: In Rapidly Solidified Alloys, ed. by H.H. Liebermann (Dekker, New York 1993) pp. 103–118Google Scholar
  36. 2.35
    L.A. Anastiev; Mater. Sci. Eng. A 131, 115–121 (1991)CrossRefGoogle Scholar
  37. 2.36
    O.P. Pandey, S.N. Ohja, G.M. Sarma, E.S. Dwarakadasa, T.R. Anantharaman: Indian J. Technol. 29, 173–178 (1991)Google Scholar
  38. 2.37
    B. Lux, W. Hiller: Prakt. Metallogr. 8, 218–225 (1971)Google Scholar
  39. 2.38
    M. von Allmen, M. Huber, A. Blatter, K. Affolter: Int’l J. Rapid Solidification 1, 15–25 (1984)Google Scholar
  40. 2.39
    F. Spaepen: In Undercooled Alloy Phases, ed. by E-W. Collings, C.C. Koch (TMS, Warrendale, PA 1987) pp. 187–205Google Scholar
  41. 2.40
    W.J. Boettinger, D. Shechtman, R.J. Schaefer, F.S. Biancaniello: Met. Trans. A 15, 55–66 (1984)CrossRefGoogle Scholar
  42. 2.41
    M. Zimmermann, M. Carrard, W. Kurz: Acta Met. 32, 3305–3313 (1989)CrossRefGoogle Scholar
  43. 2.42
    M. Gremaud, M. Carrard, W. Kurz: Acta Met. Mater. 38, 2587–2599 (1990)CrossRefGoogle Scholar
  44. 2.43
    N. Christensen, V. de L. Davies, and K. Gjermundsen: Brit, Weld. J. 12, 54–75 (1965)Google Scholar
  45. 2.44
    H. Jones: In Rapid Solidification Processing: Principles and Technologies, ed. by R. Mehrabian, B.H. Kear, M. Cohen (Claitor’s, Baton Rouge, LA 1978) pp. 28–45Google Scholar
  46. 2.45
    Y. Arata, F. Matsuda, K. Nakata: Trans. Jpn. Weld. Inst. 5(1), 47–52 (1976)Google Scholar
  47. 2.46
    CM. Adams: Weld. J. Res. Suppl. 37, 210s–215s (1958)Google Scholar
  48. 2.47
    M. Rappaz, M. Gremaud, R. Dekumbis, W. Kurz: In Laser Treatment of Materials, ed. by B.L. Mordike (DGM, Oberursel 1987) pp. 43–53Google Scholar
  49. 2.48
    S.A. Moir, H. Jones: J. Mater. Sci. Lett. 10, 1199–1201 (1991)CrossRefGoogle Scholar
  50. 2.49
    W.J. Boettinger, L.A. Bendersky, S.R. Coriell, R.J. Schaefer, F.S. Biancaniello: J. Cryst. Growth 80, 17 (1987)ADSCrossRefGoogle Scholar
  51. 2.50
    W. Kurz, R. Giovanola, R. Trivedi: J. Cryst. Growth 91, 123–125 (1988)ADSCrossRefGoogle Scholar
  52. 2.51
    J.D. Hunt, S.Z. Lu: Mater. Sci. Eng. A 173, 79–83 (1993)CrossRefGoogle Scholar
  53. 2.52
    W. Kurz, P. Gilgien: Mater. Sci. Eng. A 178, 171–178 (1994)CrossRefGoogle Scholar
  54. 2.53
    N.N. Thadhani, T. Vreeland Jr.: Acta Met. 34, 2323–2334 (1986)CrossRefGoogle Scholar
  55. 2.54
    H.-R. Pak, D.K. Kim, K. Okazaki: Mod. Dev. Powd. Met. ed by P.U. Gummeson and D.A. Gustafson (APMI, Princeton, NJ 1988) 19, pp. 591–602Google Scholar
  56. 2.55
    M.M. Silva, H. Jones, CM. Sellars: Proc. PM’90 (Inst. of Metals, London 1990) Vol. 2, pp. 315–318Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • N. J. Grant
  • H. Jones
  • E. J. Lavernia

There are no affiliations available

Personalised recommendations