Skip to main content

Synthesis and Processing

  • Chapter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 29))

Abstract

Rapid Solidification (RS) involves propagation of a solidification front at high velocity. This is most readily achieved by suitable treatment of a volume of melt. Suitable treatments include: (i) dividing it up into a multitude of small droplets (atomisation, emulsification or spray-forming) so that most of them can under-cool deeply prior to solidification; (ii) stabilising a meltstream of small cross section in contact with an effective heat sink (melt-spinning or thin-section continuous casting); (iii) rapid melting of a thin layer of material in good contact with an extensive heat sink, which may be the same or related material (electron or laser beam surface pulse or traverse melting). In each case rapid solidification results from rapid extraction of the heat of transformation either directly by the external heat sink and/or internally by the undercooled melt (in which case the system rapidly reheats, i. e., recalesces during solidification). The large undercoolings developed amount to large departures from equilibrium leading to formation of extended solid solutions and new non-equilibrium phases (crystalline, quasicrystalline or glassy) while the short freezing times give rise to sizerefined and compositionally rather uniform microstructures as well as relatively high rates of throughput of material. The products of RS range from powder or flake particulate, through thin discontinuous or continuous ribbon or filament to thick spray deposits containing some trapped porosity. These products can sometimes be applied directly as in the cases of finely divided light metal particulate used as the basis for space shuttle and satellite launch rocket fuel and signalling flares, and planar-flow-cast strip used in certain magnetic applications or for braze assembly of engine components. For most applications, however, they must be suitably incorporated or consolidated into full size, fully dense sections or components. This may involve processes such as polymer bonding or liquid metal infiltration but most commonly involves powder metallurgy techniques such as die or isostatic pressing and/or hot working.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Duwez: In Techniques of Metals Research, ed. by R.F. Bunshah (Interscience, New York 1968) Vol. 1, Pt. 1, pp. 343–358

    Google Scholar 

  2. H. Jones: Treatise on Materials Science and Technology 20, 1–72 (Academic, New York 1981)

    Google Scholar 

  3. H. Jones: Rapid Solidification of Metals and Alloys (Institutions of Metallurgists, London 1982) Chaps. 1 and 2

    Google Scholar 

  4. H. Jones: In Enhanced Properties in Structural Metals via Rapid Solidification, ed. by F.H. Froes, S.J. Savage (ASM International, Metals Park, OH 1987) pp. 77–93

    Google Scholar 

  5. S.J. Savage, F.H. Froes: J. Met. 36(2), 20–33 (1984)

    Google Scholar 

  6. T.R. Anantharaman, C. Suryanarayana: Rapidly Solidified Metals: A Technological Overview, (Trans. Tech., Aldermansdorf 1987) Chap. 2

    Google Scholar 

  7. C. Suryanarayana: in Materials Science and Technology: A Comprehensive Treatment 15, 57–110 (VCH, Weinheim 1991)

    Google Scholar 

  8. R. Willnecker, P.M. Herlach, B. Feuerbacher: Phys. Rev. Lett. 62, 2707–2710 (1989)

    Article  ADS  Google Scholar 

  9. C.G. Levi, R. Mehrabian: Met. Trans. A 13, 13–23 (1982)

    Article  Google Scholar 

  10. W.J. Boettinger, L. Bendersky, J.G. Early: Met. Trans. A 17, 781–790 (1986)

    Article  Google Scholar 

  11. R.C. Ruhl: Mater. Sci. Eng. 2, 314–319 (1968)

    Article  Google Scholar 

  12. D.M. Herlach, F. Gillessen, T. Volkmann, M. Wollgarten, K. Urban: Phys. Rev. B 46, 5203–5210 (1992)

    Article  ADS  Google Scholar 

  13. U. Feurer, R. Wunderlin: Fachberichte Nr. 23 (DGM, Oberursel 1977)

    Google Scholar 

  14. H. Schmitt: Powd. Met. Int’l 11, 17–21 (1979)

    Google Scholar 

  15. M. Ogushi, A. Inoue, H. Yamaguchi, T. Masumoto: Mater. Trans. JIM 31, 1005–1010 (1990)

    Google Scholar 

  16. An Adv. Mater. Proc. 135 (b), 12 (1989)

    Google Scholar 

  17. N. Dombrowski, W.R. Johns: Chem. Eng. Sci. 118, 203 (1963)

    Google Scholar 

  18. H. Lubanska: J. Met. 22(2), 45–49 (1970)

    Google Scholar 

  19. O.S. Nichiporenko, I. Naida: Sov. Powd. Met. Met. Ceram, 67, 5099 (1968)

    Google Scholar 

  20. O.S. Nichiporenko: Sov. Powd. Met. Met. Ceram. 15, 665 (1976)

    Article  Google Scholar 

  21. B.P. Bewlay, B. Cantor: Met. Trans. B 2, 866–912 (1990)

    Google Scholar 

  22. H.L. Liu, R.H. Rangel, E.J. Lavernia: Acta Mater. 42, 3277–3289 (1994)

    Article  Google Scholar 

  23. E.J. Lavernia, E.M. Gutierrez, J. Szekely, N.J. Grant: Int’l J. Rapid Solidification 4, 69–124 (1988)

    Google Scholar 

  24. B.A. Rickinson, F.A. Kirk, D.R.G. Davies: Powd. Met. 15, 116–124 (1981)

    Google Scholar 

  25. D.H. Kirkwood: Int’l Mater. Rev. 39, 173–189 (1994)

    Article  Google Scholar 

  26. S. Annavarapu, D. Apelina, A. Lawley: Met. Trans. A 21, 3237–3256 (1990)

    Article  Google Scholar 

  27. K.J. Overshott: Electron. Power 25, 347–350 (1979)

    Article  Google Scholar 

  28. J. Edgington: In Fibre-Reinforced Materials (Inst. Civil Engineers, London 1977) pp. 129–140

    Google Scholar 

  29. I. Ohnaka: Int’l Rapid Solidification 1, 219–236 (1985)

    Google Scholar 

  30. R.V. Raman, A.N. Patel, R.S. Carbonara: Proc. Powd. Met. 38, 99–105 (1982)

    Google Scholar 

  31. A.L. Holbrook: Proc. Powd. Met. 41, 679–684 (1986); Int’l J. Powd. Met. 22, 39-45 (1986)

    Google Scholar 

  32. C. Gélinas, R. Angers, S. Pelletier: Mater. Lett. 6, 359–361 (1988)

    Article  Google Scholar 

  33. S. Pelletier, C. Gélinas, R. Angers: Int’l J. Powd. Met. 26, 51–54 (1990)

    Google Scholar 

  34. S. Kavesh: In Metallic Glasses (Am. Soc. Met., Metals Park, OH 1978) pp. 36-73

    Google Scholar 

  35. P.H. Shingu, K.N. Ishihara: In Rapidly Solidified Alloys, ed. by H.H. Liebermann (Dekker, New York 1993) pp. 103–118

    Google Scholar 

  36. L.A. Anastiev; Mater. Sci. Eng. A 131, 115–121 (1991)

    Article  Google Scholar 

  37. O.P. Pandey, S.N. Ohja, G.M. Sarma, E.S. Dwarakadasa, T.R. Anantharaman: Indian J. Technol. 29, 173–178 (1991)

    Google Scholar 

  38. B. Lux, W. Hiller: Prakt. Metallogr. 8, 218–225 (1971)

    Google Scholar 

  39. M. von Allmen, M. Huber, A. Blatter, K. Affolter: Int’l J. Rapid Solidification 1, 15–25 (1984)

    Google Scholar 

  40. F. Spaepen: In Undercooled Alloy Phases, ed. by E-W. Collings, C.C. Koch (TMS, Warrendale, PA 1987) pp. 187–205

    Google Scholar 

  41. W.J. Boettinger, D. Shechtman, R.J. Schaefer, F.S. Biancaniello: Met. Trans. A 15, 55–66 (1984)

    Article  Google Scholar 

  42. M. Zimmermann, M. Carrard, W. Kurz: Acta Met. 32, 3305–3313 (1989)

    Article  Google Scholar 

  43. M. Gremaud, M. Carrard, W. Kurz: Acta Met. Mater. 38, 2587–2599 (1990)

    Article  Google Scholar 

  44. N. Christensen, V. de L. Davies, and K. Gjermundsen: Brit, Weld. J. 12, 54–75 (1965)

    Google Scholar 

  45. H. Jones: In Rapid Solidification Processing: Principles and Technologies, ed. by R. Mehrabian, B.H. Kear, M. Cohen (Claitor’s, Baton Rouge, LA 1978) pp. 28–45

    Google Scholar 

  46. Y. Arata, F. Matsuda, K. Nakata: Trans. Jpn. Weld. Inst. 5(1), 47–52 (1976)

    Google Scholar 

  47. CM. Adams: Weld. J. Res. Suppl. 37, 210s–215s (1958)

    Google Scholar 

  48. M. Rappaz, M. Gremaud, R. Dekumbis, W. Kurz: In Laser Treatment of Materials, ed. by B.L. Mordike (DGM, Oberursel 1987) pp. 43–53

    Google Scholar 

  49. S.A. Moir, H. Jones: J. Mater. Sci. Lett. 10, 1199–1201 (1991)

    Article  Google Scholar 

  50. W.J. Boettinger, L.A. Bendersky, S.R. Coriell, R.J. Schaefer, F.S. Biancaniello: J. Cryst. Growth 80, 17 (1987)

    Article  ADS  Google Scholar 

  51. W. Kurz, R. Giovanola, R. Trivedi: J. Cryst. Growth 91, 123–125 (1988)

    Article  ADS  Google Scholar 

  52. J.D. Hunt, S.Z. Lu: Mater. Sci. Eng. A 173, 79–83 (1993)

    Article  Google Scholar 

  53. W. Kurz, P. Gilgien: Mater. Sci. Eng. A 178, 171–178 (1994)

    Article  Google Scholar 

  54. N.N. Thadhani, T. Vreeland Jr.: Acta Met. 34, 2323–2334 (1986)

    Article  Google Scholar 

  55. H.-R. Pak, D.K. Kim, K. Okazaki: Mod. Dev. Powd. Met. ed by P.U. Gummeson and D.A. Gustafson (APMI, Princeton, NJ 1988) 19, pp. 591–602

    Google Scholar 

  56. M.M. Silva, H. Jones, CM. Sellars: Proc. PM’90 (Inst. of Metals, London 1990) Vol. 2, pp. 315–318

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grant, N.J., Jones, H., Lavernia, E.J. (1998). Synthesis and Processing. In: Otooni, M.A. (eds) Elements of Rapid Solidification. Springer Series in Materials Science, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45755-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45755-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45757-9

  • Online ISBN: 978-3-642-45755-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics