Skip to main content

The Antiadrenergic Actions of Adenosine in the Heart

  • Conference paper
Topics and Perspectives in Adenosine Research

Summary

Adenosine serves an important antiadrenergic function in the heart. Recent studies have been undertaken to investigate the mechanism(s) by which adenosine functions and the importance of adenosine as a negative-feedback modulator of β-adrenoceptor-mediated contractile and glycogenolytic responses in the normoxic contracting myocardium. In ventricular membranes, an analogue of adenosine, phenylisopropyladenosine (PIA) at a concentration of 10−8 M inhibits isoproterenol-sensitive adenylate cyclase activity. This inhibition is prevented by isobutylme-thylxanthine. Utilizing these membranes PIA reduces the affinity of β-adrenoceptors for isoproterenol in [125I]cyanopindolol competitive binding studies. This suggests that adenosine is most likely capable of modifying the formation of the high-affinity state of the β-adrenoceptor which in turn may reduce the degree of coupling to adenylate cyclase. Administration of adenosine deaminase (ADA) to isolated perfused hearts potentiates the isoproterenol-elicited augmentation of contractility. Such results indicate that ADA deaminates interstitial adenosine which is suspected to be involved in modulating the β-adrenoceptor-induced contractile responses. Interstitial adenosine levels were estimated by collecting epicardial surface transudates and determining the adenosine present by a HPLC fluorometric technique. The adenosine concentration was always at least two-fold greater in the transudates as compared to its concentration in coronary effluents. Overall, interstitial adenosine appears to serve an important physiological function as a negative-feedback modulator of β-adrenoceptor-mediated contractile and metabolic responses in the heart by attenuating the activation of the β-adrenoceptor-adenylate cyclase complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barany M, Barany K (1981) Protein phosphorylation in cardiac and vascular smooth muscle. Am J Physiol 241:H117–H128

    PubMed  CAS  Google Scholar 

  2. Böhm M, Brückner R, Meyer W, Nose M, Schmitz W, Scholz H, Starbatty J (1985) Evidence for adenosine receptor-mediated isoprenaline-antagonistic effects of the adenosine analogs PIA and NECA on force of contraction in guinea-pig atrial and ventricular cardiac preparations. Naunyn Schmiedebergs Arch Pharmacol 331:131–139

    Article  PubMed  Google Scholar 

  3. Brown DF, Honeyman TW, Dobson JG Jr (1978) Properties of epinephrine-induced activation of cardiac adenosine 3′,5′-monophosphate-dependent protein kinase. Biochim Biophys Acta 544:462–473

    Article  PubMed  CAS  Google Scholar 

  4. Dobson JG Jr (1978a) Protein kinase regulation of cardiac phosphorylase activity and contractility. Am J Physiol H638-H645

    Google Scholar 

  5. Dobson JG Jr (1978b) Reduction by adenosine of the isoproterenol-induced increase in cyclic adenosine 3′,5′-monophosphate formation and glycogen phosphorylase activity in rat heart muscle. Circ Res 43:785–792

    PubMed  CAS  Google Scholar 

  6. Dobson JG Jr (1981a) Catecholamine-induced phosphorylation of cardiac muscle proteins. Biochim Biophys Acta 675:123–131

    Article  PubMed  CAS  Google Scholar 

  7. Dobson JG Jr (1981b) Cyclic AMP-dependent activation of protein kinase in the myocardium. In: Delius W, Gerlach E, Grobecker H, Kübier W (eds) Catecholamines and the heart: recent advances in experimental and clinical research. Springer, Berlin Heidelberg New York, pp 128–141

    Google Scholar 

  8. Dobson JG Jr (1983 a) Adenosine reduces catecholamine contractile responses in oxygenated and hypoxic atria. Am J Physiol 245:H468–H474

    PubMed  CAS  Google Scholar 

  9. Dobson JG Jr (1983 b) Interaction between adenosine and inotropic interventions in guinea pig atria. Am J Physiol 245:H475–H480

    PubMed  CAS  Google Scholar 

  10. Dobson JG Jr (1983 c) Mechanism of adenosine inhibition of catecholamine induced responses in heart. Circ Res 52:151–160

    PubMed  CAS  Google Scholar 

  11. Dobson JG Jr, Fenton RA (1983) Anti-adrenergic effects of adenosine in the heart. In: Berne RM, Rall TW, Rubio R (eds) Regulatory function of adenosine. Nijhoff, The Hague, pp 363–376

    Chapter  Google Scholar 

  12. Dobson JG Jr, Ross J Jr, Mayer SE (1976) The role of cyclic adenosine 3′,5′-monophosphate and calcium in the regulation of contractility and glycogen phosphorylase activity in guinea pig papillary muscle. Circ Res 39:388–395

    PubMed  CAS  Google Scholar 

  13. Dobson JG Jr, Schrader J (1984) Role of extracellular and intracellular adenosine in the attenuation of catecholamine evoked responses in guinea pig heart. J Mol Cell Cardiol 16:813–822

    Article  PubMed  CAS  Google Scholar 

  14. Dobson JG Jr, Ordway RW, Fenton RA (1986) Endogenous adenosine inhibits catecholamine contractile responses in normoxic hearts. Am J Physiol 251:H455–H462

    PubMed  CAS  Google Scholar 

  15. Endoh M, Yamashita S (1980) Adenosine antagonizes the positive inotropic action mediated via β-but not α-adrenoreceptors in rabbit papillary muscle. Eur J Pharmacol 65:445–448

    Article  PubMed  CAS  Google Scholar 

  16. Epstein SE, Levey GS, Skelton CL (1971) Adenylate cyclase and cyclic AMP. Biochemical links in the regulation of myocardial contractility. Circulation 43:437–448

    PubMed  CAS  Google Scholar 

  17. Fenton RA, Dobson JG Jr (1984) Adenosine and calcium alter adrenergic-induced intact heart protein phosphorylation. Am J Physiol 246:H559–H565

    PubMed  CAS  Google Scholar 

  18. Fenton RA, Dobson JG Jr (1987) Measurement by fluorescence of interstitial adenosine levels in normoxic, hypoxic, and ischemic perfused rat hearts. Circ Res (in press)

    Google Scholar 

  19. Fenton RA, Romano FD, Dobson JG Jr (1986) β-adrenergic stimulation elevates heart interstitial (epicardial transudate) adenosine levels. Fed Proc 45:782

    Google Scholar 

  20. Kent RS, De Lean A, Lefkowitz RJ (1980) A quantitative analysis of beta-adrenergic receptor interactions: resolution of high and low affinity states of the receptor by computer modeling of ligand binding data. Mol Pharmacol 17:14–23

    PubMed  CAS  Google Scholar 

  21. Lamers JMJ, Stinis HT, DeJonge HR (1981) On the role of cyclic AMP and Ca2+-calmodu-lin-dependent phosphorylation in the control of (Ca2+-Mg2+)-ATPase of cardiac. FEBS Lett 127:139–143

    Article  PubMed  CAS  Google Scholar 

  22. LaMonica DA, Frohloff N, Dobson JG Jr (1985) Adenosine inhibition of catecholamine-stimulated cardiac membrane adenylate cyclase. Am J Physiol 248:H737–H744

    PubMed  CAS  Google Scholar 

  23. Lindemann JP, Jones LR, Hathaway DR, Henry BG, Watanabe AM (1983) β-adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles. J Biol Chem 258:464–471

    PubMed  CAS  Google Scholar 

  24. Londos C, Cooper DMF, Schlegel W, Rodbell M (1978) Adenosine analogs inhibit adipo-cyte adenylate cyclase by a GTP-dependent process: basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc Natl Acad Sci USA 75:5362–5366

    Article  PubMed  CAS  Google Scholar 

  25. Londos C, Wolff J, Cooper DMF (1983) Adenosine receptors and adenylate cyclase interactions. In: Berne RM, Rall TW, Rubio R (eds) Regulatory function of adenosine: Nijhoff, The Hague pp 17–32

    Chapter  Google Scholar 

  26. Molinoff PB, Wolfe BB, Weiland GA (1981) Quantitative analysis of drug-receptor interactions: II determination of the properties of receptor subtypes. Life Sci 29:427–443

    Article  PubMed  CAS  Google Scholar 

  27. Renkin EM, Curry FE (1982) Endothelial permeability: pathways and modulations. In: Fishman AP (ed) Endothelium. Ann NY Acad Sci 401:248–259

    Google Scholar 

  28. Rockoff JB, Dobson JG Jr (1980) Inhibition by adenosine of catecholamine-induced increase in rat atrial contractility. Am J Physiol 239:H365–H370

    PubMed  CAS  Google Scholar 

  29. Schrader J, Baumann G, Gerlach E (1977) Adenosine as inhibitor of myocardial effects of catecholamines. Pflügers Arch 372:29–35

    Article  PubMed  CAS  Google Scholar 

  30. Stull JT (1980) Phosphorylation of contractile proteins in relation to muscle function. Adv Cyclic Nucleotide Res 13:39–93

    PubMed  CAS  Google Scholar 

  31. Tada M, Kirchberger MA, Repke DI, Katz AM (1974) The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3′,5′-monophosphate-dependent protein kinase. J Biol Chem 249:6174–6180

    PubMed  CAS  Google Scholar 

  32. Walsh DA, Clippinger MS, Sivaramakrishnan S, MuCullough TE (1979) Cyclic adenosine monophosphate dependent and independent phosphorylation of sarcolemma membrane proteins in perfused rat heart. Biochemistry 18:871–877

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dobson, J.G., Fenton, R.A., Romano, F.D. (1987). The Antiadrenergic Actions of Adenosine in the Heart. In: Gerlach, E., Becker, B.F. (eds) Topics and Perspectives in Adenosine Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45619-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45619-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45621-3

  • Online ISBN: 978-3-642-45619-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics