Skip to main content

Effects of Adenosine on Human Neutrophil Function and Cyclic AMP Content

  • Conference paper
Topics and Perspectives in Adenosine Research

Summary

The inhibitory effects of adenosine (Ado) on human neutrophil function have been investigated. N-Formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) induced neutrophil polarization (a characteristic change in neutrophil shape in response to a chemotactic stimulus), H2O2 production, and myeloperoxidase release were found to be suppressed by endogenously produced Ado. This partial inhibition of cell function was abrogated by addition of adenosine deaminase (ADA). All experiments were therefore conducted in the presence of ADA. FMLP-induced polarization, H2O2 production, and myeloperoxidase release of human neutrophils were inhibited by exogenously added Ado (in combination with 2′-deoxycoformycin to inactivate the ADA) and Ado analogues in the rank order of potency: 5′-N-ethylcarboxamide adenosine > 2-chloroadenosine ≅ Ado ≅ N6-(L-2-phenyl-isopropyl)adenosine > N6-(Z)-2-phenyl-isopropyl)adenosine. The inhibition of H2O2 production by the Ado analogues was potentiated by the nonmethylxanthine cyclic AMP phosphodiesterase inhibitor 4-(3-butoxy-4-methoxyben-zyl)-2-imidazolidinone (Ro 20-1724), whereas theophylline antagonized the inhibition. Exogenously added Ado (in combination with 2′-deoxycoformycin), like the four Ado analogues, induced elevations in neutrophil cyclic AMP levels, which were markedly potentiated by Ro 20-1724 and which occurred at nucleoside concentrations similar to those that were inhibitory to neutrophil function. These data provide evidence that three different elicited responses of human neutrophils may be modulated in vivo by physiological levels of Ado acting through adenylate cyclase-coupled Ado A2 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ado:

adenosine

HBSS:

Hanks’ balanced salt solution containing 10 mMHEPES

ADA:

adenosine deaminase

BSA:

bovine serum albumin

FMLP:

N-formyl-L-methionyl-L-leucyl-L-phenylalanine

3H]FMLP:

formyl-L-methionyl-L-leucyl-L-phenylala-nine, N-[phenylalanine-ring-2,6-3H(N)]

DMSO:

dimethyl sulfoxide

dCF:

2′-deoxycoformycin

Ro 20-1724:

4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone

NECA:

5′-N-ethylcarboxamide adenosine

Cl-Ado:

2-chloroadenosine

L-PIA:

N6-(L-2-phenyl-isopropyl)adenosine or (-)-N6-(R-phenyl-isopropyl)adenosine

D-PIA:

N6-(D-2-phenyl-isopropyl)adenosine or (+)-N6-(S-phe-nyl-isopropyl)adenosine

HVA:

homovanillic acid

HRP:

horseradish peroxidase

GBSS:

Gey’s balanced salt solution containing 2% bovalbumin

HPLC:

high-performance liquid chromato-graphy

References

  1. Brown CM, Collis MG (1982) Evidence for an A2/Ra adenosine receptor in the guinea-pig trachea. Br J Pharmacol 76:381–387

    PubMed  CAS  Google Scholar 

  2. Bryant RE, Sutcliffe MC (1974) The effect of 3′,5′-adenosine monophosphate on granulocyte adhesion. J Clin Invest 54:1241–1244

    Article  PubMed  CAS  Google Scholar 

  3. Cronstein BN, Kramer SB, Rosenstein ED, Weissmann G, Hirschhorn R (1985) Adenosine modulates the generation of Superoxide anion by stimulated human neutrophils via interaction with a specific cell surface receptor. Ann NY Acad Sci 451:291–300

    Article  PubMed  CAS  Google Scholar 

  4. Cronstein BN, Kramer SB, Weissmann G, Hirschhorn R (1983) Adenosine: a physiological modulator of Superoxide anion generation by human neutrophils. J Exp Med 158:1160–1177

    Article  PubMed  CAS  Google Scholar 

  5. Duncan GS, Wolberg G, Schmitges CJ, Deeprose RD, Zimmerman TP (1982) Inhibition of lymphocyte-mediated cytolysis and cyclic AMP phosphodiesterase by erythro-9-(2-hydroxy-3-nonyl)adenine. J Immunopharmacol 4:79–100

    PubMed  CAS  Google Scholar 

  6. Ferrante A, Beard LJ, Thong YH (1980) Early decay of human neutrophil chemotactic responsiveness following isolation from peripheral blood. Clin Exp Immunol 39:532–537

    PubMed  CAS  Google Scholar 

  7. Ferrante A, Thong YH (1978) A rapid one-step procedure for purification of mononuclear and polymorphonuclear leukocytes from human blood using a modification of the Hypaque-Ficoll technique. J Immunol Methods 24:389–393

    Article  PubMed  CAS  Google Scholar 

  8. German DC, Kredich NM (1984) A radioenzymatic assay for plasma adenosine. Anal Biochem 142:536–541

    Article  PubMed  CAS  Google Scholar 

  9. Hughes PJ, Holgate ST, Church MK (1984) Adenosine inhibits and potentiates IgE-depen-dent histamine release from human lung mast cells by an A2-purinoceptor mediated mechanism. Biochem Pharmacol 33:3847–3852

    Article  PubMed  CAS  Google Scholar 

  10. Hüttemann E, Ukena D, Lenschow V, Schwabe U (1984) Ra Adenosine receptors in human platelets: characterization by 5′-N-ethylcarboxamido[3H]adenosine binding in relation to adenylate cyclase activity. Naunyn-Schmiedeberg’s Arch Pharmacol 325:226–233

    Article  Google Scholar 

  11. Lappin D, Whaley K (1984) Adenosine A2 receptors on human monocytes modulate C2 production. Clin Exp Immunol 57:454–460

    PubMed  CAS  Google Scholar 

  12. Londos C and Wolff J (1977) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci 74:5482–5486

    Article  PubMed  CAS  Google Scholar 

  13. Londos C, Cooper DM, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci 77:2551–2554

    Article  PubMed  CAS  Google Scholar 

  14. Marone G, Plaut M, Lichtenstein LM (1978) Characterization of a specific adenosine receptor on human lymphocytes. J Immunol 121:2153–2159

    PubMed  CAS  Google Scholar 

  15. Marone G, Findlay SR, Lichtenstein LM (1979) Adenosine receptor on human basophils: modulation of histamine release. J Immunol 123:1473–1477

    PubMed  CAS  Google Scholar 

  16. Marone G, Thomas LL, Lichtenstein LM (1980) The role of agonists that activate adenylate cyclase in the control of cAMP metabolism and enzyme release by human polymorphonuclear leukocytes. J Immunol 125:2277–2283

    PubMed  CAS  Google Scholar 

  17. May CD, Levine BB, Weissmann G (1970) Effects of compounds which inhibit antigenic release of histamine and phagocytic release of lysosomal enzyme on glucose utilization by leukocytes in humans. Proc Soc Exp Biol Med 133:758–763

    PubMed  CAS  Google Scholar 

  18. Ocana I, Martinez-Vazquez JM, Segura RM, Fernandez-De-Sevilla T, Capdevila JA (1983) Adenosine deaminase in pleural fluids: test for diagnosis of tuberculous pleural effusion. Chest 84:51–53

    Article  PubMed  CAS  Google Scholar 

  19. Pettersson T, Klockars M, Weber T (1984) Pleural fluid adenosine deaminase in rheumatoid arthritis and systemic lupus erythematosus. Chest 86:273

    Article  PubMed  CAS  Google Scholar 

  20. Qualliotine D, DeChatelet LR, McCall CE, Cooper MR (1972) Stimulation of oxidative metabolism in polymorphonuclear leukocytes by catecholamines. J Reticuloendothel Soc 11:263–276

    PubMed  CAS  Google Scholar 

  21. Rivkin I, Neutze JA (1977) Influence of cyclic nucleotides and a phosphodiesterase inhibitor on in vitro human blood neutrophil chemotaxis. Arch Int Pharmacodyn 228:196–204

    PubMed  CAS  Google Scholar 

  22. Ruch W, Cooper PH, Baggiolini M (1983) Assay of H2O2 production by macrophages and neutrophils with homovanillic acid and horse-radish peroxidase. J Immunol Methods 63:347–357

    Article  PubMed  CAS  Google Scholar 

  23. Rudolph SA, Greengard P, Malawista SE (1977) Effects of colchicine on cyclic AMP levels in human leukocytes. Proc Natl Acad Sci 74:3404–3408

    Article  PubMed  CAS  Google Scholar 

  24. SAS Institute (1979) SAS User’s Guide. Helwig JT, Council KA(eds) 1979 edition. SAS Institute, Raleigh, NC

    Google Scholar 

  25. Smith CW, Hollers JC, Patrick RA, Hassett C (1979) Motility and adhesiveness in human neutrophils: effects of chemotactic factors. J Clin Invest 63:221–229

    Article  PubMed  CAS  Google Scholar 

  26. Van Calker D, Müller B, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005

    Article  PubMed  Google Scholar 

  27. Van Haverbeke DA, Brown PR (1978) Optimization of a procedure for extraction of nucleo-tides from plasma and erythrocytes prior to HPLC analysis. J Liquid Chromatogr 1:507–525

    Article  Google Scholar 

  28. Webster RA, Henson PM (1978) Rapid micromeasurement of neutrophil exocytosis. Inflammation 3:129–135

    Article  PubMed  CAS  Google Scholar 

  29. Weissmann G, Goldstein I, Hoffstein S, Tsung P (1975) Reciprocal effects of cAMP and cGMP on microtubule-dependent release of lysosomal enzymes. Ann NY Acad Sci 253:750–762

    Article  PubMed  CAS  Google Scholar 

  30. Zimmerman TP, Rideout JL, Wolberg G, Duncan GS, Elion GB (1976) 2-Fluoroadenosine 3′:5′-monophosphate: a metabolite of 2-fluoroadenosine in mouse cytotoxic lymphocytes. J Biol Chem 251:6757–6766

    PubMed  CAS  Google Scholar 

  31. Zimmerman TP, Wolberg G, Duncan GS, Elion GB (1980) Adenosine analogues as substrates and inhibitors of S-adenosylhomocysteine hydrolase in intact lymphocytes. Biochemistry 19:2252–2259

    Article  PubMed  CAS  Google Scholar 

  32. Zurier RB, Weissmann G, Hoffstein S, Kammerman S, Tai HH (1974) Mechanisms of lysosomal enzyme release from human leukocytes: II. effects of cAMP and cGMP, autonomic agonists, and agents which affect microtubule function. J Clin Invest 53:297–309

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iannone, M.A., Zimmerman, T.P., Reynolds-Vaughn, R., Wolberg, G. (1987). Effects of Adenosine on Human Neutrophil Function and Cyclic AMP Content. In: Gerlach, E., Becker, B.F. (eds) Topics and Perspectives in Adenosine Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45619-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45619-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45621-3

  • Online ISBN: 978-3-642-45619-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics