Skip to main content

A Theoretical Study of Supercritical Liquid Fuel Combustion

  • Chapter
  • 268 Accesses

Abstract

In Diesel engines the state of compressed air in the combustion chamber is usually beyond the thermodynamic critical point of the injected liquid fuel (Fig.1) [1]. The evaporation/cmbustion characteristics of the spray may by different from those at pressures below the critical value of the fuel. Under such conditions, it is possible for the atomized liquid fuel to lose its sharp liquid-gas interface and change into a puff of fuel wherein the phase change is spatially continuous. These have been a number of studies of single droplet combustion [1–9] to gain insight into the elementary evaporation / combustion characteristics of Diesel spray. Previous theories, however, do not satisfactorily describe the phenomenon at high pressures, in that they fail to approach the critical situation in which the droplet surface disappears. Major difficulties encountered are the following. (1) The phenomenon is inevitably unsteady [10] so that the simplifying gas-phase quasi-steadiness assumption employed in the analyses of droplet combustion at low pressure [11] is not applicable. (2) Some of the material properties involved change abruptly in the vicinity of a thermodynamic critical point of the mixture [12] and there is a serious lack of precise knowledge about their behavior.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Kadota and H. Hiroyasu, Trans. Japan Soc. Mech. Engrs., 44, 3885, 1978.

    Article  Google Scholar 

  2. D.B. Spalding, ARS J., 29, 825, 1959.

    Google Scholar 

  3. P.R. Wieber, AIAA J., 1, 2764, 1963.

    Article  Google Scholar 

  4. D.E. Ronser, AIAA J., 5, 163, 1967.

    Article  Google Scholar 

  5. J.A. Manrique and G.L. Borman, Int. J. Heat and Mass Transf., 12, 1081, 1969.

    Article  Google Scholar 

  6. G.M. Feath et al., 12th Symp. (Int.) on Comb., 1969, 9.

    Google Scholar 

  7. R.L. Matiosz, S. Leipziger and T.P. Torda, Int. J. Heat and mass Transf., 15, 831, 1972.

    Article  Google Scholar 

  8. H. Hiroyasu et al., Trans. Japan Soc. Mech. Engrs., 40, 3147, 1974.

    Article  Google Scholar 

  9. T. Kadota and H. Hiroyasu, Trans. Japan Soc. Mech. Engrs., 46, 1591, 1980.

    Article  Google Scholar 

  10. T.A. Brzustowski, Canad. J. Chem. Engng., 43 30, 1965.

    Article  Google Scholar 

  11. F.A. Williams, Combustion Theory, Addison-Wesley, 1965.

    Google Scholar 

  12. R.B. Bird et al., Transport Phenomena, John Wiley and Sons, 1960.

    Google Scholar 

  13. L.A. Michels et al., Physica, 28, 1216, 1962.

    Article  Google Scholar 

  14. S.R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics, North Holland, 1962.

    Google Scholar 

  15. P.L. Chueh & J.M. Prausnits, I&EC Fund., 6, 492, 1967.

    Article  Google Scholar 

  16. L.I. Stiel & G. Thodos, A.I. Ch.J., 10, 26, 1964.

    Google Scholar 

  17. H.L. Lee & G. Thodos, Ind. Eng. Chem. Fudam., 22, 17, 1983.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Umemura, A. (1987). A Theoretical Study of Supercritical Liquid Fuel Combustion. In: Iinuma, K., Ohsawa, T., Asanuma, T., Doi, J. (eds) Laser Diagnostics and Modeling of Combustion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45635-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45635-0_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45637-4

  • Online ISBN: 978-3-642-45635-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics