Introduction and Background

  • T. Egami
  • W. L. Johnson
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 29)


The modern science and technology of rapid solidification has its beginnings about 35 years ago with the work of Pol Duwez and his coworkers at the California Institute of Technology. They developed methods for chilling a thin layer of liquid metal by rapid heat transfer to a highly conductive and relatively cold substrate. Despite its relatively recent emergence, Rapid Solidification Technology (RST) has had a substantial impact on our fundamental understanding of materials synthesis by solidification as well as on our ability to develop materials for technological applications. Rapid solidification can be somewhat arbitrarily defined as any solidification process in which the rate of change of temperature (the cooling rate) is at least 102 K/s and typically of the order of 106K/s. In fact, cooling rates as high as 1010-1011 K/s are achieved in laboratory experiments where melting is induced using a pulsed laser or other intense energy source. RST is the science and practice of melt solidification at such high rates of cooling.


Metallic Glass Rapid Solidification Critical Cool Rate Nucleation Barrier Fictive Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.1
    Rapidly Solidified Alloys: Processes, Structures, Properties, Applications, ed. by H.H. Liebermann (Dekker, New York 1993)Google Scholar
  2. 1.2
    Science and Technology of Rapid Solidification and Processing, ed. by M.A. Otooni (Kluwar, Dordrecht 1995)Google Scholar
  3. 1.3
    E. g., D.A. Porter, K.E. Easterling: Phase Transformations in Metals and Alloys (Chapman & Hall, London 1981)Google Scholar
  4. 1.4
    T.B. Massalski, Proc. 4th Intl. Conf. Rapidly Quenched Metals, ed. by T. Masumoto, K. Suzuki (Jpn. Inst. Metals, Sendai 1982) p. 203Google Scholar
  5. 1.5
    K. Klement, R.H. Willens, P. Duwez: Nature 187, 869 (1960)ADSCrossRefGoogle Scholar
  6. 1.6
    D. Turnbull: Contemp. Phys. 10, 471 (1969)ADSCrossRefGoogle Scholar
  7. 1.7
    T. Egami, Y. Waseda: J. Non-Cryst. Solids 64, 113 (1984)ADSCrossRefGoogle Scholar
  8. 1.8
    E. g., C. Suryanarayana: A bibliography 1973–1979 for Rapidly Quenched Metals (Plenum, New York 1980)Google Scholar
  9. 1.9
    Y. Waseda, S. Ueno, M. Hagiwara, K.T. Aust: Progr. Mater. Sc. 34, 149 (1990)CrossRefGoogle Scholar
  10. 1.10
    Glassy Metals I, Ionic Structure, Electronic Transport, and Crystallization, in Topics Appl. Phys., Vol. 46, eds. H. Beck and H.-J. Güntherodt, Topic (Springer Verlag, Berlin, 1981); Glassy Metals II, Atomic Structure and Dynamics, Electronic Structure, Magnetic Properties, in Topics Appl. Phys., Vol. 53, eds. H. Beck and H.-J. Güntherodt, Topic (Springer Verlag, Berlin, 1983); Glassy Metals III, Amorphization Techniques, Catalysis, Electronic and Ionic Structure, in Topics Appl. Phys., Vol. 72, eds. H. Beck and H.-J. Güntherodt, Topic (Springer Verlag, Berlin, 1994).Google Scholar
  11. 1.11
    A. Peker, W.L. Johnson: Appl. Phys. Lett. 63, 2342 (1993)ADSCrossRefGoogle Scholar
  12. 1.12
    W.L. Johnson: Mater. Sci. Technol. 9, 94 (1994)Google Scholar
  13. 1.13
    A. Inoue: Mater. Trans. JIM 36, 866 (1995)Google Scholar
  14. 1.14
    A.L. Greer In Rapidly Solidified Alloys, ed. by H.H. Liebermann (Dekker, New York 1993) p. 269Google Scholar
  15. 1.15
    T. Egami: In Amorphous Metallic Alloys, ed. F.E. Luborsky (Butterworths, London 1983) p. 100Google Scholar
  16. 1.16
    B.E. Warren: X-ray Diffraction (Dover, New York, 1990)Google Scholar
  17. 1.17
    J.D. Bernai: Nature 188, 410 (1960)CrossRefGoogle Scholar
  18. 1.18
    G.D. Scott: Nature 188, 408 (1960)ADSGoogle Scholar
  19. 1.19
    F.C. Frank: Proc. Roy. Soc, London A 215, 43 (1952)ADSCrossRefGoogle Scholar
  20. 1.20
    D. Shechtman, I. Blech, D. Gratias, J.W. Cahn: Phys. Rev. Lett. 53, 1951 (1984)ADSCrossRefGoogle Scholar
  21. 1.21
    E. g., Quasicrystals, The State of the Art, ed. by D.P. DiVincenzo, P.J. Steinhart (World Scientific, Singapore 1991)Google Scholar
  22. 1.22
    P. Duwez: Fizika, Suppl. 2, 1 (1970)ADSGoogle Scholar
  23. 1.23
    M.J. Aziz, T. Kaplan: Acta Metall. 36, 2335 (1988)CrossRefGoogle Scholar
  24. 1.24
    T.B. Massalski: In Rapidly Quenched Metals, ed. by S. Steeb, H. Warlimont (Elsevier, Amsterdam 1985) p. 171Google Scholar
  25. 1.25
    P. Duwez: In Intermetallic Compounds, ed. by J.H. Westbrook (Wiley, New York 1967) Chap. 18Google Scholar
  26. 1.26
    B.C. Giessen: Z. Metallk. 59, 805 (1968)Google Scholar
  27. 1.27
    W.L. Johnson, S. Poon: J. Appl. Phys 45, 3683 (1974)ADSCrossRefGoogle Scholar
  28. 1.28
    H. Jones: Rapid Solidification of Metals and Alloys (Chameleon, London 1982), H. Jones: Rep. Prog. Phys. 36, 1425 (1973)ADSGoogle Scholar
  29. H. Jones: Mater. Sci. Eng. A 179/180, 1 (1994)CrossRefGoogle Scholar
  30. 1.29
    C.C. Cao, H.L. Lue, P. Duwez: J. Appl. Phys. 35, 247 (1964)ADSCrossRefGoogle Scholar
  31. 1.30
    B.C. Giessen: In Rapidly Quenched Metals II, ed. by B.C. Giessen, N.J. Grant (MIT Press, Boston 1976) ps. 119,149Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • T. Egami
  • W. L. Johnson

There are no affiliations available

Personalised recommendations