Mineral Nutrition: Plasmalemma and Tonoplast Redox Activities

  • Ulrich Lüttge
  • David T. Clarkson
Part of the Progress in Botany/Fortschritte der Botanik book series (BOTANY, volume 47)


The energy in the proton gradients, \(\Delta \bar \mu _H + \), across the plasmalemma and tonoplast is believed to be available for the transport of ions and metabolites in plant cells. The generation of this protonmotive force is most usually thought of in terms of H+-translocating ATPases (REIN-HOLD and KAPLAN 1984, SANDERS 1984). Yet the oldest comprehensive theories on energization of ion transport at membranes are based on redox energy, not on ATP energy (LUNDEGARDH 1950, CONWAY 1955, ROBERTSON 1960, 1968). It is clear, however, that “redox pumps” can exist in addition to the “ATPase-proton pumps” in plasmamembranes of animal (CHERRY et al. 1981, reviews, CRANE et al. 1979, GOLDENBERG 1982) and fungal cells (Muñoz and Butler 1975, Crane et al. 1979, 1982). A NADH-dehydrogenase in the plasmamembranes of Ehrlich ascites tumor cells is thought to contribute to amino-acid uptake (e.g., GARCIA-SANCHO et al. 1977, KILBERG and CHRISTENSEN 1979).


Mineral Nutrition Maize Root Crassulacean Acid Metabolism NADH Oxidation Ehrlich Ascites Tumor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barr, R., Crane, F.L., Craig, T.A.: J. Plant Growth Regul. 2, 243–249 (1984).Google Scholar
  2. Barrett-Lennard, E.G., Marschner, H., Römheld, V.: Plant Physiol. 73, 893–898 (1983).PubMedGoogle Scholar
  3. Biber, J., Hauser, H.: Febs-Lett. 108, 451–455 (1979).PubMedGoogle Scholar
  4. Bienfait, H.F.: J. Bioenerg. Biomembr. 17, 75–85 (1985).Google Scholar
  5. Bienfait, H.F., Bino, R.J., Bliek, A.M. Van Der, Duiven-Voorden, J.F., Fontaine, J.M.: Physiol. Plant. 59, 196–202 (1983).Google Scholar
  6. Böcher, M., Fischer, E., Ullrich-Eberius, C.I., Novacky, A.: Plant Sci. Lett. 18, 215–220 (1980).Google Scholar
  7. Brain, R.D., Freeberg, J.A., Weiss, C.V., Briggs, W.R.: Plant Physiol. 59, 948–952 (1977).PubMedGoogle Scholar
  8. Brown, J.C.: Plant Cell Eviron. 1, 249–257 (1978).Google Scholar
  9. Brown, J.C, Ambler, J.E.: Agronomy J. 65, 311–314 (1973).Google Scholar
  10. Buser-Suter, C., Wiemken, A., Matile, P.: Plant Physiol. 69, 456–459 (1982).PubMedGoogle Scholar
  11. Chanson, A., Mcnaughton, E., Taiz, L.: Plant Physiol. 76., 498–507 (1984).PubMedGoogle Scholar
  12. Cherry, J.M., Mackellar, W., Morre, D.J., Crane, F.L., Jacobsen, L.B., Schirrmacher, V.: Biochim. Biophys. Acta 634, 11–18 (1981).PubMedGoogle Scholar
  13. Chrestin, H.: Le Compartiment Vacuo-Lysosomal (les Lutoides) du Latex d’ Hevea brasiliensis. Son Rôle dans le Maintien de 1’Homeostasie et dans les Processus de Senescence des Cellules Laticifères. Montpellier: Thèse de Docteur ès Sciences Naturelles, Université des Sciences et Techniques du Languedoc 1984.Google Scholar
  14. Conway, E.J.: Int. Rev. Cytol. 4, 377–396 (1955).Google Scholar
  15. Craig, T.A., Crane, F.L.: Proc. Indiana Acad. Sci. 90, 150–155 (1981).Google Scholar
  16. Craig, T.A., Crane, F.L.: Proc. Indiana Acad. Sci. 91, 150–154 (1982).Google Scholar
  17. Crane, F.L., Goldenberg, H., Morre, D.J., Löw, H.: Dehydrogenases of the plasma membrane, 345–399. In: Subcellular Biochemistry, Vol. 6, ed. D.B. Roodyn. New York: Plenum 1979.Google Scholar
  18. Crane, F.L., Roberts, H., Linnane, A.W., Löw, H.: J. Bioenerg. Biomembr. 14, 191–205 (1982).PubMedGoogle Scholar
  19. Cretin, H.: C.R. Acad. Sci. Paris, Scr. III. 296, 137–142 (1983).Google Scholar
  20. Cretin, H., Bangratz, J.: C.R. Acad. Sci. Paris, Ser. III. 296, 101–106 (1983).Google Scholar
  21. Deane-Drummond, CE.: Plant Cell Environ. 7, 317–323 (1984).Google Scholar
  22. Delrot, S.: Plant Physiol. 68, 706–711 (1981).PubMedGoogle Scholar
  23. Delrot, S., Bonnemain, J.-L.: Plant Physiol. 67, 560–564 (1981).PubMedGoogle Scholar
  24. Delrot, S., Despeghel, J.-P., Bonnemain, J.-L.: Planta 149, 144–148 (1980).Google Scholar
  25. Deshusses, J., Gumber, S.C, Loewus, F.W.: Plant Physiol. 67, 793–796 (1981).PubMedGoogle Scholar
  26. Federico, R., Giartosio, C.E.: Plant Physiol. 73, 182–184 (1983).PubMedGoogle Scholar
  27. Garcia-Sancho, J., Sanchez, A., Handlogten, M.E., Christensen, H.N.: Proc. Natl. Acad. Sei. USA: 74, 1488–1491 (1977).Google Scholar
  28. Giaquinta, R.T.: Plant Physiol. 63, 744–748 (1979).PubMedGoogle Scholar
  29. Goldenberg, H.: Biochim. Biophys. Acta 694, 203–223 (1982).PubMedGoogle Scholar
  30. Goldfarb, V., Sanders, D., Gradmann, D.: J. Exp. Bot. 35, 626–644 (1984a).Google Scholar
  31. Goldfarb, V., Sanders, D., Gradmann, D.: J. Exp. Bot. 35, 645–658 (1984b).Google Scholar
  32. Goldsmith, H.M.H., Caubergs, R.J., Briggs, W.R.: Plant Physiol. 66, 1067–1073 (1980).PubMedGoogle Scholar
  33. Golle, B., Lüttge, U.: Physiol. Plant. 57, 62–66 (1983).Google Scholar
  34. Gradmann, D., Tittor, J., Goldfarb, V.: Phil. Trans. R. Soc. London B 299, 447–457 (1982).Google Scholar
  35. Häussling, M., Leisen, E., Marschner, H., Römheld, V.: J. Plant Physiol. 117, 371–375 (1984).Google Scholar
  36. Ivankina, N.G., Novak, V.A.: Studia Biophys. 83, 197–206 (1981).Google Scholar
  37. Ivankina, N.G., Novak, V.A., Miclashevich, A.I.: Redox reactions and active H+-transport in the plasmalemma of Elodea leaf cells, 404–405. In: Membrane Transport in Plants, eds. W.J. Cram, K. Janacek, R. Rybova, K. Sigler. Praha: Academia 1984.Google Scholar
  38. Jochem, P., Rona, J.-P., Smith, J.A.C., Lüttge, U.: Physiol. Plant. 62, 410–415 (1984).Google Scholar
  39. Kikuyama, M., Hayama, T., Fuji, S., Tazawa, M.: Plant Cell Physiol. 20 993–1002 (1979).Google Scholar
  40. Kilberg, M.S., Christensen, H.N.: Biochemistry 18, 1525–1530 (1979).PubMedGoogle Scholar
  41. Kjellbom, P., Larsson, C: Physiol. Plant. 62, 501–509 (1984).Google Scholar
  42. Kochian, L.V., Lucas, W.J.: Plant Physiol. 75S, 182 (1984).Google Scholar
  43. Komor, E., Weber, H., Tanner, W.: Plant Physiol. 61, 785–786 (1978).PubMedGoogle Scholar
  44. Kramer, D., Römheld, V., Landsberg, E., Marschner, H.: Planta 147, 335–339 (1980).Google Scholar
  45. Landsberg, E.C.: J. Plant Nutr. 5, 415–432 (1982).Google Scholar
  46. Lass, B., Ullrich-Eberius, C.I.: Planta 161, 53–60 (1984).Google Scholar
  47. Leigh, R.A., Branton, D.: Plant Physiol. 58, 656–662 (1976).PubMedGoogle Scholar
  48. Leong, T.Y., Briggs, W.R.: Plant Physiol. 70, 875–881 (1982).PubMedGoogle Scholar
  49. Lichtner, F.T., Spanswick, R.M.: Plant Physiol. 67, 869–874 (1981).PubMedGoogle Scholar
  50. Lin, W.: Proc. Natl. Acad. Sci. USA 79, 3773–3776 (1982a).PubMedGoogle Scholar
  51. Lin, W.: Plant Physiol. 70, 326–328 (1982b).PubMedGoogle Scholar
  52. Lin, W.: Plant Physiol. 74 219–222 (1984a).PubMedGoogle Scholar
  53. Lin, W.: Plant Physiol. 75S, 181 (1984b).Google Scholar
  54. Löppert, H.: Planta 159, 329–335 (1983).Google Scholar
  55. Lord, J.M., Kagawa, T., Moore, T.S., Beevers, H.: J. Cell Biol. 57, 659–667 (1973).PubMedGoogle Scholar
  56. Lundegårdh, H.: Physiol. Plant. 3, 103–151 (1950).Google Scholar
  57. Lüttge, U., Jung, K.-D., Ullrich-Eberius, C.I.: Z. Pflanzenphysiol. 102, 117–125 (1981).Google Scholar
  58. Marin, B., ed.: Biochemistry and Function of Vacuolar ATPase in Fungi and Plants. Berlin, Heidelberg, New York, Tokyo: Springer,1985.Google Scholar
  59. Marschner, H., Römheld, V., Ossenberg-Neuhaus, H.: Z. Pflanzenphysiol. 105, 407–416 (1982).Google Scholar
  60. Matile, P.: Planta 79, 181–196 (1968).Google Scholar
  61. Matile, P., Moor, H.: Planta 80, 159–175 (1968).Google Scholar
  62. Matile, P., Wiemken, A.: Arch. Microbiol. 56, 148–155 (1967).Google Scholar
  63. M’batchi, B., Delrot, S.: Plant Physiol. 75, 154–160 (1984).Google Scholar
  64. Mettler, I.J., Leonard, R.J.: Plant Physiol. 64, 1114–1120 (1979).PubMedGoogle Scholar
  65. Misra, P.C., Craig, T.A., Crane, F.L.: J. Bioenerg. Biomembr. 16, 143–152 (1984).PubMedGoogle Scholar
  66. Moreau, F., Jacob, J.L., DuPont, J., Lance, C: Biochim. Biophys. Acta 396, 116–124 (1975).PubMedGoogle Scholar
  67. Muñoz, V., Butler, W.L.: Plant Physiol. 55, 421–426 (1975).PubMedGoogle Scholar
  68. Nelson, S.O., Glover, G.I.: Arch. Biochem. Biophys. 168, 483–489 (1975).PubMedGoogle Scholar
  69. Novacky, A., Fischer, E., Ullrich-Eberius, CI., Lüttge, U., Ullrich, W.R.: Febs-Lett. 88, 264–267 (1978).Google Scholar
  70. Olsen, R.A., Bennett, J.H., Blume, D., Brown, J.C.: J. Plant Nutr. 3, 905–921 (1981).Google Scholar
  71. Olsen, R.A., Brown, J.C., Bennett, J.H., Blume, D.: J. Plant Nutr. 5, 433–445 (1982).Google Scholar
  72. Poole, R., Briskin, D.P., Krátký, Z., Johnstone, R.M.: Plant Physiol. 74, 549–556 (1984).PubMedGoogle Scholar
  73. Pupillo, P., De Luca, L.: Pyridine nucleotide-Tinked dehydrogenases (quinone-dependent) in plasma membrane and endoplasmic reticulum of plant cells, 321–328. In: Plasmalemma and Tonoplast: their Functions in the Plant Cell, eds. D. Marmé, E. Marrè, R. Hertel. Amsterdam: Elsevier, 1982.Google Scholar
  74. Reinhold, L, Kaplan, A.: Annu. Rev. Plant Physiol. 35, 45–83 (1984).Google Scholar
  75. Robertson, R.N.: Biol. Rev. 35, 231–264 (1960).Google Scholar
  76. Protons, Electrons, Phosphorylation and Active Transport. Cambridge: University Press 1968.Google Scholar
  77. Robillard, G.T., Konings, W.N.: Regulation of solute transport in Escherickia coli by the redox potential, 313–320. In: Plasmalemma and Tonoplast: their Functions in the Plant Cell, eds. D. MARMé, E. Marrè, R. Hertel. Amsterdam: Elsevier 1982.Google Scholar
  78. Römheld, V.: Landwirtsch. Forsch. 36, 226–230 (1984).Google Scholar
  79. Römheld, V., Kramer, D.: Z. Pflanzen-physiol. 113, 73–83 (1983).Google Scholar
  80. Römheld, V., Marschner, H.: J. Plant Nutr. 3, 551–560 (1981).Google Scholar
  81. Römheld, V., Marschner, H.: Plant Physiol. 71, 949–954 (1983).PubMedGoogle Scholar
  82. Römheld, V., Marschner, H.: J. Plant Nutr. 7, 623–630 (1984).Google Scholar
  83. — Adv. Plant Nutr. 2, in press (1985).Google Scholar
  84. Römheld, V., Marschner, H., Kramer, D.: J. Plant Nutr. 5, 489–498 (1982).Google Scholar
  85. Römheld, V., Müller, C, Marschner, H.: Plant Physiol. 76, 603–606 (1984).PubMedGoogle Scholar
  86. Rubinstein, B., Stern, A.I., Stout, R.G.: Plant Physiol. 76, 386–391 (1984).PubMedGoogle Scholar
  87. Sanders, D.: Gradient-coupled chloride transport in plant cells, 63–120. In: Chloride Transport Coupling in Biological Membranes and Epi-thelia, ed. G.A Gerencser. Amsterdam: Elsevier, 1984.Google Scholar
  88. Saunders, J.A.: Plant Physiol. 64, 74–78 (1979).PubMedGoogle Scholar
  89. Schnepf, E.: Organellen-Reduplikation und Zellkompartimentierung, 372–393. In: Probleme der biologischen Reduplikation, ed. P. Sitte. 3. Wiss. Konf. Ges. Dtsch. Naturforsch. Ärzte. Berlin, Heidelberg, New York: Springer, 1966.Google Scholar
  90. Schnepf, E.: Sekretion und Exkretion bei Pflanzen. Protoplasmatologia, Vol.VIII/8. Wien, New York: Springer, 1969.Google Scholar
  91. Schwartz, A., Zeiger, E.: Planta 161, 129–136 (1984).Google Scholar
  92. Senger, H., ed.: The Blue Light Syndrome. Berlin, Heidelberg, New York: Springer, 1980.Google Scholar
  93. Shannon, T.M., Steer, M.W.: J. Exp. Bot. 35 1697–1707 (1984).Google Scholar
  94. Sijmons, P.C., Briel, W. Van Den, Bienfait, H.F.: Plant Physiol. 75, 219–221 (1984a).PubMedGoogle Scholar
  95. Sijmons, P.C., Lanfermeijer, F.C., Boer, A.H. De, Prins, H.B.A., Bienfait, H.F.: Plant Physiol. 76, 943–946 (1984b).PubMedGoogle Scholar
  96. Smith. F.A., Raven, J.A.: Annu. Rev. Plant Physiol. 30, 289–311 (1979).Google Scholar
  97. Smith, J.A.C., Uribe, E.G., Ball, E., Heuer, S., Lüttge, U.: Eur. J. Biochem. 141, 415–420 (1984a).PubMedGoogle Scholar
  98. Smith, J.A.C, Uribe, E.G., Ball, E., Lüttge, U.: Planta 162, 299–304 (1984b).Google Scholar
  99. Struve, I., Weber, A., Lüttge, U., Ball, E., Smith, J.A.C: J. Plant Physiol. 117, 451–468 (1985).Google Scholar
  100. Thibaud, J.B., Grignon, C: Plant Sci. Lett. 22, 279–289 (1981).Google Scholar
  101. Ullrich, W.R., Larsson, M., Larsson, C.-M., Lesch, S., Novacky, A.: Physiol. Plant. 61, 369–376 (1984).Google Scholar
  102. Ullrich-Eberius, CI.: Planta 109, 161–176 (1973).Google Scholar
  103. Ullrich-Eberius, C.I., Yingchol, Y.: Oecologia 17, 17–26 (1974).Google Scholar
  104. Ullrich-Eberius, C.I., Novacky, A, Fischer, E., Lüttge, U.: Plant Physiol. 67, 797–801 (1981).PubMedGoogle Scholar
  105. Ullrich-Eberius, C.I., Novacky, A., Bel, A.J.E. Van: Planta 161, 46–52 (1984).Google Scholar
  106. Wagner, G.J.: Plant Physiol. 64, 88–93 (1979).PubMedGoogle Scholar
  107. Walker-Smith, D.J., Payne, J.W.: Febs-Lett. 160, 25–30 (1983).Google Scholar
  108. Walker-Smith, D.J., Payne, J.W.: Planta 162, 159–165 (1984a).Google Scholar
  109. Walker-Smith, D.J., Payne, J.W.: Planta 162, 166–173 (1984b).Google Scholar
  110. Widell, S., Lundborg, T., Larsson, C: Plant Physiol. 70, 1429–1435 (1982).PubMedGoogle Scholar
  111. Ze-Sheng, Q., Rubinstein, B., Stern, A.I.: Plant Physiol. 75S, 182 (1984).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Ulrich Lüttge
    • 1
  • David T. Clarkson
    • 2
  1. 1.Institut für BotanikTechnischen Hochschule DarmstadtDarmstadtGermany
  2. 2.Longashton Research StationBristolEngland, UK

Personalised recommendations