Skip to main content

Endothelial Activation by Adenosine and Coronary Flow Regulation in the Guinea Pig Heart

  • Conference paper

Summary

In order to investigate the relationship between receptor-mediated activation of coronary endothelial adenylate cyclase and changes in coronary flow, coronary endothelial adenine nucleotides of isolated guinea pig hearts were selectively prelabeled by an intracoronary infusion of 3H-adenosine at a concentration of 10−8 M. Following prelabeling, the release of 3H-cAMP into the coronary effluent perfusate was measured and used as an index of the activation of endothelial adenylate cyclase. Adenosine, NECA, R-PIA, and S-PIA caused parallel increases in coronary conductance and the coronary efflux of 3H-cAMP, and both effects showed a rank order of potency characteristic of adenosine A2 receptors. Using the specific radioactivity of cyclic AMP released during NECA stimulation to represent the specific radioactivity of endothelial precursor adenine nucleotides, the contribution of the coronary endothelium to total cardiac adenosine release was calculated to be 14%. Procaterol, a selective beta2 adrenoceptor agonist, and prostaglandin E1 also caused coronary vasodilation and increased 3H-cAMP release without augmenting left ventricular contractile function. In contrast to these compounds, ATP caused near maximal vasodilation, but 3H-cAMP release remained near control levels. These results demonstrate the presence of adenosine A2, beta2 adrenergic, and prostaglandin E1 receptors that stimulate coronary endothelial adenylate cyclase. In addition, the data suggest the presence of a distinct purinergic receptor that is involved in coronary vasodilation. Activation of coronary endothelial adenylate cyclase may play a minor role in mediating coronary vasodilation.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barber R, Butcher RW (1983) The egress of cyclic AMP from metazoan cells. Adv Cyclic Nucleotide Res 13:119–138

    Google Scholar 

  2. Bruns RF, Daly JW, Snyder SH (1980) Adenosine receptors in brain membranes: binding of N6-cyclohexyl [3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine. Proc Natl Acad Sci USA 77:5547–5551

    Article  PubMed  CAS  Google Scholar 

  3. Bünger R, Haddy FJ, Gerlach E (1975) Coronary responses to dilating substances and competitive inhibition by theophylline in the isolated perfused guinea pig heart. Pflügers Arch 358:213–224

    Article  PubMed  Google Scholar 

  4. Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven, New York, pp 107–118

    Google Scholar 

  5. Burnstock G, Kennedy C (1986) A dual function for adenosine 5′-triphosphate in the regulation of vascular tone. Circ Res 58:319–330

    PubMed  CAS  Google Scholar 

  6. Busse R, Trogisch G, Bassenge E (1985) The role of endothelium in the control of vascular tone. Basic Res Cardiol 80:475–490

    Article  PubMed  CAS  Google Scholar 

  7. Cocks TM, Angus JA (1983) Antagonists of endothelial cell-mediated relaxation of coronary arterial smooth muscle. Blood Vessels 20:188 (abstract)

    Google Scholar 

  8. Collis MG, Brown CM (1983) Adenosine relaxes the aorta by interacting with an A2 receptor and an intracellular site. Eur J Pharmacol 96:61–69

    Article  PubMed  CAS  Google Scholar 

  9. Davies PF, Ganz P, Diehl PS (1985) Reversible microcarrier-mediated junctional communication between endothelial and smooth muscle cell monolayers: an in vitro model of vascular cell interactions. Lab Invest 85:710–718

    Google Scholar 

  10. Deussen A, Möser G, Schrader J (1986) Contribution of coronary endothelial cells to cardiac adenosine production. Pflügers Arch 406:608–614

    Article  PubMed  CAS  Google Scholar 

  11. Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol (Lond) 68:213–237

    PubMed  CAS  Google Scholar 

  12. Goldman SJ, Dickinson ES, Slakey LL (1983) Effect of adenosine on synthesis and release of cyclic AMP by cultured vascular cells from swine. J Cyclic Nucleotide Protein Phosphor Res 9:69–78

    PubMed  CAS  Google Scholar 

  13. Hellewell PG, Pearson JD (1984) Purinoceptor mediated stimulation of prostacyclin release in the porcine pulmonary vasculature. Br J Pharmacol 83:457–462

    PubMed  CAS  Google Scholar 

  14. Kaumann AJ, Morris TH, Bojar H (1983) Heart ß-receptors: on the functional role of heterogeneous binding sites. J Recept Res 3:61–70

    PubMed  CAS  Google Scholar 

  15. Kusachi S, Thompson RD, Olsson RA (1983) Ligand selectivity of dog coronary adenosine receptor resembles that of adenylate cyclase stimulatory (Ra) receptors. J Pharmacol Exp Ther 227:316–320

    PubMed  CAS  Google Scholar 

  16. Londos C, Cooper DMF, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 77:2551–2554

    Article  PubMed  CAS  Google Scholar 

  17. Lückhoff A, Busse R (1986) Increased free calcium in endothelial cells under stimulation with adenine nucleotides. J Cell Physiol 126:414–420

    Article  PubMed  Google Scholar 

  18. Nees S, Herzog V, Becker BF, Böck M, Des Rosiers C, Gerlach E (1985) The coronary endothelium: a highly active metabolic barrier for adenosine. Basic Res Cardiol 80:515–529

    Article  PubMed  CAS  Google Scholar 

  19. Olsson RA, Davis CJ, Khouri EM, Patterson RA (1976) Evidence for an adenosine receptor on the surface of dog coronary myocytes. Circ Res 39:93–98

    PubMed  CAS  Google Scholar 

  20. Pearson JD, Carleton JS, Hutchings A, Gordon JL (1978) Uptake and metabolism of adenosine by pig aortic endothelial and smooth muscle cells in culture. Biochem J 170:265–271

    PubMed  CAS  Google Scholar 

  21. Rodbell M (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284:17–22

    Article  PubMed  CAS  Google Scholar 

  22. Schrader J, Nees S, Gerlach E (1977) Evidence for a cell surface adenosine receptor on coronary myocytes and atrial muscle cells. Studies with an adenosine derivative of high molecular weight. Pflügers Arch 369:251–257

    Article  PubMed  CAS  Google Scholar 

  23. Sparks HV Jr, DeWitt DF, Wangler RD, Gorman MW, Bassingthwaighte JB (1985) Capillary transport of adenosine. Fed Proc 44:2620–2622

    PubMed  CAS  Google Scholar 

  24. Waelbroeck M, Taton G, Delhaye M, Chatelain P, Camus JC, Pochet R, Leclerc JL, De Smet JM, Robberecht P, Christophe J (1983) The human heart beta-adrenergic receptors II. Coupling of beta2-adrenergic receptors with the adenylate cyclase system. Mol Pharmacol 24:174–182

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kroll, K., Schrader, J., Möllmann, D. (1987). Endothelial Activation by Adenosine and Coronary Flow Regulation in the Guinea Pig Heart. In: Gerlach, E., Becker, B.F. (eds) Topics and Perspectives in Adenosine Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45619-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45619-0_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45621-3

  • Online ISBN: 978-3-642-45619-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics