Discrete Noisy Maps

  • Hermann Haken
Part of the Springer Series in Synergetics book series (SSSYN, volume 20)


In this chapter we shall deal with discrete noisy maps, which we got to know in the introduction. In the first sections of the present chapter we shall study in how far we can extend previous results on differential equations to such maps. In Sects. 7.7–7.9 we showed how the slaving principle can be extended. We are now going to show how an analog to the Fokker-Planck equation (Sect. 10.2–4) can be found. We shall then present a path-integral solution and show how the analog of solutions of time-dependent Fokker-Planck equations can be found.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. P. Crutchfield, B. A. Huberman: Phys. Lett. 77A, 407 (1980)MathSciNetADSGoogle Scholar
  2. J. P. Crutchfield, M. Nauenberg, J. Rudnick: Phys. Rev. Lett. 46, 935 (1981)MathSciNetADSCrossRefGoogle Scholar
  3. B. Shraiman, C. E. Wayne, P. C. Martin: Phys. Rev. Lett. 46, 933 (1981)MathSciNetADSCrossRefGoogle Scholar
  4. G. Mayer-Kress, H. Haken: J. Stat. Phys. 26, 149 (1981)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. H. Haken, G. Mayer-Kress: Z. Phys. B43, 185 (1981)MathSciNetADSCrossRefGoogle Scholar
  6. H. Haken: In Chaos and Order in Nature. Springer Ser. Synergetics, Vol. 11, ed. by H. Haken (Springer, Berlin, Heidelberg, New York 1981) p. 2Google Scholar
  7. H. Haken, A. Wunderlin: Z. Phys. B46, 181 (1982)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Hermann Haken
    • 1
  1. 1.Institut für Theoretische PhysikUniversität StuttgartStuttgart 80Fed. Rep. of Germany

Personalised recommendations