Skip to main content

The Sherman-Rinzel-Keizer Model for Bursting Electrical Activity in the Pancreatic β-Cell

  • Chapter
Differential Equations Models in Biology, Epidemiology and Ecology

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 92))

Abstract

Pancreatic β-cells exhibit periodic bursting electrical activity (BEA) consisting of active and silent phases. The Sherman-Rinzel-Keizer (SRK) model of this phenomenon consists of three coupled first-order nonlinear differential equations which describe the dynamics of the membrane potential, the activation parameter for the voltage-gated potassium channel, and the intracellular calcium concentration. These equations are nondimensionalized and transformed into a Liénard differential equation coupled to a single first-order differential equation for the slowly changing nondimensional calcium concentration. Leading-order perturbation problems are derived for the silent and active phases of the BEA on slow and fast time scales. Numerical solutions of these leading-order problems are compared with those for the exact equation in their respective regions. The leading-order solution in the active phase has a limit cycle behavior with a slowly varying frequency. It is observed that the “damping term” in the Liénard equation is small numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atwater, I., Ribalet, B., Rojas, E. (1978a): Cyclic changes in potential and resistance of the β-cell membrane induced by glucose in islets of Langerhans from mouse. J. Physiology (Lond.). 278, 117–139.

    Google Scholar 

  2. Atwater, I., Ribalet, B., Rojas, E. (1978b): Mouse pancreatic β-cells: tetraethylammonium blockage of the potassium permeability increase induced by depolarization. J. Physiology (Lond.). 288, 561–574.

    Google Scholar 

  3. Atwater, I., Dawson, CM., Ribalet, B., Rojas, E. (1978c): Potassium permeability activated by intracellular calcium ion concentration in the pancreatic β-cell. J. Physiology (Lond.). 288, 575–588.

    Google Scholar 

  4. Atwater, I., Dawson, C.M., Scott, A., Eddlestone, G., Rojas, E. (1980): The nature of the oscillatory behaviour in electrical activity from pancreatic β-cell. Hormone and Metabolic Research, supp.10, 100–107.

    Google Scholar 

  5. Bender, C.M., Orszag, S.A. (1978): Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York.

    MATH  Google Scholar 

  6. Bourland, F.J., Haberman, R. (1990): Separatrix crossing: time-invariant potentials with dissipation. SIAM J. Appl. Math. 50, 1716–1744.

    Article  MathSciNet  MATH  Google Scholar 

  7. Chay, T.R., Keizer, J. (1983): Minimal model for membrane oscillations in the pancreatic β-cell. Biophys. J. 42, 181–189.

    Article  Google Scholar 

  8. Chay, T.R., Keizer, J. (1985): Theory of the effect of extracellular potassium on oscillations in the pancreatic β-cell. Biophys. J. 48, 815–827.

    Article  Google Scholar 

  9. Dean, P.M., Matthews, E.K. (1970a): Glucose-induced electrical activity in pancreatic islet cells. J. Physiology (Lond.). 210, 255–264.

    Google Scholar 

  10. Dean, P.M., Matthews, E.K. (1970b): Electrical activity in pancreatic islet cells: effects of ions. J. Physiology (Lond.). 210, 265–275.

    Google Scholar 

  11. Henquin, J.C., Meissner, H.P. (1984): Effects of theophylline and dibutyryl cyclic adenosine monophosphate on the membrane-potential of mouse pancreatic β-cells. J. Physiology (Lond.). 351, 595–612.

    Google Scholar 

  12. Hodgkin, A.L., Huxley, A.F. (1952): A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiology (Lond.). 117, 500–544.

    Google Scholar 

  13. Keizer, J. (1988): Electrical activity and insulin release in pancreatic beta cells. Math. Biosci. 90, 127–138.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kevorkian, J., Cole, J.D. (1981): Perturbation Methods in Applied Mathematics. (Applied Mathematical Sciences, Vol. 34). Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  15. Kevorkian, J. (1987): Perturbation techniques for oscillatory systems with slowly varying coefficients. SIAM Rev. 29, 391–461.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuzmak, G.E. (1959): Asymptotic solutions of nonlinear second order differential equations with variable coefficients. P.M.M. 23, 730–744.

    MathSciNet  MATH  Google Scholar 

  17. Luke, J.C (1966): A perturbation method for nonlinear dispersive wave problems. Proc. Roy. Soc, Ser. A. 292, 403–412.

    Article  MathSciNet  MATH  Google Scholar 

  18. Meissner, H.P., Preissler, M. (1980): Ionic mechanisms of the glucose-induced membrane potential changes in β-cells. Hormone and Metabolic Research, supp.10, 91–99.

    Google Scholar 

  19. Meissner, H.P., Schmelz, H. (1974): Membrane potential of beta-cells in pancreatic islets. Pfluegers Arch. 351, 195–206.

    Article  Google Scholar 

  20. Minorsky, N. (1962): Nonlinear Oscillations. Robert E. Krieger Publishing, Malabar, Florida.

    MATH  Google Scholar 

  21. Ozawa, S., Sand, O. (1986): Electrophysiology of endocrine cells. Phys. Reviews, 66, 887–952.

    Google Scholar 

  22. Rinzel, J. (1987): A formal classification of bursting mechanisms in excitable systems. In: Teramato, E., Yamaguti, M. (eds.) Mathematical Topics in Population Biology, Morphogenesis, and Neurosciences. Lecture Notes in Biomath. Vol. 71 267–281, Springer-Verlag, Berlin-Heidelberg-New York.

    Chapter  Google Scholar 

  23. Rinzel, J. (1987): Dissection of a model for neuronal parabolic bursting. J. Math. Biol. 25, 653–675.

    Article  MathSciNet  MATH  Google Scholar 

  24. Rinzel, J., Lee, Y.S. (1986): On different mechanisms for membrane potential bursting. In: Othmer, H.G. (ed.) Nonlinear Oscillations in Biology and Chemistry, Lecture Notes Biomath. 66, 19–83, Springer-Verlag, Berlin-Heidelberg-New York.

    Chapter  Google Scholar 

  25. Rorsman, P., Trube, G. (1986): Calcium and delayed potassium currents in mouse pancreatic β-cells under voltage-clamp conditions. J. Physiology. 374, 531–550.

    Google Scholar 

  26. Sherman, A., Rinzel, J., Keizer, J. (1988): Emergence of organized bursting in clusters of pancreatic β-cells by channel sharing. Biophys. J. 54, 411–425.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pernarowski, M., Miura, R.M., Kevorkian, J. (1991). The Sherman-Rinzel-Keizer Model for Bursting Electrical Activity in the Pancreatic β-Cell. In: Busenberg, S., Martelli, M. (eds) Differential Equations Models in Biology, Epidemiology and Ecology. Lecture Notes in Biomathematics, vol 92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45692-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45692-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54283-4

  • Online ISBN: 978-3-642-45692-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics