Skip to main content

Continental Scientific Drilling to Investigate Brine Evolution and Fluid Circulation in Active Hydrothermal Systems

  • Conference paper
Book cover Observation of the Continental Crust through Drilling I

Part of the book series: Exploration of the Deep Continental Crust ((EXPLORATION))

Abstract

A major objective of studying active hydrothermal systems is to gain information that can be used to help formulate and test models of coupled hydrothermal-magma systems, and mineral genesis in shallow magmatic environments. Many researchers have discussed the evolution of aqueous fluids from crystallizing magma in relation to ore deposition, including Bowen (1933), Emmons (1933), Fenner (1933), Lindgren (1937), Neuman (1948), Burnham (1967, 1979), Fournier (1968, 1972), Holland (1972), Phillips (1973), Norton and Cathles (1973, 1979), Whitney (1975), Cunningham (1978), Henley and McNabb (1978), and Henley and Ellis (1983). Models for fluid flow in hydrothermal systems have been developed by Elder (1965), Lister (1974, 1980, 1983), Ribando and others (1976), Cathles (1977, 1980, 1983), Norton and Knapp (1977), Norton and Knigth (1977), Norton (1978), Torrance and Sheu (1978), Fehn and Cathles (1979), Norton and Taylor (1979), Hartline and Lister (1981), Knapp and Norton (1981), Hardee (1982), and Sleep (1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen ET, Day AL (1935) Hot springs of the Yellowstone National Park. Carnegie Inst Washington Publ 466: 525.

    Google Scholar 

  • Arnorsson S, Gunnlaugsson E, Svavarsson H (1983) The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions. Geochim Cosmochim Acta 47(3): 547–566.

    Article  Google Scholar 

  • Barnes HL (1979) Solubilities of ore minerals. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 404–460.

    Google Scholar 

  • Biehler S, Kovach RL, Allen CR (1964) Geophysical framework of northern end of Gulf of California structural province. Am Assoc Petrol Geol Mem 3: 126–143.

    Google Scholar 

  • Bischoff JL (1980) Geothermal system at 21 °N, East Pacific Rise; physical limits on geothermal fluid and role of adiabatic expansion. Science (Wash DC) 207: 1465–1469.

    Article  Google Scholar 

  • Bischoff JL, Radtke AS, Rosenbauer RJ (1981) Hydrothermal alteration of graywacke by brine and seawater: Roles of alteration and chloride complexing on metal solubilization at 200° and 350°C. Econ Geol 76(3): 659–676.

    Article  Google Scholar 

  • Bowen NL (1933) The broader story of magmatic differentiation, briefly told. Ins Ore deposits of the Western States (Lindgren vol). Am Inst Min Metall Engineers, New York, p 106–128.

    Google Scholar 

  • Briner E, Roth P (1948) Recherches sur l’hydrolyse par la vapeur d’eau de chlorures alcalins seuls on additionnes de divers adjuvants. Helv Chim Acta 31: 1352–1360.

    Article  Google Scholar 

  • Burnham CW (1967) Hydrothermal fluids at the magmatic stage. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Holt, Rinehart and Winston, New York, pp 34–76.

    Google Scholar 

  • Burnham CW (1979) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd ed. Wiley, New York, pp 17–136.

    Google Scholar 

  • Cathles LM (1977) An analysis of the cooling of intrusives by groundwater convection which includes boiling. Econ Geol 72(5): 804–826.

    Article  Google Scholar 

  • Cathles LM (1980) Fluid flow and genesis of hydrothermal ore deposits. Econ Geol 75th Anniv Vol, pp 424-457.

    Google Scholar 

  • Cathles LM (1983) An analysis of the hydrothermal system responsible for massive sulfide deposition in the Hokuroku Basin of Japan. In: Ohmoto H, Skinner BJ (eds) The Kuroko and related volcanogenic massive sulfide deposits. Econ Geol Monogr 5: 439–487.

    Google Scholar 

  • Christiansen RL (1984) Yellowstone magmatic evolution: Its bearing on understanding large-volume explosive volcanism. In: Explosive volcanism: Inception, evolution, and hazards. Nat Acad (Wash DC), pp 84–95.

    Google Scholar 

  • Cloke PL, Kesler SE (1979) The halite trend in hydrothermal solutions. Econ Geol 75(8): 1823–1831.

    Article  Google Scholar 

  • Cunningham CG (1978) Pressure gradients and boiling as mechanisms for localizing ore in porphyry systems: J Res US Geol Surv 6(6): 745–754.

    Google Scholar 

  • Dunn JC, Hardee HC (1981) Superconvecting geothermal zones. J Volcanol Geotherm Res 11: 189–201.

    Article  Google Scholar 

  • Eaton GP, Christiansen RL, Iyer HM, Pitt AM, Mabey HR, Blank HR Jr, Zeitz I, Gettings ME (1975) Magma beneath Yellowstone National Park. Science (Wash DC) 188: 787–796.

    Article  Google Scholar 

  • Elder JW (1965) Physical processes in geothermal areas. In: Terrestrial heat flow. Am Geophys Union Monogr 8: 211–239.

    Article  Google Scholar 

  • Elders WA, Biehler S (1975) Gulf of California rift system and its implication for the tectonic of Western North America. Geology (Boulder) 3: 85–97.

    Article  Google Scholar 

  • Elders WA, Rex R, Meidav T, Robinson PT, Biehler S (1972) Crustal spreading in Southern California. Science (Wash DC) 178: 15–24.

    Article  Google Scholar 

  • Elders WA, Bird DK, Williams AE, Schiffman P, Cox B (1982) A model for the heat source of the Cerro Prieto magma-hydrothermal system, Baja, California, Mexico. Symp Cerro Prieto Geothermal Field. 4th Proc, Guadalajara, Mexico, 1982, vol 1, pp 265-284.

    Google Scholar 

  • Ellis AJ, Mahon WAJ (1977) Chemistry and geothermal systems. Academic Press, New York, p 392.

    Google Scholar 

  • Emmons WH (1933) On the mechanism of the deposition of certain metalliferous lode systems associated with granitic batholiths. In: Ore deposits of the western states (Lindgren vol). Am Inst Min Metall Engineers, New York, pp 327-349.

    Google Scholar 

  • Fehn U, Cathles LM (1979) Hydrothermal convection at slow-spreading mid-ocean ringes: Tectonophysics 55: 239–260.

    Article  Google Scholar 

  • Fenner CN (1933) Pneumatolytic processes in the formation of minerals and ores. In: Ore deposits of the western states. AIME, Rocky Mountain Fund Series, pp 58-106.

    Google Scholar 

  • Fournier RO (1968) Depths of intrusion and conditions of hydrothermal alteration in porphyry copper deposits (abs). Geol Soc Am Program with Abstracts, 1968 Annu Meeting, p 101.

    Google Scholar 

  • Fournier RO (1972) The importance of depth of crystallization on the character of magmatic fluids (abs). 24th Int Geol Congr, Montreal, 1972, sec 10, p 214.

    Google Scholar 

  • Fournier RO (1977) Constraints on the circulation of meteoric water in hydrothermal systems imposed by the solubility of quartz. Geol Soc Am Programs with Abstracts, vol 9, p 979.

    Google Scholar 

  • Fournier RO (1983a) Self-sealing and brecciation resulting from quartz deposition within hydrothermal systems. 4th Int Symp Water-Rock Interaction, Misasa, Japan, 1983. Extended Abstracts, pp 137-140.

    Google Scholar 

  • Fournier RO (1983b) Active hydrothermal systems as analogues of fossil systems. In: The role of heat in the development of energy and mineral resources in the basin and range province. Geotherm Resources Spec Report No 13, pp 263-284.

    Google Scholar 

  • Fournier RO (1983c) A method of calculating quartz solubilities in aqueous sodium chloride solutions. Geochim Cosmochim Acta 47: 579–586.

