Skip to main content

Generalized Differentiability / Duality and Optimization for Problems Dealing with Differences of Convex Functions

  • Conference paper
Convexity and Duality in Optimization

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 256))

Abstract

A function is called d. c. if it can be. expressed as a difference of two convex functions. In the present paper we survey the main known results about suuch functions from the viewpoint of Analysis and Optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.D. Alexandroff, Almost everyuhene existence of the second dlfferential of a convex function and some properties of convex surfaces connected with it, Ucenye Zapiski Leningr. Gos. Univ. Ser. Mat. 37 n° 6, (1939) 3–35 (in Russian)

    Google Scholar 

  2. A.D. Alexandroff, On surfaces represented as the. difference of convex functions, Izv. Akad. Nauk Kaz. SSR 60, Ser. Mat. Mekh. 3, (1949) 3–20 (in Russian).

    Google Scholar 

  3. A.D. Alexandroff, Surfaces reprented by the diffexences of convex functions, Dokl. Akad. Nauk SSSR 72, (1959) 613–616 (in Russian).

    Google Scholar 

  4. G. Arsove, Functions representable. as the difference of subharmonic func-tions, Transactions Amer. Math. Soc. 75, (1953) 327–365.

    Article  Google Scholar 

  5. J.-P. Aubin, Lipschitz behavior of solutions to convex minimization problems, Math. of Operations Research 9, n° 1 (1984) 87–111.

    Article  Google Scholar 

  6. G. Auchmuty, Duality for. nonconvex variational principles, J. of Differential Equations 50 (1983), 80–145.

    Article  Google Scholar 

  7. M. Bougeard, Cotribution à la théorie. de. More. en dimension finie, Thèse de 3ème cycle de l’Université de Paris IX, 1978.

    Google Scholar 

  8. L.N. Brysgalova, Singularities of max of functions depending on parameters, Funct. Anal. Appl. 11, 1 (1977), 59–60.

    Google Scholar 

  9. L.N. Brysgalova, On max function of families depending on parameters, Funct. Anal. Appl. 12, 1 (1978), 66–67.

    Google Scholar 

  10. H. Busemann, Convex surfaces, Interscience Tracts in Pure and Applied Mathematics, 1958.

    Google Scholar 

  11. F.H. Clarke, Nonsmooth analysis and optimization, J. Wiley Interscience, 1983.

    Google Scholar 

  12. V.F. Demyanov and L.N. Polyakova, Conditions for minimum of a quasi-diferentiable function on a quasi-differentiable set, U.S.S.R. Comput. Math. Phys. 20, (1981) 34–43.

    Article  Google Scholar 

  13. V.F. Demyanov and A.M. Rubinov, On quasi-differentiable mappings, Math. Operationsforsch, u. Stat. ser. Optimization 14, (1983) 3–21.

    Article  Google Scholar 

  14. R.M. Dudley, On second derivaties of convex functions, Math. Scand. 41 (1977) 159–174 & 46 (1980) 61.

    Google Scholar 

  15. I. Ekeland, Legendre duality in nonconvex optimization and calculas of variations, Siam J. Control Optimization 15 (1977), 905–934.

    Article  Google Scholar 

  16. I. Ekeland, Nonconvex duality, Bull. Soc. Math. France, Mémoire 60 (1979), 45–55.

    Google Scholar 

  17. I. Ekeland and J.-M. Lasry, Problèmes variationnels non convexes en dualité, C.R. Acad. Sc. Paris, t. 291 (1980), 493–496.

    Google Scholar 

  18. R. Ellaia, Contribution à l’analyse et l’optimisation de difféerences da fonctions convexes, Thèse de 3ème cycle de l’Université Paul Sabatier, 1984.

    Google Scholar 

  19. R. Ellaia and J.-B. Hiriart-Urruty, The conjugate, of the. difference of convex functions, to appear in J. of Optim. Theory and Applications.

    Google Scholar 

  20. D. Gabay, Minimizing the difference of two convex function: Part I: Algorithms based on exact regularization, Working paper, I.N.R.I.A. (1982).

    Google Scholar 

  21. P. Hartman, On functions representable as a difference of convex functions, Pacific J. Math. 9, (1959) 707–713.

    Google Scholar 

  22. B. Heron and M. Sermange, Non-convex methods for computing free boundary equilibria of axially symmetric plasmas, Appl. Math. Optimization 8 (1982), 351–382.

    Article  Google Scholar 

  23. J.-B. Hiriart-Urruty, The approximate first-order directional derivatives for a convex function in “Mathematical Theories of Optimization” Lecture notes in Mathematics 979, (1983) 144–177.

    Article  Google Scholar 

  24. J.-B. Hiriart-Urruty, A general formula on the conjugate, of the dlfference of function, Séminaire d’Analyse Numérique, Université Paul Sabatier (1984).

    Google Scholar 

  25. J.-B. Hiriart-Urruty, Miscellanies on the. analysis and optimization of nonsmooth functions, to appear.

    Google Scholar 

  26. R. Janin, Sur la dualité et la sensibilité dans les problémes dz program-motion mathématique, Thèse Université Paris IX (1974).

    Google Scholar 

  27. R. Janin, Sur du multiapplications qui sont des gradients généralisés, Note aux C.R.A.S. Paris 294, (1982) 115–117.

    Google Scholar 

  28. E.M. Landis, On functions represetable, as the dfference of two convex functions, Dokl. Akad. Nauk SSSR 80, 1 (1951), 9–11.

    Google Scholar 

  29. C. Malivert, Méthodes de duscente sur un fermé non convexe, Bull. de la Soc. Math. de France, Mémoire n° 60, (1979) 113–124.

    Google Scholar 

  30. J.N. Mather, Distance from a manifold in Euclidean space, Proc. of Symp. in Pure Math., Vol. 40, Part 2 (1983), 199–216.

    Google Scholar 

  31. V.I. Matov, Topological classification of the germms of max and minimax of the familes in general position, Russian Math. Surv. 37, 4 (1982), 167–168.

    Article  Google Scholar 

  32. V.I. Matov, Singularities of max functions on the manifold with boundary, Trudy Sem. I.G. Petrovskogo, Mosk. Gos. Univ. 6 (1981), 195–222.

    Google Scholar 

  33. D. Melzer, Expressibility of pieceewise linear continuous functions as a differrnce of two piecewise linear convex functions, preprint Humboldt Universität Berlin (1984).

    Google Scholar 

  34. F. Mignot, Contrôle dans les inéquations variationnelles elliptiques, J. of Funct. Analysis 22, (1976) 130–185.

    Article  Google Scholar 

  35. J. Noailles, Une méthoda d’optimisation globale, en programmation non convexe, Colloque National d’Analyse Numérique de Gouvieux, 1980.

    Google Scholar 

  36. J.-P. Penot, Calcul souds-différentiel et optimisation, J. of Funct. Analysis 27, (1978) 248–276.

    Article  Google Scholar 

  37. A. Pommellet, Analyse convexe et théoie de Morse, Thèse de 3ème cycle de l’Université de Paris IX, 1982.

    Google Scholar 

  38. B.N. Pshenichnyi, in Contrôle optimal et Jeux différentiels, Cahiers de l’I.R.I.A. n° 4 (1971).

    Google Scholar 

  39. B.N. Pshenichnyi, Necessary conditions for an extremum, Marcel Dekker N.Y., 1971.

    Google Scholar 

  40. A.W. Roberts and D.E. Varberg, Convex functions, Academic Press, 1973.

    Google Scholar 

  41. R.T. Rockafellar, Convex analysis, Princeton University Press, 1970.

    Google Scholar 

  42. R.T. Rockafellar, Favorable classes of Lipschitz continuous iunctions in subgnadient optimization, in “Progress in nondifferentiable optimization”, E. Nurminskii, ed., Pergamon Press (1981).

    Google Scholar 

  43. R.T. Rockafellar, Maximal monotone relations and the second derivatives of nonsmooth functions, preprint 1984.

    Google Scholar 

  44. A. Shapiro and Y. Yomdin, On functions representable as a difference of two convex functions and necessary conditions in a constrained optimization, preprint Ben-Gurion University of the Negev (1982).

    Google Scholar 

  45. A. Shapiro, On functions representable as a difference of a two convex function in inequality constrained optimization, Research report University of South Africa (1983).

    Google Scholar 

  46. A. Shapiro, On optimality conditions in quasidifferentiable. optimization, Siam J. Control and Optimization 22, 4 (1984) 610–617.

    Article  Google Scholar 

  47. R. Schneider, Boundary structure and curvatuer of convex bodies in “Contributions to Geometry”, J. Tölke and J.M. Wills ed., Birkhäuser Verlag, 1979.

    Google Scholar 

  48. J. Spingarn, Submonotone subdfferentiables of Lipschitz functions, Trans. Amer. Math. Soc. 264, (1981) 77–89.

    Article  Google Scholar 

  49. J.F. Toland, Duality in nonconvex optimization, J. Math. Analysis and Applications 66 (1978), 399–415.

    Article  Google Scholar 

  50. J.F. Toland, A duality principle for nonconvex optimization and the calculus of variations, Arch. Rational Mech. Anal. 71 (1979), 41–61.

    Article  Google Scholar 

  51. J.F. Toland, On subdifferential calculus and duality in nonconvex optimization, Bull. Soc. Math. France, Mémoire 60 (1979), 177–183.

    Google Scholar 

  52. H. Tuy, Global minimization of a differnce. of two convex functions, to appear.

    Google Scholar 

  53. J.-P. Vial, Strong and weak convexity of sets and functions, Math. of Operations Research 8, 2 (1983), 231–259.

    Article  Google Scholar 

  54. Y. Yomdin, On functions repersentable as a supremmum of a family of smooth functions, Siam J. Math. Analysis 14, 2 (1983), 239–246.

    Article  Google Scholar 

  55. Y. Yomdin, On functions representable as a supremum of a family of smooth functions, II, to appear.

    Google Scholar 

  56. Y. Yomdin, Maxima of smooth families III: Morse-Sard theorem, preprint 1984.

    Google Scholar 

  57. Y. Yomdin, On repesentability of convex function as maxima of linear families, preprint 1984.

    Google Scholar 

  58. V.A. Zalgaller, On the, representitation of a function of two variables as the difference of convex function, Vestn. Leningrad Univ. Ser. Mat. Mekh. 18, (1963) 44–45 (in Russian).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hiriart-Urruty, JB. (1985). Generalized Differentiability / Duality and Optimization for Problems Dealing with Differences of Convex Functions. In: Ponstein, J. (eds) Convexity and Duality in Optimization. Lecture Notes in Economics and Mathematical Systems, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45610-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45610-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15986-5

  • Online ISBN: 978-3-642-45610-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics