Skip to main content

Control of the Blood Osmolarity in Fishes with References to the Functional Anatomy of the Gut

  • Chapter
Osmoregulation in Estuarine and Marine Animals

Part of the book series: Lecture Notes on Coastal and Estuarine Studies ((COASTAL,volume 9))

Abstract

Fishes have to face various osmotic pressures in their environment ranging from about 1100 mOsmL−1 in sea water (SW) to nearly O mOsm. L−1in fresh water (FW) or to 3200 mOsm.L−1 for species like Aphanius dispar living near the dead-sea (Lotan and Skadhauge, 1972). Patterns of osmoregulation in fishes have been extensively reviewed by Evans (1979) and will only be summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando M. (1975) Intestinal water transport and chloride pump in relation to sea-water adaptation of the eel, Anguilla japonica. Comp. Biochem. Physiol. 52A: 229–233.

    Article  Google Scholar 

  • Ando M. (1980). Chloride-dependent sodium and water transport in the sea water eel intestine. J. Comp. Physiol. 138: 87–91.

    CAS  Google Scholar 

  • Ando M. (1981). Potassium-dependent chloride transport in the sea water eel intestine. J. Physiol. Soc. Japan 43: 282.

    Google Scholar 

  • Ando M., Utida S., Nagahama H. (1975). Active transport of chloride in eel intestine with special reference to sea water adaptation. Comp. Biochem. Physiol. 51A: 27–32.

    Article  Google Scholar 

  • Ando M., Kobayashi M. (1978). Effects of stripping of the outer layers of the eel intestine on salt and water transport. Comp. Biochem. Physiol. 61A: 497–501.

    CAS  Google Scholar 

  • Andrew W., Hickman C.P. (1974). In “Histology of the vertebrates” (Mosby C.V. ed.) St. Louis.

    Google Scholar 

  • Badia P., Lorenzo A. (1982). Preliminary studies on transmural potential and intensity of the short-circuit current in intestine of Gobius maderensis. Rev. esp. Fisiol. 36: 221–226.

    Google Scholar 

  • Bensahla-Talet A., Porthé-Nibelle J., Lahlou B. (1974). Le transport de l’eau et du sodium par l’intestin isolé de la truite Salmoivideus au cours de l’adaptation à l’eau de mer. C.R. Acad. Sc. Paris 278: 2541–2544.

    CAS  Google Scholar 

  • Brot-Laroche E., Alvarado F. (1983). Mechanisms of sugar transport across the intestinal brush border membrane. In “Intestinal transport” (Gilles-Baillien M. and Gilles R. eds.) Springer Verlag. Berlin, p. 147–169.

    Chapter  Google Scholar 

  • Byczkowska-Smyk W. (1958). The respiratory surface of the gills in teleosts. Part II. The respiratory surface of the gills in the eel (Anguilla anguitta L.), the loach (Misgurnus fossilis L) and the perch-pike (Luoioperca tucioperca L.). Acta Biologica Cracoviensia 1: 83–87.

    Google Scholar 

  • Collie N.L., Bern H.A. (1980). Variations in water transport across the coho salmon posterior intestine during smoltification. Amer. Zool. 20(4): 873.

    Google Scholar 

  • Croghan P.C. (1958a). The mechanism of osmotic regulation in Artemia satina L.: The physiology of the branchiae. J. Exp. Biol. 35: 234–242.

    CAS  Google Scholar 

  • Croghan P.C. (1958b). The mechanism of osmotic regulation in Artemia satina L.: The physiology of the gut. J. Exp. Biol. 35: 243–249.

    CAS  Google Scholar 

  • Diamond J.M. (1964). The mechanism of isotonic water transport. J. Gen. Physiol. 48: 15–42.

    Article  PubMed  CAS  Google Scholar 

  • Duffey M.E., Thompson S.M., Frizzell R.A., Schultz S.G. (1979). Intracellular chloride activities and active chloride absorption in the intestinal epithelium of the winter flounder. J. Membrane Biol. 50: 331–341.

    Article  CAS  Google Scholar 

  • Engelhardt W.v., Rechkemmer G. (1983). Colonie transport of the short-chain fatty acids and the importance of the microclimate. In FaIk-Symposium n°36 “Intestinal absorption and secretion”. Abstracts p. 6.

    Google Scholar 

  • Evans D. (1979). In “Comparative physiology of osmoregulation in animals” (Maloiy G.M.O. ed.) 1: 306–390.

    Google Scholar 

  • Field M., Karnaky Jr. K.J., Smith P.L., Bolton J.E., Kinter W.B. (1978). Ion transport across the isolated intestinal mucosa of the winter flounder, Pseudopleuvoneotes amev-icanus. I. Functional and structural properties of cellular and paracellular pathways for Na and Cl. J. Membrane Biol. 41: 265–293.

    Article  CAS  Google Scholar 

  • Flemström G. (1983). HCO 3 secretion by the duodenum. In Falk-Symposium n°36 “Intestinal absorption and secretion ”. Abstracts p. 20.

    Google Scholar 

  • Foster M.A. (1969). Ionic and osmotic regulation in three species of Cottus (Cottidae, teleost). Comp. Biochem≫ Physiol. 30: 751–759.

    Article  PubMed  CAS  Google Scholar 

  • Fromm P.O. (1968). Some quantitative aspects of ion regulation in teleosts. Comp. Biochenu Physiol. 27: 865–869.

    Article  CAS  Google Scholar 

  • Gaitskell R.E., Chester Jones I. (1971). Drinking and urine production in the european eel (Anguitta anguitta L.). Gen. Comp. Endocr. 16: 478–483.

    Article  PubMed  CAS  Google Scholar 

  • Gilles-Baillien M. (1983). Several compartments involved in intestinal transport. In “Intestinal transport” (Gilles-Baillien M. and Gilles R. eds.) Springer Verlag. Berlin, p. 103–119.

    Chapter  Google Scholar 

  • Gray J.E. (1954). Comparative study of the gill area of marine fishes. Biol. Bull. 107(2): 219–225.

    Article  Google Scholar 

  • Groot, J.A., Albus H., Bakker R., Heukelom J.S.v., Zuidema T. (1983). Electrical phenomena in fish intestine. In “Intestinal transport” (Gilles-Baillien M. and Gilles R. eds) Springer Verlag Berlin p. 321–340.

    Chapter  Google Scholar 

  • Gunter-Smith P.J., White J.F. (1979). Contribution of villus and intervillus epithelium to intestinal transmural potential difference and response to theophylline and sugar. Biochem. biophys. Acta 557: 425–435.

    Article  PubMed  CAS  Google Scholar 

  • Hallbäck D.A., Jodal M., Lundgren O. (1979a). Importance of sodium and glucose for the establishment of a villous tissue hyperosmolality by the intestinalcounter. current multiplier. Acta Physiol. Scand. 107: 89–96.

    Article  PubMed  Google Scholar 

  • Hallbäck D.A., Jodal M., Sjöqvist A., Lundgren O. (1979b). Villous tissue osmolality and intestinal transport of water and electrolytes. Acta Physiol. Scand. 107: 115–126.

    Article  PubMed  Google Scholar 

  • Hallbäck D.A., Jodal M., Lundgren O. (1980). Villous tissue osmolality water and electrolyte transport in the cat small intestine at varying luminal osmolalities. Acta Physiol. Scand. 110: 95–100.

    Article  PubMed  Google Scholar 

  • Hirano T. (1974). Some factors regulating water intake by the eel, Anguilla gaponica. J. Exp. Biol. 61: 737–747.

    PubMed  CAS  Google Scholar 

  • Hirano T. (1980a). Prolactin and osmoregulation. J. Endocr. 186-189.

    Google Scholar 

  • Hirano T. (1980b). Effects of cortisol and prolactin on ion permeability of the eel oesophagus. In “Epithelial transport in the lower vertebrates” (Lahlou B. ed.) p. 143-149.

    Google Scholar 

  • Hirano T., Mayer-Gostan N. (1976). Eel oesophagus as an osmoregulatory organ. Proc. Nat. Acad. Sci. USA. 73(4): 1348–1350.

    Article  PubMed  CAS  Google Scholar 

  • Hirano T., Morisawa M., Ando M., Utida S. (1976). Adaptive changes in ion and water transport mechanism in the eel intestine. In “Intestinal ion transport” (Robinson J.W.L. ed.) MTP Press. Lancaster, p. 301–317.

    Chapter  Google Scholar 

  • Hirano T., Takei Y., Kobayashi H. (1978). Angiotensin and drinking in the eel and the frog. In “Osmotic and volume regulation ”. Alfred Benzon Symposium XI, Munksgaard. p. 123-134.

    Google Scholar 

  • Holmes W.N., Pearce R.B. (1979). Hormones and osmoregulation in the vertebrates. In “Mechanisms of osmoregulation in animals” (Gilles R. ed.) John Wiley and Sons. Chichester. p. 413–533.

    Google Scholar 

  • Holstein B. (1979a). Gastric acid secretion and water balance in the marine teleost Gadus morhua. Acta Physiol. Scand. 105: 93–107.

    Article  PubMed  CAS  Google Scholar 

  • Holstein B. (1979b). Gastric acid secretion and drinking in the Atlantic cod (Gadus morhua) during acidic or hyperosmotic perfusion of the intestine. Acta Physiol. Scand. 106: 257–265.

    Article  PubMed  CAS  Google Scholar 

  • Holstein B., Brigel B. (1981). Effects of exogenous angiotensin II in the Atlantic cod, Gadus morhua. Acta Physiol. Scand. 113: 363–369.

    Article  PubMed  CAS  Google Scholar 

  • House C.R., Green K. (1965). Ion water transport in intestine of Cottus soorpius. J. Exp. Biol. 42(1): 177–189.

    PubMed  CAS  Google Scholar 

  • Humbert W., Kirsch R., Meister M.F. S.E.M. study of the oesophagial mucus layer in Anguilla anguilla. J. Fish. Biol., in press.

    Google Scholar 

  • Jodal M., Hallbäck D.A., Lundgreen O. (1978). Tissue osmolality in intestinal villi during luminal perfusion with isotonic electrolyte solutions. Acta Physiol. Scand. 102: 94–107.

    Article  PubMed  CAS  Google Scholar 

  • Keys A.B. (1931). Chloride and water secretion and absorption by the gills of the eel. Z. Vergl. Physiol. 15: 364–388.

    Article  Google Scholar 

  • Keys A.B. (1933). The mechanism of adaptation to varying salinity in the common eel and the general problem of osmotic regulation in Fishes. Proc. Roy. Soc. London Ser. B. 112: 184–199.

    Article  CAS  Google Scholar 

  • Keys A.B., Willmer E.N. (1932). “Chloride secreting cells” in the gills of fishes with special reference to the common eel. J. Physiol. London 76: 368–378.

    PubMed  CAS  Google Scholar 

  • Kirsch R. (1972). The kinetics of peripheral exchanges of water and electrolytes in the silver eel (Anguilla anguilla L.) in fresh water and in sea water. J. Exp. Biol. 57: 489–512.

    CAS  Google Scholar 

  • Kirsch R. (1978). Role of the oesophagus in osmoregulation in teleost fishes. In “Osmotic and volume regulation”. Alfred Benzon Symposium XI. Munksgaard. p. 138–154. Academic Press, New York.

    Google Scholar 

  • Kirsch R., Mayer-Gostan N. (1973). Kinetics of water and chloride exchanges during adaptation of the european eel to sea water. J. Exp. Biol. 58: 105–121.

    PubMed  CAS  Google Scholar 

  • Kirsch R., Laurent P. (1975). L’oesophage, organe effecteur de l’osmorégulation chez un téléostéen euryhalin, l’anguille (Anguilla anguilla L.) C.R. Acad. Sci. Paris 280: 2013–2015.

    CAS  Google Scholar 

  • Kirsch R., Guinier D., Meens R. (1975). L’équilibre hydrique de l’anguille européenne (Anguilla anguilla L.). Etude du rôle de l’oesophage dans l’utilisation de l’eau de boisson et étude de la perméabilité osmotique branchiale. J. Physiol. Paris 70: 605–626.

    PubMed  CAS  Google Scholar 

  • Kirsch R., Guinier D. (1978). Action of epinephrine and norepinephrine on water, chloride and sodium exchange in the european eel. Gen. Comp. Endocr. 34(1): abstracts 77.

    Google Scholar 

  • Kirsch R., Meister M.F. (1982). Progressive processing of the ingested water in the gut of sea-water teleosts. J. Exp. Biol. 98, 67–81.

    PubMed  CAS  Google Scholar 

  • Kirschner L.B. (1978). External charged layer and Na regulation. In “Osmotic and volume regulation”. Alfred Benzon Symposium XI. Munksgaard. Academic Press. New York p. 310–321.

    Google Scholar 

  • Kirschner L.B. (1979). Control mechanisms in crustaceans and fishes. In “Mechanisms of osmoregulation in animals”. (Gilles R. ed) John Wiley and Sons. p. 157-222.

    Google Scholar 

  • Krogh A. (1939). Osmotic regulation in fresh water fishes by active absorption of chloride ions. Z. vergl. Physiol. 24: 656–666.

    Article  Google Scholar 

  • Lahlou B. (1970). La fonction rénale des téléostéens et son rôle dans 1’osmorégulation. Bulletin d’Informations Scientifiques et Techniques du Commissariat á l’Energie Atomique. 144: 17–52.

    Google Scholar 

  • Lahlou B. (1983). Intestinal transport and osmoregulation in fishes. In “Intestinal transport” (Gilles-Baillien M. and Gilles R. Eds). Springer Verlag. Berlin p. 341–353.

    Chapter  Google Scholar 

  • Laurent P., Kirsch R. (1975). Modifications structurales de l’oesophage liées à 1’osmorégulation chez l’anguille. C.R. Acad. Sci. Paris 280: 2227–2229.

    CAS  Google Scholar 

  • Leray C., Florentz A. (1983). Biochemical adaptation of trout intestine related to its ion transport properties. Influence of dietary salt and fatty acids, and environmental salinity. In “Intestinal transport” (Gilles-Baillien M. and Gilles R. eds). Springer Verlag. Berlin, p. 354–368.

    Chapter  Google Scholar 

  • Loretz C.A. (1983). Ion transport by the intestine of the goby, Gilliehthys mirabilis. Comp. Biochem. Physiol. 75A(2): 205–210.

    Article  CAS  Google Scholar 

  • Lotan R., Skadhauge E. (1972). Intestinal salt and water transport in a euryhaline teleost, Aphanius dispar (Cyprinodontidae). Comp. Biochem. Physiol. 42A: 303–310.

    Article  Google Scholar 

  • MacKay W.C., Janicki R. (1979). Changes in the eel intestine during seawater adaptation. Comp. Biochem. Physiol. 62A: 757–761.

    Article  Google Scholar 

  • MacLeod M.G. (1978). Effects of salinity and starvation on the alimentary canal anatomy of the rainbow trout Salmo gaivdnevi Richardson. J. Fish. Biol. 12: 71–79.

    Article  Google Scholar 

  • Maetz J. (1971). Fish gills: mechanisms of salt transfer in freshwater and seawater. Phil. Trans. Roy. Soc. Lond. B. 262: 209–249.

    Article  CAS  Google Scholar 

  • Maetz J. (1974). Aspects of adaptation to hypo-osmotic and hyper-osmotic environments. In “Biochemical and biophysical perspectives in marine biology” (Malins D.C. and Sargent J.R. eds.) 1: 1–167. Academic Press. London.

    Google Scholar 

  • Maetz J. (1976). Transport of ions and water across the epithelium of fish gills. In “Lung liquids”. Ciba Foundation Symposium 38 (New series) Elsevier. Lxcerpta Medica. North-Holland, Amsterdam, p. 133-159.

    Google Scholar 

  • Mainoya J.R., Bern H.A. (1982). Effects of Teleosts urotensins on intestinal absorption of water and NaCl in Tilapia, Savothevodon mossambious, adapted to fresh water or sea water. Gen. Comp. Endocr. 47: 54–58.

    Article  PubMed  CAS  Google Scholar 

  • Marshall W.S. (1978). On the involment of mucous secretion in teleost osmoregulation. Can. J. Zool. 56: 1088–1091.

    Article  CAS  Google Scholar 

  • Meister M.F. (1982). Absorption de l’eau ingérée chez les poissons téléostéens: analyse fonctionnelle et structurale. Thèse de doctorat 3è cycle. Université Louis Pasteur. Strasbourg.

    Google Scholar 

  • Meister M.F., Humbert W., Kirsch R., Vivien-Roels B. (1983). Structure and ultrastructure of the oesophagus in sea water and fresh water teleosts (Pisces). Zoomorphology 102: 33–51.

    Article  Google Scholar 

  • Motais R., Isai J. (1972). Temperature dependence of permeability to water and to sodium of the gill epithelium of the eèl Anguilla anguilla. J. Exp. Biol. 56: 587–600.

    Google Scholar 

  • Oide M., Utida S. (1967). Changes in water and ion transport in isolated intestines of the eel during salt adaptation and migration. Marine Biol. 1: 102–106.

    Article  Google Scholar 

  • Oide M., Utida S. (1968). Changes in intestinal absorption and renal excretion of water during adaptation to sea water in the Japanese eel. Marine Biol. 1: 172–177.

    Article  Google Scholar 

  • Parmelee J.T., Renfro J.L. (1981). Sodium transport across the oesopha geal epithelium of a euryhaline marine teleost. Federation Proceedings 40 (3).

    Google Scholar 

  • Portier P., Duval M. (1922). Pression osmotique du sang de l’anguille (essuyée), en fonction des modifications de salinité du milieu extérieur. C.R. Acad. Sci. Paris 175: 1105–1106.

    CAS  Google Scholar 

  • Sakata T., Engelhardt W.v. (1981a). Influence of short-chain fatty acids and osmolality on mucin release in the rat colon. Cell. Tiss. Res. 219: 371–377.

    CAS  Google Scholar 

  • Sakata T., Engelhardt W.v. (1981b). Luminal mucin in the large intestine of mice, rats and guinea pigs. Cell Tiss. Res. 219: 629–635.

    CAS  Google Scholar 

  • Sharratt B.M., Bellamy D., Chester Jones I. (1964). Adaptation of the silver eel (Angwitla anguilia L.) to sea water and to artificial media together with observations on the role of the gut. Comp. Biochem. Physiol. 11: 19–30.

    Article  PubMed  CAS  Google Scholar 

  • Shehadeh Z.H., Gordon M.S. (1969). The role of the intestine in salinity adaptation of the rainbow trout, Salmo gairdneri. Comp. Biochem. Physiol. 30: 397–418.

    Article  CAS  Google Scholar 

  • Shepard K.L. (1981). The influence of mucus on the diffusion of water across fish epidermis. Physiol. Zool. 54(2): 224–229.

    Google Scholar 

  • Shepard K.L. (1982). The influence of mucus on the diffusion of ions across the oesophagus of fish. Physiol. Zooi. 55: 23–34.

    Google Scholar 

  • Skadhauge E. (1969). The mechanism of salt and water absorption in the intestine of the eel (Anguilta anguilla) adapted to waters of various salinities. J. Physiol. 204: 135–158.

    PubMed  CAS  Google Scholar 

  • Skadhauge E. (1974). Coupling of transmural flows of NaCl and water in the intestine of the eel (Anguilla anguilla). J. Exp. Biol. 60: 535–546.

    PubMed  CAS  Google Scholar 

  • Skadhauge E. (1976). Regulation of drinking and intestinal water absorption in euryhaline teleosts. In “Intestinal ion transport” (Robinson J.W.L. ed.) MTP Press. Lancaster p. 328–333.

    Google Scholar 

  • Sleet R.B., Weber L.J. (1982). The rate and manner of seawater ingestion by a marine teleost and corresponding seawater modification by the gut. Comp. Biochem. Physiol. 72A: 469–475.

    Article  Google Scholar 

  • Smith H.W. (1930). The absorption and excretion of water and salts by marine teleosts. Am. J. Physiol. 93: 480–505.

    CAS  Google Scholar 

  • Smith H.W. (1932). Water regulation and its evolution in fishes. Quart. Rev. Biol. 7: 1–26.

    Article  CAS  Google Scholar 

  • Utida S., Oide M., Saishu S., Kamiya M. (1967). Préétablissement du mécanisme d’adaptation à l’eau de mer dans l’intestin et les branchies isolés de l’anguille argentée au cours de sa migration catadrome. C.R. Soc. Biol. Paris 161: 1201.

    PubMed  CAS  Google Scholar 

  • Utida S., Hirano T., Kamiya M. (1969). Seasonal variations in the adjustive responses to sea water in the intestine and gills of the Japanese cultured eel, Anguilla japonica. Proc. Jap. Acad. 45: 293.

    Google Scholar 

  • Yamamoto M., Hirano T. (1978). Morphological changes in the oesopha-geal epithelium of the eel, Anguilla gaponica, during adaptation to sea water. Cell. Tiss. Res. 192: 25–38.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirsch, R., Humbert, W., Rodeau, J.L. (1984). Control of the Blood Osmolarity in Fishes with References to the Functional Anatomy of the Gut. In: Pequeux, A., Gilles, R., Bolis, L. (eds) Osmoregulation in Estuarine and Marine Animals. Lecture Notes on Coastal and Estuarine Studies, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45574-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45574-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13353-7

  • Online ISBN: 978-3-642-45574-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics