Skip to main content

Adenosine in the Local Regulation of Blood Flow: Current Controversies

  • Conference paper
Topics and Perspectives in Adenosine Research

Summary

Three experimental approaches have been taken to test the adenosine hypothesis: adenosine receptor blockade, adenosine deaminase (ADA), and estimation of interstitial adenosine concentration. Methylxanthines, which block adenosine receptors, reduce coronary reactive hyperemia but have no effect on cardiac functional hyperemia and hypoxic vasodilation. They also have controversial effects on skeletal muscle vasodilation. The explanations for the lack of effect of adenosine receptor blockers include an increase in adenosine formation which overwhelms the blockade and the possibility that adenosine contributes to but is not necessary for most local regulatory responses. ADA is used to lower interstitial adenosine ([ADO]i). It has no effect on basal coronary tone or the response to graded reduction in perfusion pressure. It reduces but does not eliminate coronary reactive hyperemia and the vasodilation in response to increased metabolism and systemic hypoxia. It reduces exercise vasodilation in the cremaster muscle. Negative results with ADA may have been obtained because the flux of adenosine is higher than expected and there was not enough ADA to lower [ADO]i. [ADO]i is estimated by measurements of adenosine release from the epicardial surface or into the venous effluent ([ADO]v). We have developed a mathematical model relating [ADO]i and [ADO]v and have used indicator dilution experiments to measure capillary transport parameters for adenosine. The relationship between [ADO]i and [ADO]v is primarily sensitive to the transport parameter for adenosine through interendothelial cell gaps. Further work is needed to gain information about [ADO]i under a variety of experimental conditions.

Supported by: USPHS grants HL 25779, HL24232, and HL662249

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afonso S, Ansfield TJ, Bemdt TB, Rowe GG (1972) Coronary vasodilator responses to hyoxia before and after aminophylline. J Physiol (Lond) 221:589–599

    PubMed  CAS  Google Scholar 

  2. Bardenheuer H, Whelton B, Sparks HV (1985) Adenosine release by in situ endothelial cells. In: Yudilevich DL, Mann GE (eds) Carrier mediated transport of solutes from blood to tissue. Longman, New York, pp 205–212

    Google Scholar 

  3. Bassingthwaighte JB, Sparks HV, Chan IS, De Witt DF, Gorman MW (1985) Modeling of transendothelial transport. Fed Proc 44:2623–2626

    PubMed  CAS  Google Scholar 

  4. Belardinelli L, Fenton R, West A, Linden J, Althaus J, Berne R (1982) Extracellular action of adenosine and antagonism by aminophylline on the atrioventricular conduction of isolated perfused guinea pig and rat hearts. Circ. Res. 51:569–579

    PubMed  CAS  Google Scholar 

  5. Berne RM (1985) Criteria for the involvement of adenosine in the regulation of blood flow. In: Paton DM (ed) Methods used in adenosine research. Plenum, New York, pp 331–336 (Methods in Pharmacology, vol 6)

    Google Scholar 

  6. Berne RM, Winn HR, Knabb RM, Ely SW, Rubio R (1983) Blood flow regulation by adenosine in heart, brain and skeletal muscle. In: Berne RM, Rall TW, Rubio R (ed) Regulatory function of adenosine. Nijhoff, The Hague, pp 293–313

    Chapter  Google Scholar 

  7. Bünger R, Haddy FJ, Gerlach E (1975) Coronary responses to dilating substances and competitive inhibition by theophylline in the isolated guinea pig heart. Pflügers Arch 358:213–224

    Article  PubMed  Google Scholar 

  8. DeWitt DF, Wangler RD, Thompson CI, Sparks HV (1983) Phasic release of adenosine during steady state metabolic stimulation in the isolated guinea pig heart. Circ. Res. 53:636–643

    PubMed  CAS  Google Scholar 

  9. Dole WP, Yamada N, Bishop VS, Olsson RA (1985) Role of adenosine in coronary blood flow regulation after reductions in perfusion pressure. Circ. Res. 56:517–524

    PubMed  CAS  Google Scholar 

  10. Feigl EO (1983) Coronary physiology. Physiol. Rev. 63:1–205

    PubMed  CAS  Google Scholar 

  11. Fenton RA, Dobson JG (1985) Elevation of interstitial adenosine in the hypoxic or ischemic heart as determined by fluorometric microanalysis of epicardial exidates (abstract). Fed. Proc. 44:1020

    Google Scholar 

  12. Gewirtz H, Brautigan DL, Olsson RA, Brown P, Most AS (1983) Role of adenosine in the, maintenance of coronary vasodilation distal to a severe coronary artery stenosis: observations in conscious domestic swine. Circ. Res. 53:42–51

    PubMed  CAS  Google Scholar 

  13. Giles RW, Wilcken DEL (1977) Reactive hyperemia in the dog heart: interrelations between adenosine, ATP, and aminophylline and the effect of indomethacin. Cardiovasc Res 11:113–121

    Article  PubMed  CAS  Google Scholar 

  14. Gorman MW, Bassingthwaighte JB, Olsson RA, Sparks HV (1986) Endothelial cell uptake of adenosine in canine skeletal muscle. Am J Physiol 250:H482–H489

    PubMed  CAS  Google Scholar 

  15. Hanley FL, Messina LM, Baer RW, Uhlig PN, Hoffman JIE (1983) Direct measurement of left ventricular interstitial adenosine. Am J Physiol 245:H327–H335

    PubMed  CAS  Google Scholar 

  16. Hanley FL, Grattan MT, Stevens MB, Hoffman JIE (1986) Role of adenosine in coronary autoregulation. Am J Physiol 250:H558–H566.

    PubMed  CAS  Google Scholar 

  17. Heller LJ, Mohrman DE, Sunnarborg LJ (1985) Interstitial adenosine concentration in isolated perfused rat hearts during adenosine infusions (abstract). Physiologist 28:339

    Google Scholar 

  18. Hintze TH, Vatner SF (1983) Effects of aminophylline on the coronary vasodilation observed with adenosine, dipyridamole or following a brief coronary occlusion in the conscious dog (abstract). Fed Proc 42:462

    Google Scholar 

  19. Jones CE, Hurst TW, Randall JR (1982) Effects of aminophylline on coronary vasodilation induced by atrial pacing and norepinephrine. Am J Physiol 243:H480–H487

    PubMed  CAS  Google Scholar 

  20. Kammermeir H, Decking U, Wienen W, Jungling E (1985) Concentrations of the interstitial fluid of isolated perfused rat hearts (abstract). J Mol Cell Cardiol 17:7

    Google Scholar 

  21. Klabunde RE (1986) Conditions for dipyridamole potentiation of skeletal muscle active hyperemia. Am J Physiol 250:H62–H67

    PubMed  CAS  Google Scholar 

  22. Kroll K, Feigl EO (1985) Adenosine is unimportant in controlling coronary blood flow in unstressed dog hearts. Am J Physiol 249:H1176–H1187

    PubMed  CAS  Google Scholar 

  23. Kroll K, Schrader JS (1985) Quantification of adenosine release from coronary endothelial cells in guinea pig hearts (abstract). Pflügers Arch 405:R11

    Google Scholar 

  24. Kusachi S, Olsson RA (1983) Pericardial superfusion to measure cardiac interstitial adenosine concentration. Am J Physiol 244:H458–H461

    PubMed  CAS  Google Scholar 

  25. Londos C, Wolff J, Cooper DMF (1981) Adenosine as a regulator of adenylate cyclase. In: Burnstock G (ed) Purinergic receptors. Chapman and Hall, London, pp 287–324 (Receptors and recognition series B vol 12)

    Chapter  Google Scholar 

  26. Manfredi JP, Sparks HV (1982) Adenosine’s role in coronary vasodilation induced by atrial pacing and norepinephrine. Am J Physiol 243:H536–H543

    PubMed  CAS  Google Scholar 

  27. McKenzie JE, Steffen RP, Price RB, Haddy FJ (1981) Effects of theophylline on adenosine and coronary vascular resistance during increased cardiac work (abstract). Physiologist 24:123

    Google Scholar 

  28. Merrill GF, Haddy FJ, Dabney JM (1978) Adenosine, theophylline and perfusate pH in the isolated perfused guinea pig heart. Circ Res 42:225–229

    PubMed  CAS  Google Scholar 

  29. Merrill GF, Jones CE, Downey HF (1985) Adenosine deaminase attenuates norepinephrine-induced coronary functional hyperemia (abstract). Physiologist. 28:340

    Google Scholar 

  30. Merrill GF, Downey HF, Jones CE (1986) Adenosine deaminase attenuates canine coronary vasodilation during systemic hypoxia. Am J Physiol 250:H579–H583

    PubMed  CAS  Google Scholar 

  31. Mohrman DE, Heller LJ (1984) Effect of aminophylline on adenosine and exercise dilation of rat cremaster arterioles. Am J Physiol 246:H592–H600

    PubMed  CAS  Google Scholar 

  32. Nees S, Gerlach E (1983) Adenine nucleotide and adenosine metabolism in cultured coronary endothelial cells: formation and release of adenine compounds and possible functional implications. In: Berne RM, Rall TW, Rubio R (eds) Regulatory function of adenosine. Nijhoff, The Hague, pp 347–355

    Chapter  Google Scholar 

  33. Olsson RA, Saito D, Steinhart CR (1982) Compartmentalization of the adenosine pool of dog and rat hearts. Circ Res 50:617–626

    PubMed  CAS  Google Scholar 

  34. Proctor KG (1984) Reduction of contraction-induced arteriolar vasodilation by adenosine deaminase on theophylline. Am J Physiol 247:H195–H205

    PubMed  CAS  Google Scholar 

  35. Proctor KG, Duling B (1982) Adenosine and free flow functional hyperemia in striated muscle. Am J Physiol 242:H688–H697

    PubMed  CAS  Google Scholar 

  36. Saito D, Steinhart CR, Nixon DG, Olsson RA (1981) Intracoronary adenosine deaminase reduces canine myocardial reactive hyperemia. Circ Res 49:1262–1267

    PubMed  CAS  Google Scholar 

  37. Sparks HV, Thompson LP (1984) Physiology of blood circulation. In: Abramson DI, Dobrin PB (eds) Blood vessels and lymphatics in organ systems. Academic New York

    Google Scholar 

  38. Sparks HV, DeWitt DF, Wangler RD, Gorman MW, Bassingthwaighte JB (1985) Capillary transport of adenosine. Fed Proc 44:2620–2622

    PubMed  CAS  Google Scholar 

  39. Tabaie HM, Scott JB, Haddy FJ (1977) Reduction of exercise dilation by theophylline. Proc Soc Exp Biol Med 154:93–97

    PubMed  CAS  Google Scholar 

  40. Thompson LP. Gorman MW, Sparks HV (1986) Aminophylline and interstitial adenosine during sustained exercise hyperemia in canine skeletal muscle. Am J Physiol (in press)

    Google Scholar 

  41. Wang CY, Gorman MW, Wangler RW, Bassingthwaighte JB, Sparks HV (1986) Mathematical model for calculating interstitial concentrations (abstract). Fed Proc 45:412

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sparks, H.V., Gorman, M.W. (1987). Adenosine in the Local Regulation of Blood Flow: Current Controversies. In: Gerlach, E., Becker, B.F. (eds) Topics and Perspectives in Adenosine Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45619-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45619-0_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45621-3

  • Online ISBN: 978-3-642-45619-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics