Advertisement

Introduction

  • Hermann Haken
Part of the Springer Series in Synergetics book series (SSSYN, volume 20)

Abstract

Synergetics deals with systems composed of many subsystems, which may be of quite different natures, such as electrons, atoms, molecules, cells, neurons, mechanical elements, photons, organs, animals or even humans. In this book we wish to study how the cooperation of these subsystems brings about spatial, temporal or functional structures on macroscopic scales. In particular, attention will be focused on those situations in which these structures arise in a self-organized fashion, and we shall search for principles which govern these processes of self-organization irrespective of the nature of the subsystems. In the introduction, we present typical examples of disorder — order or order — order transitions in various fields, ranging from physics to sociology, and give an outline of the basic concepts and the mathematical approach.

Keywords

Control Parameter Lyapunov Exponent Rayleigh Number Unstable Manifold Chaotic Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. H. Haken: Synergetics, An Introduction, 3rd ed. (Springer, Berlin, Heidelberg, New York 1983) This reference is referred to in the present book as [1]zbMATHGoogle Scholar
  2. H. Haken, R. Graham: Synergetik — Die Lehre vom Zusammenwirken. Umschau 6, 191 (1971)Google Scholar
  3. H. Haken (ed.): Synergetics (Proceedings of a Symposium on Synergetics, Elmau 1972) (Teubner, Stuttgart 1973)Google Scholar
  4. H. Haken (ed.): Cooperative Effects, Progress in Synergetics (North-Holland, Amsterdam 1974)Google Scholar
  5. H. Haken: Cooperative effects in systems far from thermal equilibrium and in nonphysical system. Rev. Mod. Phys. 47, 67 (1975)ADSMathSciNetGoogle Scholar
  6. A further source of references is the Springer Series in Synergetics, whose individual volumes are listed in the front matter of this book.Google Scholar
  7. H. Haken: Erfolgsgeheimnisse der Natur (Deutsche Verlagsanstalt, Stuttgart 1981)Google Scholar
  8. The modern treatment of phase transitions of systems in thermal equilibrium rests on the renormalization group approach: K. G. Wilson: Phys. Rev. B4, 3174; 3184 (1971)ADSGoogle Scholar
  9. K. G. Wilson, M. E. Fisher: Phys. Rev. Lett. 28, 248 (1972)ADSGoogle Scholar
  10. F. J. Wegener: Phys. Rev. B5, 4529 (1972); B6, 1891 (1972)ADSGoogle Scholar
  11. T. W. Burkhardt, J. M. J. van Leeuwen (eds.): Real-Space Renormalization, Topics Curr. Phys., Vol. 30 (Springer, Berlin, Heidelberg, New York 1982)Google Scholar
  12. Books and reviews on the subject are, for exampleGoogle Scholar
  13. K. G. Wilson, J. Kogut: Phys. Rep. 12C, 75 (1974)ADSGoogle Scholar
  14. C. Domb, M. S. Green (eds.): Phase Transitions and Critical Phenomena. Internat. Series of Monographs in Physics, Vols. 1-6 (Academic, London 1972-76)Google Scholar
  15. S. K. Ma: Modern Theory of Critical Phenomena (Benjamin, Reading, MA 1976)Google Scholar
  16. Fluids: Formation of Dynamic Patterns Taylor Instability Google Scholar
  17. G. I. Taylor: Philos. Trans. R. Soc. London A223, 289 (1923)ADSGoogle Scholar
  18. For recent and more detailed studies see, for exampleGoogle Scholar
  19. R. P. Fenstermacher, H. L. Swinney, J. P. Gollub: J. Fluid Mech. 94, 103 (1979)ADSGoogle Scholar
  20. R. C. DiPrima: In Transition and Turbulence, ed. by R. E. Meyer (Academic, New York 1981)Google Scholar
  21. Bénard InstabilityGoogle Scholar
  22. H. Bénard: Rev. Gén. Sci. Pures Appl. 11, 1261, 1309 (1900)Google Scholar
  23. Lord Rayleigh: Philos. Mag. 32, 529 (1916)Google Scholar
  24. For more recent theoretical studies on linear stability see, e. g.Google Scholar
  25. S. Chandrasekhar: Hydrodynamic and Hydromagnetic Stability (Clarendon, Oxford 1961)zbMATHGoogle Scholar
  26. For nonlinear treatments seeGoogle Scholar
  27. A. Schlüter, D. Lortz, F. Busse: J. Fluid Mech. 23, 129 (1965)ADSzbMATHMathSciNetGoogle Scholar
  28. F. H. Busse: J. Fluid Mech. 30, 625 (1967)ADSzbMATHGoogle Scholar
  29. A. C. Newell, J. A. Whitehead: J. Fluid Mech. 38, 279 (1969)ADSzbMATHGoogle Scholar
  30. R. C. DiPrima, H. Eckhaus, L. A. Segel: J. Fluid Mech. 49, 705 (1971)ADSzbMATHGoogle Scholar
  31. F. H. Busse: J. Fluid Mech. 52, 1 (1972)ADSGoogle Scholar
  32. F. H. Busse: Rep. Prog. Phys. 41, 1929 (1978) Nonlinearity and fluctuations are treated inGoogle Scholar
  33. H. Haken: Phys. Lett. 46A, 193 (1973)ADSGoogle Scholar
  34. — and, In particular, Rev. Mod. Phys. 47, 67 (1975)ADSMathSciNetGoogle Scholar
  35. H. Haken: Synergetics, Springer Ser. Synergetics, Vol. 1, 3rd. ed. (Springer, Berlin, Heidelberg, New York 1983)Google Scholar
  36. R. Graham: Phys. Rev. Lett. 31, 1479 (1973)ADSGoogle Scholar
  37. — Phys. Rev. 10, 1762 (1974)ADSGoogle Scholar
  38. G. Ahlers, R. Behringer: Phys. Rev. Lett. 40, 712 (1978)ADSGoogle Scholar
  39. G. Ahlers, R. Waiden: Phys. Rev. Lett. 44, 445 (1981)ADSGoogle Scholar
  40. P. Bergé: In Dynamical Critical Phenomena and Related Topics, ed. by C. P. Enz, Lecture Notes Phys., Vol. 104 (Springer, Berlin, Heidelberg, New York 1979) p. 288Google Scholar
  41. F. H. Busse, R. M. Clever: J. Fluid Mech. 102, 75 (1981)ADSzbMATHGoogle Scholar
  42. M. Giglio, S. Musazzi, U. Perini: Phys. Rev. Lett. 47, 243 (1981)ADSGoogle Scholar
  43. E. L. Koschmieder, S. G. Pallas: Int. J. Heat Mass Transfer 17, 991 (1974)Google Scholar
  44. J. P. Gollub, S. W. Benson: J. Fluid Mech. 100, 449 (1980)ADSGoogle Scholar
  45. J. Maurer, A. Libchaber: J. Phys. Paris Lett. 39, 369 (1978); 40, 419 (1979); 41, 515 (1980)Google Scholar
  46. G. Pfister, I. Rehberg: Phys. Lett. 83A, 19 (1981)ADSGoogle Scholar
  47. H. Haken (ed.): Chaos and Order in Nature, Springer Ser. Synergetics, Vol. 11 (Springer, Berlin, Heidelberg, New York 1981), see in particular contributions by A. Libchaber and S. Fauve, E. O. Schulz-DuBois et al., P. Bergé, F. H. BusseGoogle Scholar
  48. H. Haken (ed.): Evolution of Order and Chaos, Springer Ser. Synergetics, Vol. 17 (Springer, Berlin, Heidelberg, New York 1982)Google Scholar
  49. H. L. Swinney, J. P. Gollub (eds.): Hydrodynamic Instabilities and the Transition to Turbulence, Topics Appl. Phys., Vol. 45 (Springer, Berlin, Heidelberg, New York 1981)Google Scholar
  50. Texts and Monographs on HydrodynamicsGoogle Scholar
  51. L. D. Landau, E. M. Lifshitz: Course of Theoretical Physics, Vol. 6 (Pergamon, London, New York 1959)Google Scholar
  52. Chia-Shun-Yih: Fluid Mechanics (University Press, Cambridge 1970)Google Scholar
  53. C. C. Lin: Hydrodynamic Stability (University Press, Cambridge 1967)Google Scholar
  54. D. D. Joseph: Stability of Fluid Motions, Springer Tracts Nat. Phil., Vols. 27, 28 (Springer, Berlin, Heidelberg, New York 1976)Google Scholar
  55. R. Scorer: Clouds of the World (Lothian, Melbourne 1972)Google Scholar
  56. Lasers; Coherent OscillationsGoogle Scholar
  57. Early papers on laser theory including quantum fluctuations areGoogle Scholar
  58. H. Haken: Z. Phys. 181, 96 (1964); 190, 327 (1966)ADSGoogle Scholar
  59. H. Risken: Z. Phys. 186, 85 (1965)ADSGoogle Scholar
  60. R. D. Hempstead, M. Lax: Phys. Rev. 161, 350 (1967)ADSGoogle Scholar
  61. W. Weidlich, H. Risken, H. Haken: Z. Phys. 201, 396 (1967)ADSGoogle Scholar
  62. M. Scully, W. E. Lamb: Phys. Rev. 159, 208 (1967); 166, 246 (1968)ADSGoogle Scholar
  63. H. Haken: Rev. Mod. Phys. 47, 67 (1975)ADSMathSciNetGoogle Scholar
  64. Laser-phase transition analogyGoogle Scholar
  65. R. Graham, H. Haken: Z. Phys. 213, 420 (1968)ADSGoogle Scholar
  66. R. Graham, H. Haken: Z. Phys. 237, 31 (1970)ADSMathSciNetGoogle Scholar
  67. V. De Giorgio, M. O. Scully: Phys. Rev. A2, 117a (1970)Google Scholar
  68. Ultra Short PulsesGoogle Scholar
  69. R. Graham, H. Haken: Z. Phys. 213, 420 (1968)ADSGoogle Scholar
  70. H. Risken, K. Nummedal: Phys. Lett. 26A, 275 (1968)ADSGoogle Scholar
  71. K. Nummedal: — J. Appl. Phys. 39, 4662 (1968)ADSGoogle Scholar
  72. H. Haken, H. Ohno: Opt. Commun. 16, 205 (1976)ADSGoogle Scholar
  73. H. Ohno: — Phys. Lett. 59A, 261 (1976)Google Scholar
  74. H. Knapp, H. Risken, H. D. Vollmer: Appl. Phys. 15, 265 (1978)ADSGoogle Scholar
  75. M. Büttiker, H. Thomas: In Solutions and Condensed Matter Physics, ed. by A. R. Bishop, T. Schneider, Springer Ser. Solid-State Phys., Vol. 8 (Springer, Berlin, Heidelberg, New York 1981) p. 321Google Scholar
  76. J. Zorell: Opt. Commun. 38, 127 (1981)ADSGoogle Scholar
  77. Optical Bistability (some early and recent treatments)Google Scholar
  78. S. L. McCall: Phys. Rev. A9, 1515 (1974)ADSGoogle Scholar
  79. R. Bonifacio, L. A. Lugiato: Opt. Commun. 19, 172 (1976)ADSGoogle Scholar
  80. R. Sulomaa, S. Stenholm: Phys. Rev. A8, 2695 (1973)ADSGoogle Scholar
  81. A. Kossakowski, T. Marzalek: Z. Phys. B23, 205 (1976)ADSGoogle Scholar
  82. L. A. Lugiato, V. Benza, L. M. Narducci, J. D. Farina: Opt. Commun. 39, 405 (1981)ADSGoogle Scholar
  83. L. A. Lugiato, V. Benza, L. M. Narducci: In Evolution of Order and Chaos, ed. by H. Haken Springer Ser. Synergetics, Vol. 17 (Springer, Berlin, Heidelberg, New York 1982) p. 120Google Scholar
  84. M. G. Velarde: ibid., p. 132Google Scholar
  85. L. A. Lugiato: In Progress in Optics (North-Holland, Amsterdam 1983)Google Scholar
  86. R. Bonifacio (ed.): Dissipative Systems in Quantum Optics, Topics Curr. Phys., Vol. 27 (Springer, Berlin, Heidelberg, New York 1982)Google Scholar
  87. Books: Laser TheoryGoogle Scholar
  88. H. Haken: Laser Theory, in Encyclopedia of Physics, Vol. XXV/2c, Light and Matter Ic, (Springer, Berlin, Heidelberg, New York 1970) and reprint edition Laser Theory (Springer, Berlin, Heidelberg, New York 1983)Google Scholar
  89. M. Sargent, M. O. Scully, W. E. Lamb: Laser Physics (Addison-Wesley, Reading, MA 1974)Google Scholar
  90. Plasmas: A Wealth of Instabilities (We can give only a small selection of titles)Google Scholar
  91. F. Cap: Handbook on Plasma Instabilities, Vols. 1, 2 (Academic, New York 1976 and 1978)Google Scholar
  92. A. B. Mikhailowskii: Theory of Plasma Instabilities, Vols. 1, 2 (Consultants Bureau, New York, London 1974)Google Scholar
  93. H. Wilhelmson, J. Weiland: Coherent Non-Linear Interaction of Waves in Plasmas (Pergamon, Oxford 1977)Google Scholar
  94. S. G. Thornhill, D. ter Haar: Phys. Rep. C43, 43 (1978)ADSGoogle Scholar
  95. Solid State Physics: Multistability, Pulses, Chaos Gunn Oscillator Google Scholar
  96. J. B. Gunn: Solid State Commun. 1, 88 (1963)ADSGoogle Scholar
  97. J. B. Gunn: IBM Res. Develop. 8, 141 (1964)Google Scholar
  98. K. Nakamura: J. Phys. Soc. Jpn. 38, 46 (1975)ADSGoogle Scholar
  99. Tunnel DiodesGoogle Scholar
  100. C. Zener: Proc. R. Soc. London 145, 523 (1934)ADSGoogle Scholar
  101. L. Esaki: Phys. Rev. 109, 603 (1958)ADSGoogle Scholar
  102. R. Landauer: J. Appl. Phys. 33, 2209 (1962)ADSGoogle Scholar
  103. R. Landauer, J. W. F. Woo: In Synergetics, ed. by H. Haken (Teubner, Stuttgart 1973) p. 97Google Scholar
  104. Thermoelastic InstabilitiesGoogle Scholar
  105. C. E. Bottani, G. Caglioti, P. M. Ossi: J. Phys. F. 11, 541 (1981)ADSGoogle Scholar
  106. C. Caglioti, A. F. Milone (eds.): Mechanical and Thermal Behaviour of Metallic Materials. Proc. Int. School of Physics Enrico Fermi (North-Holland, Amsterdam 1982)Google Scholar
  107. Crystal GrowthGoogle Scholar
  108. J. S. Langer: In Fluctuations, Instabilities and Phase Transitions, ed. by T. Riste (Plenum, New York 1975) p. 82Google Scholar
  109. J. S. Langer: Rev. Mod. Phys. 52, 1 (1980)ADSGoogle Scholar
  110. Engineering 1.3.1 Civil, Mechanical, and Aero-Space Engineering: Post-Buckling Patterns, Flutter etc.Google Scholar
  111. J. M. T. Thompson, G. W. Hunt: A General Theory of Elastic Stability (Wiley, London 1973)zbMATHGoogle Scholar
  112. K. Huseyn: Nonlinear Theory of Elastic Stability (Nordhoff, Leyden 1975)Google Scholar
  113. D. O. Brush, B. D. Almroth: Buckling of Bars, Plates and Shells (McGraw-Hill, New York 1975)zbMATHGoogle Scholar
  114. Electrical Engineering and Electronics: Nonlinear OscillationsGoogle Scholar
  115. A. A. Andronov, A. A. Vitt, S. E. Kaikin: Theory of Oscillators (Pergamon, Oxford, London 1966)zbMATHGoogle Scholar
  116. N. Minorsky: Nonlinear Oscillations (van Nostrand, Princeton 1962)zbMATHGoogle Scholar
  117. C. Hayashi: Nonlinear Oscillations in Physical Systems (McGraw-Hill, New York 1964)zbMATHGoogle Scholar
  118. P. S. Lindsay: Phys. Rev. Lett. 47, 1349 (1981)ADSGoogle Scholar
  119. Chemistry: Macroscopic PatternsGoogle Scholar
  120. C. H. Bray: J. Am. Chem. Soc. 43, 1262 (1921)Google Scholar
  121. B. P. Belousov: Sb. Ref. Radats. Med. Moscow (1959)Google Scholar
  122. V. A. Vavalin, A. M. Zhabotinsky, L. S. Yaguzhinsky: Oscillatory Processes in Biological and Chemical Systems (Science Publ., Moscow 1967) p. 181Google Scholar
  123. A. N. Zaikin, A. M. Zhabotinsky: Nature 225, 535 (1970)ADSGoogle Scholar
  124. A. M. Zhabotinsky, A. N. Zaikin: J. Theor. Biol. 40, 45 (1973)Google Scholar
  125. A. M. Turing: Philos. Trans. R. Soc. London B237, 37 (1952)ADSGoogle Scholar
  126. G. Nicolis, I. Prigogine: Self-Organization in Non-Equilibrium Systems (Wiley, New York 1977)Google Scholar
  127. H. Haken: Z. Phys. B20, 413 (1975)ADSGoogle Scholar
  128. G. F. Oster, A. S. Perelson: Arch. Rat. Mech. Anal. 55, 230 (1974)MathSciNetGoogle Scholar
  129. A. S. Perelson: G. F. Oster: Arch. Rat. Mech. Anal. 57, 31 (1974/75)MathSciNetGoogle Scholar
  130. G. Nicolis: Adv. Chem. Phys. 19, 209 (1971)Google Scholar
  131. B. Change, E. K. Pye, A. M. Ghosh, B. Hess (eds.): Biological and Biochemical Oscillators (Academic, New York 1973)Google Scholar
  132. G. Nicolis, J. Portnow: Chem. Rev. 73, 365 (1973)Google Scholar
  133. R. M. Noyes, R. J. Field: Annu. Rev. Phys. Chem. 25, 95 (1975)ADSGoogle Scholar
  134. J. J. Tyson: The Belousov-Zhabotinsky Reaction. Lecture Notes Biomath., Vol. 10 (Springer, Berlin, Heidelberg, New York 1976)Google Scholar
  135. P. C. Fife: Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes Biomath., Vol. 28 (Springer, Berlin, Heidelberg, New York 1979)Google Scholar
  136. A. Pacault, C. Vidal (eds.): Synergetics. Far from Equilibrium. Springer Ser. Synergetics, Vol. 3 (Springer, Berlin, Heidelberg, NewYork 1979)Google Scholar
  137. C. Vidal, A. Pacault (eds.): Nonlinear Phenomena in Chemical Dynamics. Springer Ser. Synergetics, Vol. 12 (Springer, Berlin, Heidelberg, New York 1981)Google Scholar
  138. T. H. Bullock, R. Orkand, A. Grinnell: Introduction to Nervous Systems (Freeman, San Francisco 1977)Google Scholar
  139. A. C. Scott: Neurophysics (Wiley, New York 1977)Google Scholar
  140. E. Basar: Biophysical and Physiological System Analysis (Addison Wesely, Reading MA 1976)Google Scholar
  141. M. Conrad, W. Güttinger, M. Dal Chin (eds.): Physics and Mathematics of the Nervous System. Lecture Notes Biomath., Vol. 4 (Springer, Berlin, Heidelberg, New York 1974)Google Scholar
  142. A. V. Holden: Models of Stochastic Activity of Neurons. Lecture Notes Biomath., Vol. 12 (Springer, Berlin, Heidelberg, New York 1976)Google Scholar
  143. H. Shimizu: Adv. Biophys. 13, 195 (1979)Google Scholar
  144. A. M. Turing: Philos. Trans. R. Soc. London B237, 37 (1952)ADSGoogle Scholar
  145. L. Wolpert: J. Theor. Biol. 25, 1 (1969)Google Scholar
  146. A. Gierer, H. Meinhardt: Kybernetik 12, 30 (1972)Google Scholar
  147. J. Cell. Sci. 15, 321 (1974)Google Scholar
  148. H. Haken, H. Olbrich: J. Math. Biol. 6, 317 (1978)zbMATHMathSciNetGoogle Scholar
  149. J. P. Murray: J. Theor. Biol. 88, 161 (1981)Google Scholar
  150. C. Berding, H. Haken: J. Math. Biol. 14, 133 (1982)zbMATHMathSciNetGoogle Scholar
  151. A. Lotka: Proc. Nat. Acad. Sci. (USA) 6, 410 (1920)ADSGoogle Scholar
  152. V. Volterra: Leçons sur la Théorie Mathématiques de la Lutte pour la Vie, Paris (1931)Google Scholar
  153. N. S. Goel, S. C. Maitra, E. W. Montroll: Rev. Mod. Phys. 43, 231 (1971)ADSMathSciNetGoogle Scholar
  154. T. N. E. Greville (ed.): Population Dynamics (Academic, London 1972)zbMATHGoogle Scholar
  155. D. Ludwig: In Stochastic Population Theories, ed. by S. Levin, Lecture Notes Biomath., Vol. 3 (Springer, Berlin, Heidelberg, New York 1974)Google Scholar
  156. R. B. May: Nature 261, 459 (1976)ADSGoogle Scholar
  157. M. Eigen: Naturwissenschaften 58, 465 (1971)ADSGoogle Scholar
  158. M. Eigen, P. Schuster: Naturwissenschaften 64, 541 (1977); 65, 7 (1978); 65, 341 (1978)ADSGoogle Scholar
  159. W. Ebeling, R. Feistel: Physik der Selbstorganisation und Evolution (Akademie-Verlag, Berlin 1982)Google Scholar
  160. F. M. Burnet: Immunology, Aging, and Cancer (Freeman, San Francisco 1976)Google Scholar
  161. C. De Lisi: Antigen Antibody Interactions, Lecture Notes Biomath., Vol. 8 (Springer, Berlin, Heidelberg, New York 1976)Google Scholar
  162. N. Dubin: A Stochastic Model for Immunological Feedback in Carcinogenesis. Lecture Notes Biomath., Vol. 9 (Springer, Berlin, Heidelberg, New York 1976)Google Scholar
  163. P. H. Richter: Pattern formation in the immune system. Lect. Math. Life Sci. 11, 89 (1979)Google Scholar
  164. Self-Organization of Computers, in Particular Parallel ComputingGoogle Scholar
  165. R. W. Hockney, C. R. Jesshope: Parallel Computers (Hilger, Bristol 1981)zbMATHGoogle Scholar
  166. Pattern Recognition by MachinesGoogle Scholar
  167. K. S. Fu: Digital Pattern Recognition, 2nd ed. (Springer, Berlin, Heidelberg, New York 1980)Google Scholar
  168. K. S. Fu: Syntactic Pattern Recognition Applications (Springer, Berlin, Heidelberg, New York 1976)Google Scholar
  169. K. S. Fu: In Pattern Formation by Dynamic Systems and Pattern Recognition, ed. by H. Haken, Springer Ser. Synergetics, Vol. 5 (Springer, Berlin, Heidelberg, New York 1979) p. 176Google Scholar
  170. T. Kohonen: Associative Memory — A System Theoretical Approach (Springer, Berlin, Heidelberg, New York 1978)Google Scholar
  171. T. Kohonen: Self-Organization and Associative Memory, Springer Ser. Inf. Sci., Vol. 8 (Springer, Berlin, Heidelberg, New York 1983)Google Scholar
  172. H. Haken (ed.): Pattern Formation by Dynamic Systems and Pattern Recognition, Springer Ser. Synergetics, Vol. 5 (Springer, Berlin, Heidelberg, New York 1979)Google Scholar
  173. H. Haken: unpublished materialGoogle Scholar
  174. G. Mensch, K. Kaasch, A. Kleinknecht, R. Schnopp: IIM/dp 80-5 Innovation Trends, and Switching between Full-and Under-Employment Equilibria. 1950-1978 Discussion Paper Series, International Institute of Management, Wissenschaftszentrum BerlinGoogle Scholar
  175. H. Haken: Synergetics, Springer Ser. Synergetics, Vol. 1, 3rd. ed. (Springer, Berlin, Heidelberg, New York 1983)Google Scholar
  176. W. Weidlich, G. Haag: Quantitative Sociology, Springer Ser. Synergetics, Vol. 14 (Springer, Berlin, Heidelberg, New York 1983)Google Scholar
  177. H. Haken: Erfolgsgeheimnisse der Natur (Deutsche Verlagsanstalt, Stuttgart 1981)Google Scholar
  178. Ch. J. Krebs: Ecology. The Experimental Analysis of Distribution and Abundance (Harper and Row, New York 1972)Google Scholar
  179. R. E. Rickleps: Ecology (Nelson, London 1973)Google Scholar
  180. S. E. Ash: Social Psychology (Prentice Hall, New York 1952) p. 452Google Scholar
  181. W. Weidlich: Collect. Phenom. 1, 51 (1972)Google Scholar
  182. E. Noelle-Neumann: Die Schweigespirale (Piper, München 1980) [English transl. (to appear 1983): The Spiral of Silence: Public Opinion — The Skin of Time (Chicago, University Press)]Google Scholar
  183. A. Wunderlin, H. Haken: Lecture Notes, Projekt Mehrebenenanalyse im Rahmen des Forschungsschwerpunkts Mathematisierung (Universität Bielefeld 1980)Google Scholar
  184. H. Haken: Erfolgsgeheimnisse der Natur (Deutsche Verlagsanstalt, Stuttgart 1981)Google Scholar
  185. W. Weidlich, G. Haag: Quantitative Sociology, Springer Ser. Synergetics, Vol. 14 (Springer, Berlin, Heidelberg, New York 1983)Google Scholar
  186. The Kind of Equations we Want to Study For a general background, see alsoGoogle Scholar
  187. H. Haken: Synergetics, Springer Ser. Synergetics, Vol. 1, 3rd. ed. (Springer, Berlin, Heidelberg, New York 1983)Google Scholar
  188. Because the individual topics of Sects. 1.11-17 will be dealt with in detail in later chapters, we refer the reader to the corresponding references belonging to those chapters.Google Scholar
  189. Here we quote only those references which will not be quoted later.Google Scholar
  190. Differential EquationsGoogle Scholar
  191. R. Courant, D. Hilbert: Methods of Mathematical Physics, Vols. 1, 2 (Wiley, New York 1962)zbMATHGoogle Scholar
  192. P. M. Morse, H. Feshbach: Methods of Theoretical Physics, Vols. 1, 2 (McGraw-Hill, New York 1953)zbMATHGoogle Scholar
  193. L. W. F. Elen: Differential Equations, Vols. 1, 2 (MacMillan, London 1967)Google Scholar
  194. First Order Differential EquationsGoogle Scholar
  195. E. A. Coddington, N. Levinson: Theory of Ordinary Differential Equations (McGraw-Hill, New York 1955)zbMATHGoogle Scholar
  196. NonlinearityGoogle Scholar
  197. V. V. Nemytskii, V. V. Stepanov: Qualitative Theory of Differential Equations (University Press, Princeton 1960)zbMATHGoogle Scholar
  198. M. W. Hirsch, S. Smale: Differential Equations, Dynamical Systems, and Linear Algebra (Academic, New York 1974)zbMATHGoogle Scholar
  199. Z. Nitecki: Differentiable Dynamics (MIT Press, Cambridge, MA 1971)zbMATHGoogle Scholar
  200. R. Abraham, J. E. Marsden: Foundations of Mechanics (Benjamin/Cummings, Reading, MA 1978)zbMATHGoogle Scholar
  201. S. Smale: The Mathematics of Time (Springer, Berlin, Heidelberg, New York 1980)zbMATHGoogle Scholar
  202. Control ParametersGoogle Scholar
  203. H. Haken: Synergetics, Springer Ser. Synergetics, Vol. 1, 3rd. ed. (Springer, Berlin, Heidelberg, New York 1983)Google Scholar
  204. StochastidtyGoogle Scholar
  205. J. L. Doob: Stochastic Processes (Wiley, New York 1953)zbMATHGoogle Scholar
  206. M. Loève: Probability Theory (van Nostrand, Princeton 1963)zbMATHGoogle Scholar
  207. R. von Mises: Mathematical Theory of Probability and Statistics (Academic, New York 1964)zbMATHGoogle Scholar
  208. Yu. V. Prokhorov, Yu. A. Rozanov: Probability Theory, Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Vol. 157 (Springer, Berlin, Heidelberg, New York 1968)Google Scholar
  209. R. C. Dubes: The Theory of Applied Probability (Prentice Hall, Englewood Cliffs, NJ 1968)zbMATHGoogle Scholar
  210. W. Feller: An Introduction to Probability Theory and Its Applications, Vol. 1 (Wiley, New York 1971)zbMATHGoogle Scholar
  211. Kai Lai Chung: Elementary Probability Theory with Stochastic Processes (Springer, Berlin, Heidelberg, New York 1974)zbMATHGoogle Scholar
  212. T. Hida: Brownian Motion, Applications of Mathematics, Vol. 11 (Springer, Berlin, Heidelberg, New York 1980)Google Scholar
  213. Statistical MechanicsGoogle Scholar
  214. L. D. Landau, E. M. Lifshitz: In Course of Theoretical Physics, Vol. 5 (Pergamon, London 1952)Google Scholar
  215. R. Kubo: Thermodynamics (North-Holland, Amsterdam 1968)Google Scholar
  216. D. N. Zubarev: Non-Equilibrium Statistical Thermodynamics (Consultants Bureau, New York 1974)Google Scholar
  217. Quantum FluctuationsGoogle Scholar
  218. H. Haken: Laser Theory, in Encylopedia of Physics, Vol. XXV/2c, Light and Matter Ic (Springer, Berlin, Heidelberg, New York 1970) and reprint edition Laser Theory (Springer, Berlin, Heidelberg, New York 1983)Google Scholar
  219. H. Haken: Synergetics, Springer Ser. Synergetics, Vol. 1, 3rd. ed. (Springer, Berlin, Heidelberg, New York 1978)Google Scholar
  220. H. Haken (ed.): Chaos and Order in Nature, Springer Ser. Synergetics, Vol. 11 (Springer, Berlin, Heidelberg, New York 1981)Google Scholar
  221. H. Haken: Order and Chaos, Springer Ser. Synergetics, Vol. 17 (Springer, Berlin, Heidelberg, New York 1982)Google Scholar
  222. Many Components and the Mezoscopic ApproachGoogle Scholar
  223. H. Haken: unpublished materialGoogle Scholar
  224. How to Visualize SolutionsGoogle Scholar
  225. Y. Choquet-Bruhat, C. De Witt-Morette, M. Dillard-Bleick: Analysis, Manifolds and Physics (North-Holland, Amsterdam 1982)zbMATHGoogle Scholar
  226. R. D. Richtmyer: Principles of Advanced Mathematical Physics II (Springer, Berlin, Heidelberg, New York 1981)zbMATHGoogle Scholar
  227. Qualitative Changes: General ApproachGoogle Scholar
  228. H. Haken: Synergetics, Springer Ser. Synergetics, Vol. 1, 3rd. ed. (Springer, Berlin, Heidelberg, New York 1983)Google Scholar
  229. D’Arcy W. Thompson: On Growth and Form (Cambridge University Press, London 1961)Google Scholar
  230. Qualitative Changes: Typical PhenomenaGoogle Scholar
  231. See H. Haken: Synergetics, Springer Ser. Synergetics, Vol. 1, 3rd. ed. (Springer, Berlin, Heidelberg, New York 1983) and references cited in later chapters. Here References are presented forGoogle Scholar
  232. Lyapunov ExponentsGoogle Scholar
  233. V. I. Oseledec: A multiplicative ergodic theorem. Lyapunov characteristic number for dynamical systems. Tr. Mosk. Mat. Osc. 19, 179 (1968) [English transi.: Trans. Moscow Math. Soc. 19, 197 (1968)]MathSciNetGoogle Scholar
  234. Ya. B. Pesin: Characteristic Lyapunov Exponents and Smooth Ergodic Theory. Russ. Math. Surv. 32(4), 55 (1977)MathSciNetGoogle Scholar
  235. D. Ruelle: “Sensitive Dependence on Initial Conditions and Turbulent Behavior of Dynamical Systems”, in Bifurcation Theory and Its Applications in Scientific Disciplines, ed. by O. Gurel, O. E. Rössler, New York Acad. of Sci. 316, (1979)Google Scholar
  236. J. D. Farmer: Physica 4D, 366 (1982)ADSMathSciNetGoogle Scholar
  237. K. Tomita: Phys. Rep. 86, 113 (1982)ADSMathSciNetGoogle Scholar
  238. The Impact of FluctuationsGoogle Scholar
  239. See the references in Sect. 1.11.5 as well as those of later chaptersGoogle Scholar
  240. Evolution of Spatial PatternsGoogle Scholar
  241. H. Haken: Synergetics, Springer Ser. Synergetics, Vol. 1, 3rd. ed. (Springer, Berlin, Heidelberg, New York 1983)Google Scholar
  242. Discrete Maps: The Poincaré MapGoogle Scholar
  243. Discrete Maps are treated in Chap. 11. The Poincaré map is discussed, e.g., in R. Abraham, J. E. Marsden: Foundations of Mechanics (Benjamin/Cummings, Reading, MA 1978)zbMATHGoogle Scholar
  244. Discrete Noisy MapsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Hermann Haken
    • 1
  1. 1.Institut für Theoretische PhysikUniversität StuttgartStuttgart 80Fed. Rep. of Germany

Personalised recommendations