    Article  Google Scholar 

  • Fournier RO, White DE, Truesdell AH (1976) Convective heat flow in Yellowstone National Park. 2nd UN Symp Development and Use of Geothermal Resources, San Francisco, 1975, Proc Wash DC, US Government Printing Office, vol 1, pp 731–739.

    Google Scholar 

  • Frantz JD, Marshall WL (1984) Electrical conductances and ionization constants of salts, acids and bases in supercritical aqueous fluids. I. Hydrochlorid acid from 100° to 700°C and at pressures to 4000 bars. Am J Sci 284: 651–667.

    Article  Google Scholar 

  • Fuis GS, Mooney WD, Healy JH, McMechan GA, Lutter WJ (1982) Crustal structure of the Imperial Valley. In: The Imperial Valley, California Earthquake of October 15, 1979. US Geol Surv Prof Pap 254: 25-49.

    Google Scholar 

  • Galobardes DR, Van Hare DR, Rogers LB (1981) Solubility of sodium chloride in dry steam. J Chem Eng Data 26: 363–366.

    Article  Google Scholar 

  • Haas JL (1971) Effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Econ Geol 66: 940–949.

    Article  Google Scholar 

  • Hardee HC (1982) Permeable convection above magma bodies: Tectonophysics 84: 179–195.

    Article  Google Scholar 

  • Hartline BK, Lister CRB (1981) Topographic forcing of supercritical convection in a porous medium such as the ocean crust. Earth Planet Sci Lett 55: 75–86.

    Article  Google Scholar 

  • Helgeson HC (1968) Geologic and thermodynamic characteristics of the Salton Sea geothermal system. Am J Sci 266: 129–166.

    Article  Google Scholar 

  • Helgeson HC (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am J Sci 267: 729–804.

    Article  Google Scholar 

  • Henley RW, Ellis AJ (1983) Geothermal systems ancient and modern: A geochemical review. Earth-Sci Rev, vol 19, p 50.

    Article  Google Scholar 

  • Henley RW, McNaab A (1978) Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement. Econ Geol 73: 19.

    Article  Google Scholar 

  • Hildreth W, Christiansen RL, O’Neil JR (1984) Catastrophic isotopic modification of rhyolitic magma at times of caldera subsidence, Yellowstone Plateau volcanic field. J Geophys Res 89: 8339–8369.

    Article  Google Scholar 

  • Holland HD (1972) Granites, solutions and base metal deposits. Econ Geol 67: 281–301.

    Article  Google Scholar 

  • Hubbert MK, Willis DG (1957) Mechanics of hydraulic fracturing. J Petroleum Technol, Petroleum Trans 210: 153–166.

    Google Scholar 

  • Iyer HM, Evans JR, Zandt G, Stewart RM, Cookley JM, Roloff JN (1981) A deep low velocity body under the Yellowstone caldery, Wyoming; Delineation using teleseismic P-wave residuals and tectonic interpretations. Geol Soc Am Bull 92: 1471–1646.

    Article  Google Scholar 

  • Iyer HM, Oppenheimer DH, Hitchcock T (1979) Abnormal P-wave delays in the Geysers-Clear Lake geothermal area, California. Science (Wash DC) 204: 495–497.

    Article  Google Scholar 

  • Johnson C, Hill D (1982) Seismicity in the Imperial Valley. In: The Imperial Valley, California Earthquake of October 15, 1979. US Geol Surv Prof Pap 1254: 15–24.

    Google Scholar 

  • Keevil NB (1942) Vapor pressure of aqueous solutions at high temperatures. J Am Chem Soc 64: 841–850.

    Article  Google Scholar 

  • Kilinc IA, Burnham CW (1972) Partitioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kilobars. Econ Geol 67: 231–235.

    Article  Google Scholar 

  • Knapp RB, Norton D (1981) Preliminary numerical analysis of processes related to magma crystallization and stress evaluation in cooling pluton environments. Am J Sci 281: 35–68.

    Article  Google Scholar 

  • Lehman JA, Smith RB, Schilly MM, Braile LW (1982) Upper crustal structure of Yellowstone from seismic and gravity observations. J Geophys Res 87: 2713–2730.

    Article  Google Scholar 

  • Lindgren W (1937) Succession of minerals and temperatures of formation in ore deposits of magmatic affiliation. Am Inst Min Metall Engineers, Trans 126: 356–376.

    Google Scholar 

  • Lister CRB (1974) On the penetration of water into hot rock. R Astron. Soc Gophys J 39: 465–509.

    Article  Google Scholar 

  • Lister CRB (1980) Heat flow and hydrothermal circulation: Earth Planet. Sci Ann Rev 8: 95–117.

    Google Scholar 

  • Lister CRB (1983) The basic physics of water penetration into hot rock. In: Hydrothermal processes at seafloor spreading centers. Plenum, New York, pp 141–168.

    Google Scholar 

  • Martynova OI, Samoilov YuF (1959) Dissolution of sodium chloride in an atmosphere of water vapor of high parameters (Trans). Zh Neorganisheskoi Khimii 2(12): 2829–2833.

    Google Scholar 

  • Neuman H (1948) On hydrothermal differentiation. Econ Geol 43: 77–83.

    Article  Google Scholar 

  • Norton D (1978) Sourcelines, sourceregions, and pathlines for fluid flow in hydrothermal systems related to cooling plutons. Econ Geol 73: 21–28.

    Article  Google Scholar 

  • Norton D, Cathles LM (1973) Breccia pipes — products of exsolved vapor from magma. Econ Geol 68: 540–546.

    Article  Google Scholar 

  • Norton D, Cathles LM (1979) Thermal aspects of hydrothermal ore deposition. In: Geochemistry of hydrothermal ore deposits (2nd ed). Wiley, New York, pp 611–631.

    Google Scholar 

  • Norton D, Knapp R (1977) Transport phenomena in hydrothermal systems: The nature of porosity. Am J Sci 277: 913–936.

    Article  Google Scholar 

  • Norton D, Knight J (1977) Transport phenomena in hydrothermal systems: Cooling plutons. Am J Sci 277: 937–981.

    Article  Google Scholar 

  • Norton D, Taylor HP (1979) Quantitative simulation of the hydrothermal systems of crystallizing magmas on the basis of transport and oxygen isotope data: An analysis of the Skaergaard intrusion. J Petrol 20: 421–486.

    Google Scholar 

  • Pelton JR, Smith RB (1979) Recent crustal uplift in Yellowstone National Park. Science (Wash DC) 206: 1179–1182.

    Article  Google Scholar 

  • Pelton JR, Smith RB (1982) Contemporary vertical displacement in Yellowstone National Park. J Geophys Res 87: 2745–2761.

    Article  Google Scholar 

  • Phillips WJ (1973) Mechanical effects of retrograde boiling and its probable importance in the formation of some porphyry ore deposits. Am Inst Min Metall Engineers, Trans, Sec B 82: B90–98.

    Google Scholar 

  • Ravich MI, Borovia FE (1984) Phase equilibria in ternary water-salt systems at elevated temperatures (in Russian) Akademiia Nauk SSSR. Institut obshchei i neorganicheskoi. Izvestiia. Sektor fiziko khimicheskogo analiza 19: 69–81.

    Google Scholar 

  • Rex RW (1983) The origin of the brines of the Imperial Valley, California. Geotherm Res Council Trans 7: 321–324.

    Google Scholar 

  • Ribando RJ, Torrance KE, Turcotte DL (1976) Numerical models for hydrothermal circulation in the Ocean Crust. J Geophys Res 81: 3007–3012.

    Article  Google Scholar 

  • Robinson R, Iyer HM (1979) Evidence from teleseismic P-wave observations for a low velocity body under the Roosevelt hot springs geothermal area, Utah. Geotherm Res Council Trans 3: 585.

    Google Scholar 

  • Roedder E (1967) Fluid inclusions as samples of ore fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Holt, Rinehart and Winston, New York, pp 515–574.

    Google Scholar 

  • Roedder E (1971) Fluid inclusion studies on the porphyry-type or deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Econ Geol, 66(1)98–120.

    Article  Google Scholar 

  • Roedder E (1972) Composition of fluid inclusions. In: Data of geochemistry. US Geol Surv Prof Pap 400-JJ, 164 p.

    Google Scholar 

  • Roedder E (1979) Fluid inclusions as samples of ore fluid. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits (2nd ed). Wiley, New York, pp 684-737.

    Google Scholar 

  • Ryabchikov ID, Hamilton DL (1971) Possible separation of concentrated chloride solutions during crystallization of felsic magma. Akad Nau SSSR Dokalady 197: 219–220.

    Google Scholar 

  • Schilly MM, Smith RB, Braile LW, Ansorge J (1982) The 1978 Yellowstoneeastern Snake River Plain seismic profiling experiment. Data and crustal structure of the Yellowstone region. J Geophys Res 87: 2692–2704.

    Article  Google Scholar 

  • Sleep NH (1983) Hydrothermal convection at ridge axes. In: Hydrothermal processes at seafloor spreading centers. Plenum, New York, pp 71–82.

    Google Scholar 

  • Smith FG (1953) Review of physico-chemical data on the state of supercritical fluids. Econ Geol 48: 14–38.

    Article  Google Scholar 

  • Smith RB, Braile LW (1984) Crustal structure and evolution of an explosive silicic volcanic system at Yellowstone National Park. In: Explosive volcanism: Inception, evolution, and hazards. National Academy, Wash DC, pp 96–109.

    Google Scholar 

  • Smith RB, Christiansen RL (1980) Yellowstone Park as a window on the earth’s interior. Sci Am 242: 104–117.

    Article  Google Scholar 

  • Sourirajan S, Kennedy GC (1962) The system H2O-NaCl at elevated temperatures and pressures. Am J Sci 260: 115–141.

    Article  Google Scholar 

  • Steeples DW, Iyer HM (1976) Low-velocity zone under Long Valley as determined from teleseismic events. J Geophys Res 81: 849–860.

    Article  Google Scholar 

  • Torrance KE, Sheu JP (1978) Heat transfer from plutons undergoing hydrothermal cooling and thermal cracking. Numerical Heat Transfer, vol 1, pp 147–161.

    Article  Google Scholar 

  • Truesdell AH, Fournier RO (1976) Conditions in the deeper parts of Yellowstone National Park, Wyoming. US Geol Surv Open-File Report 76-428, 29 p.

    Google Scholar 

  • Truesdell AH, Nathenson M, Rye RO (1977) The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters. J Geophys Res 82: 3694–3704.

    Article  Google Scholar 

  • Wallace RH, Kraemer TF, Taylor RE, Wesselman JB (1978) Assessment of geopressured geothermal resources in the northern Gulf of Mexico basin. In: Muffler LJP (ed) Assessment of geothermal resources of the United States—1978. US Geol Surv Circ 790: 132-1-55.

    Google Scholar 

  • White DE, Fournier RO, Muffler LJP, Truesdell AH (1975) Physical results of research driling in thermal areas of Yellowstone National Park, Wyoming, US Geol Surv Prof Paper 892, 70 p.

    Google Scholar 

  • Whitney JA (1975) Vapor generation in a quartz monzonite magma: A synthetic model with application to porphyry copper deposits. Econ Geol 70: 346–358.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fournier, R.O. (1985). Continental Scientific Drilling to Investigate Brine Evolution and Fluid Circulation in Active Hydrothermal Systems. In: Raleigh, C.B. (eds) Observation of the Continental Crust through Drilling I. Exploration of the Deep Continental Crust. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45601-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45601-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45603-9

  • Online ISBN: 978-3-642-45601-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics