Skip to main content

Adenosine Receptor Subtypes: Binding Studies

  • Conference paper
Topics and Perspectives in Adenosine Research

Summary

Adenosine receptors are divided into two main subtypes, designated A1 and A2. Although the two subtypes are presently defined by structure-activity relationships, the original definition based on adenylate cyclase is still useful: A1 receptors inhibit adenylate cyclase, whereas A2 receptors stimulate the enzyme. The two receptors also contribute in different ways to adenosine’s role in maintaining oxygen supply/demand balance: A1 responses generally bring about a reduction in oxygen demand (e. g., reductions in heart rate and contractility, inhibition of locomotor activity, hypothermia, inhibition of lipolysis), whereas A2 responses generally increase oxygen supply (e. g., vasodilation, inhibition of platelet aggregation).

A1 receptor binding assays are now well-characterized, and we routinely use 3H-N6γ-cyclohexyl-adenosine for this purpose. To determine the relative A1/A2 affinities of compounds, we developed an A2 receptor binding assay, based on the 3H-NECA binding assay of Yeung and Green. 3H-NECA binding was performed in rat striatal membranes, with 50 nM N6-cyclopenty-ladenosine (CPA) included in the assay to eliminate A1 binding of 3H-NECA. Under these conditions, 3H-NECA binding showed the characteristics expected of an A2 receptor. Affinities of six adenosine agonists in 3H-NECA binding were closely correlated with literature values for affinities in the dog coronary artery system (r = 0.986, P < 0.001), whereas no such correlation was seen for 3H-CHA binding (r = 0.530, n. s.). CPA was the most highly A1-selective agonist (780-fold), and 2-(phenylamino)adenosine (CV-1808) was the most highly A2-selective (5-fold). The antagonist PD 116,948 (8-cyclopentyl-1,3-dipropylxanthine) showed 740-fold A1-selectivity. PD 115,199, N-[2-(dimethylamino)ethyl]-N-methyl-4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)benzenesulfonamide, a moderately soluble xanthine derivative, had a high affinity in A2 binding but was equally potent in A1 binding. 3H-PD 116,948 and 3H-PD 115,199 have been used to label A1 and A2 receptors, respectively.

Several groups have observed that A2 receptors can differ markedly in their affinity for adenosine, and it has been proposed that A2 receptors can be divided into high- and low-affinity subclasses. The high-affinity A2 receptors, which we propose to call A2a, stimulate broken-cell adenylate cyclase and are localized to the striatum, whereas the low-affinity A2b receptors stimulate cyclic AMP accumulation in brain slices and are widely distributed in the brain. The 3H-NECA binding site has a high affinity for adenosine agonists and is highly localized to the striatum, indicating that it belongs to the A2a subclass. 2-(4-Methoxyphenyl) adenosine (CV-1674) appears to be quite selective for the A2a receptor: it has 600 nM affinity in 3H-NECA binding but is inactive at 1 mM in human fibroblasts (A2b response). The antagonist ligand 3H-PD 115,199 does not show any detectable binding to the A2b receptor, confirming that this receptor is not simply an antagonist-preferring coupling state of the A2a receptor.

Some new structure-activity criteria to distinguish A1 and A2 receptors are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birdsall NJM, Hulme EO, Burgen A (1980) The character of the muscarinic receptors in different regions of the rat brain. Proc R Soc Lond [Biol] 207:1–12

    Article  PubMed  CAS  Google Scholar 

  2. Bruns RF (1980) Adenosine receptor activation in human fibroblasts: Nucleoside agonists and antagonists. Can J Physiol Pharmacol 58:673–691

    Article  PubMed  CAS  Google Scholar 

  3. Bruns RF (1981) Adenosine antagonism by purines, pteridines, and benzopteridines in human fibroblasts. Biochem Pharmacol 30:325–333

    Article  PubMed  CAS  Google Scholar 

  4. Bruns RF (1986) Adenosine and xanthines. In: Stefanovich V, Okyayuz-Baklouti GI (eds) Role of adenosine in cerebral metabolism and blood flow. Boekengroep, Utrecht

    Google Scholar 

  5. Bruns RF, Daly JW, Snyder SH (1980) Adenosine receptors in brain membranes: binding of N6-cyclohexyl[3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine. Proc Natl Acad Sci, USA 77:5547–5551

    Article  PubMed  CAS  Google Scholar 

  6. Bruns RF, Fergus JH, Badger EW, Bristol JA, Santay LA, Hays SJ (1986) PD 115,199: an antagonist ligand for adenosine A2 receptors. Naunyn Schmiedebergs Arch Pharmacol (in press)

    Google Scholar 

  7. Bruns RF, Heffner TG, Wiley JN, Davis RE, Downs DA (1986) 8-Cyclopentyltheophylline blocks the locomotor inhibition and hypothermia caused by adenosine A1 agonists. Pflügers Arch 407:S41

    Article  Google Scholar 

  8. Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29:331–346

    PubMed  CAS  Google Scholar 

  9. Bukoski RD, Sparks HV, Mela LM (1983) Rat heart mitochondria release adenosine. Biochem Biophys Res Commun 113:990–995

    Article  PubMed  CAS  Google Scholar 

  10. Buss DC, Routledge PA, Watt AH (1986) Intravenous adenosine stimulates respiration in conscious adult rabbits. Br J Pharmacol 87:182P

    Google Scholar 

  11. Cusack NJ, Hourani SMO (1981) 5′-N-ethylcarboxamidoadenosine: a potent inhibitor of human platelet aggregation. Br J Pharmacol 72:443–447

    PubMed  CAS  Google Scholar 

  12. Daly JW, Butts-Lamb P, Padgett W (1983) Subclasses of adenosine receptors in the central nervous system. Interaction with caffeine and related methylxanthines. Cell Mol Neurobiol 3:69–80

    Article  PubMed  CAS  Google Scholar 

  13. Dunwiddie TV, Basile AS, Palmer MR (1983) Electrophysiological responses to adenosine analogs in rat hippocampus and cerebellum: evidence for mediation by adenosine receptors of the A1 subtype. Life Sci 34:37–47

    Article  Google Scholar 

  14. Elfman L, Lindgren E, Walum E, Fredholm BB (1984) Adenosine analogues stimulate cyclic AMP-accumulation in cultured neuroblastoma and glioma cells. Acta Pharmacol Toxicol (Copenh) 55:297–302

    Article  CAS  Google Scholar 

  15. Elks ML, Manganiello VC (1985) Phenyl-isopropyl adenosine affects both adenylate cyclase and cAMP phosphodiesterase in 3T3-L1 adipocytes. Clin Res 33:429A

    Google Scholar 

  16. Evans DB, Schenden JA (1982) Adenosine receptors mediating cardiac depression. Life Sci 31:2425–2432

    Article  PubMed  CAS  Google Scholar 

  17. Bruns RF, Fergus JH, Badger EW, Bristol JA, Hartman JD, Santay LA, Hays SJ, Huang CC (1986) Binding of the A1-selective adenosine antagonist 8-cyclopentyl-1,3-dipropylxanthine to rat brain membranes. Naunyn Schmiedebergs Arch Pharmacol (in press)

    Google Scholar 

  18. Hamprecht B, van Calker D (1985) Nomenclature of adenosine receptors. Trends Pharmacol Sci 6:153–154

    Article  CAS  Google Scholar 

  19. Hedner T, Hedner J, Wessberg P, Jonason J (1982) Regulation of breathing in the rat: indications for a role of central adenosine mechanisms. Neurosci Lett 33:147–151

    Article  PubMed  CAS  Google Scholar 

  20. Heffner TG, Downs DA, Bristol JA, Bruns RF, Harrigan SE, Moos WH, Sledge KL, Wiley JN#(1985) Antipsychotic-like effects of adenosine receptor agonists. Pharmacologist 27:293

    Google Scholar 

  21. Jacobson KA, Yamada N, Kirk KL, Daly JW, Olsson RA (1986) N6-functionalized congeners of adenosine with high potency at A2-adenosine receptors: potential ligands for affinity chromatography. Biochem Biophys Res Commun 136:1097–1102

    Article  PubMed  CAS  Google Scholar 

  22. Kawazoe K, Matsumoto N, Tanabe M, Fujiwara M, Yanagimoto M, Hirata M, Kikuchi K#(1980) Coronary and cardiohemodynamic effects of 2-phenylamino-adenosine (CV-1808) in anesthetized dogs and cats. Arzneimittelforsch 30:1083–1087

    PubMed  CAS  Google Scholar 

  23. Kusachi S, Thompson RD, Olsson RA (1983) Ligand selectivity of dog coronary adenosine receptor resembles that of adenylate cyclase stimulatory (Ra receptors. J Pharmacol Exp Ther 227:316–321

    PubMed  CAS  Google Scholar 

  24. Lee KS, Reddington (1986) 1,3-Dipropyl-8-cyclopentylxanthine (DPCPX) inhibition of [3H]N-ethylcarboxamidoadenosine (NECA) binding allows the visualization of putative non-A1 adenosine receptors. Brain Res 368:394–398

    Article  PubMed  CAS  Google Scholar 

  25. Linden J, Patel A, Sadek S (1985) [125I]Aminobenzyladenosine, a new radioligand with improved specific binding to adenosine receptors in heart. Circ Res 56:279–284

    PubMed  CAS  Google Scholar 

  26. Londos C, Cooper DMF, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 77:2551–2554

    Article  PubMed  CAS  Google Scholar 

  27. Londos O, Wolff J, Cooper DMF (1983) Adenosine receptors and adenylate cyclase interactions. In: Berne RM, Rall TW, Rubio R (eds) Regulatory function of adenosine. Nijhoff, The Hague, pp 17–32

    Chapter  Google Scholar 

  28. McCabe J, Scholfield CN (1985) Adenosine-induced depression of synaptic transmission in the isolated olfactory cortex:receptor identification. Pflügers Arch 403:141–145

    Article  PubMed  CAS  Google Scholar 

  29. Moos WH, Szotek DS, Bruns RF (1985) N6-cycloalkyladenosines. Potent, A1-selective adenosine agonists. J Med Chem 28:1383–1384

    Article  PubMed  CAS  Google Scholar 

  30. Mueller RA, Widerlöv E, Breese GR (1984) Attempted antagonism of adenosine analogue induced depression of respiration. Pharmacol Biochem Behav 21:289–296

    Article  PubMed  CAS  Google Scholar 

  31. Murray RD, Churchill PO (1985) Concentration dependency of the renal vascular and renin secretory responses to adenosine receptor agonists. J Pharmacol Exp Ther 232:189–193

    PubMed  CAS  Google Scholar 

  32. Newby A (1984) Adenosine and the concept of “retaliatory metabolites”. Trends Biochem Sci 9:42–44

    Article  CAS  Google Scholar 

  33. Osswald H (1983) Adenosine and renal function. Berne RM, Rall TW, Rubio R (eds) Regulatory function of adenosine. NijhofF, The Hague, pp 133–156

    Google Scholar 

  34. Phillis JW, Kostopoulos GK, Limacher JJ (1974) Depression of corticospinal cells by various purines and pyrimidines. Can J Physiol Pharmacol 52:1226–1229

    Article  PubMed  CAS  Google Scholar 

  35. Prémont J, Perez M, Blanc G, Tassin J-P, Thierry A-M, Hervé D, Bockaert J (1979) Adeno-sine-sensitive adenylate cyclase in rat brain homogenates: kinetic characteristics, specificity, topographical, subcellular and cellular distribution. Mol Pharmacol 16:790–804

    PubMed  Google Scholar 

  36. Schwabe U, Trost T (1980) Characterization of adenosine receptors in rat brain by (−)[3H]N6-phenylisopropyladenosine. Naunyn Schmiedebergs Arch Pharmacol 313:179–187

    Article  PubMed  CAS  Google Scholar 

  37. Silinsky EM (1984) On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endings. J Physiol 346:243–256

    PubMed  CAS  Google Scholar 

  38. Smellie FW, Daly JW, Dunwiddie TV, Hoffer BJ (1979) The dextro and levorotatory isomers of N-phenylisopropyladenosine: stereospecific effects on cyclic AMP-formation and evoked synaptic responses in brain slices. Life Sci 25:1739–1748

    Article  PubMed  CAS  Google Scholar 

  39. Sparks HV Jr Bardenheuer H (1986) Regulation of adenosine formation by the heart. Circ Res 58:193–201

    PubMed  CAS  Google Scholar 

  40. Trost T, Schwabe U (1981) Adenosine receptors in fat cells. Identification by (−)-N6-[3H]phe-nylisopropyladenosine binding. Mol Pharmacol 19:228–235

    PubMed  CAS  Google Scholar 

  41. Trost T, Stock K (1977) Effects of adenosine derivatives on cAMP accumulation and lipoly-sis in rat adipocytes and on adenylate cyclase in adipocyte plasma membranes. Naunyn Schmiedebergs Arch Pharmacol 299:33–40

    Article  PubMed  CAS  Google Scholar 

  42. Ukena D, Böhme E, Schwabe U (1984) Effects of several 5′-carboxamide derivatives of adenosine on adenosine receptors of human platelets and rat fat cells. Naunyn Schmiedebergs Arch Pharmacol 327:36–42

    Article  PubMed  CAS  Google Scholar 

  43. van Calker D, Müller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005

    Article  PubMed  Google Scholar 

  44. Vapaatalo H, Onken D, Neuvonen PJ, Westermann E (1975) Stereospecificity in some central and circulatory effects of phenylisopropyl-adenosine (PIA). Arzneimittelforsch 25:407–410

    PubMed  CAS  Google Scholar 

  45. Williams M, Risley EA (1980) Biochemical characterization of putative central purinergic receptors by using 2-chloro[3H]adenosine, a stable analog of adenosine. Proc Natl Acad Sci USA 77:6892–6896

    Article  PubMed  CAS  Google Scholar 

  46. Yeung S-MH, Green RD (1984) [3H]5′-N-Ethylcarboxamide adenosine binds to both Ra and Ri adenosine receptors in rat striatum. Naunyn Schmiedebergs Arch Pharmacol 325:218–225

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bruns, R.F., Lu, G.H., Pugsley, T.A. (1987). Adenosine Receptor Subtypes: Binding Studies. In: Gerlach, E., Becker, B.F. (eds) Topics and Perspectives in Adenosine Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45619-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45619-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45621-3

  • Online ISBN: 978-3-642-45619-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics