Advertisement

Abstract

Of the multitude of Hymenoptera, the one which has always held man’s greatest fascination is the common honey bee1 (Apis mellifera L.). Noted from antiquity as a model of industrious activity and the producer of a delectable honey, this insect has also gained notoriety as a fierce and savage defender of its hive. The venom injected by the stinging honey bee has been the subject of some of the most exhaustive and extensive research activities in the entire field of insect biochemistry.

Keywords

Mast Cell Degranulating Venom Gland Isoamyl Acetate Venom Component Dufour Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfano, J.A., Elliott, W.B., Brownie, A.C.: The effect of bee venom on serum corticosterone levels and adrenal mitochondrial cytochrome P-450 in intact and hypophysectomized rats. Toxicon 11, 101–102 (1973).PubMedCrossRefGoogle Scholar
  2. Anton, H.: Bienengift und Immunität. Z. Immunitätforsch. 105, 241–271 (1945).Google Scholar
  3. Arbesman, C.E., Langlois, C., Shulman, S.: The allergic response to stinging insects: IV. Cross-reactions between bee, wasp, and yellow jacket. J. Allergy Clin. Immunol. 36, 147–157 (1965).Google Scholar
  4. Arold, H., Rietschel, L.: Synthese einiger Aminoacyl-histamine und-tryptamine. Z. Chem. 9, 144 (1969).CrossRefGoogle Scholar
  5. Bachmayer, H., Kreil, G., Suchanek, G.: Synthesis of promelittin and melittm m the venom gland of queen and worker bees: patterns observed during maturation. J. Insect Physiol. 18, 1515–1521 (1972).CrossRefGoogle Scholar
  6. Bacq, Z.M.: Chemical Protection against Ionizing Radiation. Springfield, Ill: Charles C Thomas 1965.Google Scholar
  7. Bacq, Z.M.: Histamine as protector against ionizing radiation. Int. Encycl. Pharmacol. Ther. 74, 109–125 (1973).Google Scholar
  8. Barker, S.A., Bayyuk, S.I., Brimacombe, J.S., Palmer, DJ.: Characterization of the products of the action of bee venom hyaluronidase. Nature 199, 693–694 (1963).PubMedCrossRefGoogle Scholar
  9. Barker, S.A., Mitchell, A.W., Walton, K.W., Weston, P.D.: Separation and isolation of the hyaluronidase and phospholipase components of bee venom and investigation of bee venom—human serum interaction. Clin. Chim. Acta 13, 582–596 (1966).PubMedCrossRefGoogle Scholar
  10. Barker, S.A., Walton, K.W., Weston, P.D.: The specificity of the anti-hyaluronidase developed in beekeepers serum against bee venom hyaluronidase. Clin. Chim. Acta 17, 119–123 (1967).PubMedCrossRefGoogle Scholar
  11. Barnard, J.H.: Allergic and pathologic findings in fifty insect-sting fatalities. J. Allergy Clin. Immunol. 40, 107–114 (1967).Google Scholar
  12. Beard, A.: Insect toxins and venoms. Ann. Rev. Entomol. 8, 1–18 (1963).CrossRefGoogle Scholar
  13. Beck, B.: Bee Venom Therapy. New York: Appleton-Century, 1935.Google Scholar
  14. Benton, A.W.: Esterases and phosphatases of honeybee venom. J. Apic. Res. 6, 91–94 (1967).Google Scholar
  15. Benton, A.W., Heckman, R.A., Morse, R.A.: Environmental effects on venom toxicity in rodents. J. Appl. Physiol. 21, 1228–1230 (1966).PubMedGoogle Scholar
  16. Benton, A.W., Morse, R.A.: Collection of the liquid fraction of bee venom. Nature 210, 652–653 (1966).CrossRefGoogle Scholar
  17. Benton, A.W., Morse, R.A.: Venom toxicity and proteins of the genus Apis. J. Apic. Res. 7, 113–118 (1968).Google Scholar
  18. Benton, A.W., Morse, R.A., Stewart, J.B.: A method of collecting honeybee venom. Science 142, 228–230 (1963).PubMedCrossRefGoogle Scholar
  19. Benton, A.W., Patton, R.L.: A qualitative comparison of the proteins in the venom of honey bees. J. Insect Physiol. 11, 1359–1364 (1965).PubMedCrossRefGoogle Scholar
  20. Bhargava, N., Zirinis, P., Bonta, I.L., Vargaftig, B.B.: Comparison of hemorrhagic factors of the venoms of Naja naja, Agkistrodon piscivorus and Apis mellifera. Biochem. Pharmacol. 19, 2405–2412 (1970).PubMedCrossRefGoogle Scholar
  21. Billingham, M.E.J., Morley, J., Hanson, J.M., Shipolini, R.A., Veraon, C.A.: An anti-inflammatory peptide from bee venom. Nature 245, 163–164 (1973).PubMedCrossRefGoogle Scholar
  22. Bloom, G.D., Haegermark, O.: Studies on morphological changes and histamine release by bee venom, n-decylamine and hypotonie solutions in rat peritoneal mast cells. Acta Physiol. Scand. 71, 257–269 (1967).PubMedCrossRefGoogle Scholar
  23. Boch, R., Shearer, D.A.: Iso-pentyl acetate in stings of honeybees of different ages. J. Apic. Res. 5, 65–70 (1966).Google Scholar
  24. Boch, R., Shearer, D.A., Stone, B.C.: Identification of iso-amyl acetate as an active component in the sting pheromone of the honeybee. Nature 195, 1018–1020 (1962).PubMedCrossRefGoogle Scholar
  25. Bordas, J.L.: Appareil glandulaire des Hyménoptères. Ann. Sc. Nat. Zool. 19, 1–362 (1895).Google Scholar
  26. Breithaupt, H., Habermann, E.: Mastzelldegranulierendes Peptid (MCD-Peptid) aus Bienengift: Isolierung, biochemische und pharmakologische Eigenschaften. Naunyn Schmiedebergs Arch. Pharmacol. 261, 252–270 (1968).Google Scholar
  27. Broadman, J.: Bee Venom — the Natural Curative for Arthritis and Rheumatism. New York: Putnam 1962.Google Scholar
  28. Brooks, R.B., Jr., Vick, J.A.: Toxicological studies of bee venom in mice, dogs, and monkeys. Am. Bee J., 250-251 (July 1972).Google Scholar
  29. Butler, C.G.: Mandibular gland pheromone of worker honeybees. Nature 212, 530 (1966).CrossRefGoogle Scholar
  30. Callewaert, G.L., Shipolini, R., Vernon, C.A.: The disulfide bridges of apamin. FEBS Letters 1, 111–113 (1968).PubMedCrossRefGoogle Scholar
  31. Christy, N.P. (ed.): Poisoning by venomous animals. Amer. J. Med. 42, 107–128 (1967).Google Scholar
  32. Cole, L.J., Shipman, W.H.: A novel mode of chemical radioprotection in mice: Injection of bee venom phospholipase A. Fed. Proc. 29, 451 (1970).Google Scholar
  33. Condrea, E., De Vries, A.: Venom phospholipase A; a review. Toxicon 2, 261–273 (1965).CrossRefGoogle Scholar
  34. Couch, T.L., Benton, A.W.: The effect of the venom of the honeybee, Apis mellifera L., on the adrenocortical response of the adult male rat. Toxicon 10, 55–62 (1972).PubMedCrossRefGoogle Scholar
  35. Dirks, T.F., Sternburg, J.O.: Non-immunochemical complexing between hymenopteran venoms and rabbit sera. Toxicon 10, 381–384 (1972).PubMedCrossRefGoogle Scholar
  36. Doery, H.M., Pearson, J.E.: Phospholipase B in snake venoms and bee venom. Biochem. J. 92, 599–602 (1964).PubMedGoogle Scholar
  37. Dorman, L.C., Markley, L.D.: Solid phase synthesis and antibacterial activity of N-terminal sequences of melittin. J. Med. Chem. 14, 5–9 (1971).PubMedCrossRefGoogle Scholar
  38. Elser, E.: Microchemical recognition of formic acid in the alimentary canal and in the poison sac of bees. Mitt. Lebensm. Hyg. 15, 28–32 (1924).Google Scholar
  39. Foubert, E.L., Stier, R.A.: Antigenic relationships between honeybees, wasps, yellow hornets, black hornets and yellow jackets. J. Allergy Clin. Immunol. 29, 13–23 (1958).Google Scholar
  40. Franklin, R., Baer, H.: Immune and nonimmune gel precipitates produced by honey bee venom and its components. Proc. Soc. Exp. Biol. Med. 147, 585–588 (1974).PubMedGoogle Scholar
  41. Fredholm, B.: Studies on a mast cell degranulating factor in bee venom. Biochem. Pharmac. 15, 2037–2043 (1966).CrossRefGoogle Scholar
  42. Fredholm, B., Haegermark, O.: Histamine release from rat mast cells induced by a mast cell degranulating fraction in bee venom. Acta Physiol. Scand. 69, 304–312 (1967a).PubMedCrossRefGoogle Scholar
  43. Fredholm, B., Haegermark, O.: Histamine release from rat mast cell granules induced by bee venom fractions. Acta Physiol. Scand. 71, 357–367 (1967b).PubMedCrossRefGoogle Scholar
  44. Fredholm, B., Haegermark, O.: Studies on the histamine release effect of bee venom fractions and compound 48/80 on skin and lung tissue of the rat. Acta Physiol. Scand. 76, 288–298 (1969).PubMedCrossRefGoogle Scholar
  45. Galuszka, H.: The research on a most effective method of the collection of bee venom by means of electric current. Zool. Pol. 22, 53–69 (1972).Google Scholar
  46. Ginsberg, N.J., Dauer, M., Slotta, K.H.: Melittin used as a protective agent against x-irradia-tion. Nature 220, 1334 (1968).PubMedCrossRefGoogle Scholar
  47. Grassmann, W., Hannig, K.: Elektrophoretische Untersuchungen an Schlangen-und Insektentoxinen. Z. physiol. Chem. 296, 30–44 (1954).CrossRefGoogle Scholar
  48. Grzycki, S., Czerny, K.: Cytochemical studies on the poison gland of honey-bee sting. Acta Anat. 82, 91–96 (1973).CrossRefGoogle Scholar
  49. Gunnison, A.G.: An improved method for collecting the liquid fraction of bee venom. J. Apic. Res. 5, 33–36 (1966).Google Scholar
  50. Habermann, E.: Zur Pharmakologie der Melittin. Naunyn Schmiedebergs Arch. Pharmacol. 222, 173–175 (1954).Google Scholar
  51. Habermann, E.: Über Permeabilitätsänderungen durch tierische Gifte. Naunyn Schmiedebergs Arch. Pharmacol. 225, 158–160 (1955).Google Scholar
  52. Habermann, E.: Eigenschaften und Anreicherung der Hyaluronidase von Bienengift. Biochem. Z. 329, 1–10 (1957).PubMedGoogle Scholar
  53. Habermann, E.: Zur Wirkung tierischer Gifte und von Lysocithin auf Grenzflächen. Z. Gesamte Exp. Med. 130, 19–23 (1958).PubMedCrossRefGoogle Scholar
  54. Habermann, E.: Biochemie, Pharmakologie und Toxikologie der Inhaltsstoffe von Hymenopterengiften. Ergeb. Physiol. 60, 220–325 (1968).PubMedGoogle Scholar
  55. Habermann, E.: Bee and wasp venoms. Science 177, 314–322 (1972).PubMedCrossRefGoogle Scholar
  56. Habermann, E., Breithaupt, H.: MCL-peptide, a selectively mastocytolytic factor isolated from bee venom. Naunyn Schmiedebergs Arch. Pharmacol. 260, 127–128 (1968).Google Scholar
  57. Habermann, E., El Karemi, M.M.A.: Antibody formation by protein components of bee venom. Nature 178, 1349 (1956).PubMedCrossRefGoogle Scholar
  58. Habermann, E., Jentsch, J.: Über die Struktur des toxischen Bienengiftpeptides Melittin und deren Beziehung zur pharmakologischen Wirkung. Naunyn Schmiedebergs Arch. Pharmacol. 253, 40–41 (1966).Google Scholar
  59. Habermann, E., Jentsch, J.: Sequenzanalyse des Melittins aus den tryptischen und peptischen Spaltstücken. Z. Physiol. Chem. 348, 37–50 (1967).CrossRefGoogle Scholar
  60. Habermann, E., Kowallek, H.: Modifikationen der Aminogruppen und des Tryptophans im Melittin als Mittel zur Erkennung von Struktur-Wirkungs-Beziehungen. Z. Physiol. Chem. 351, 884–890 (1970).CrossRefGoogle Scholar
  61. Habermann, E., Reiz, K.G.: Zur Biochemie der Bienengiftpeptide Melittin und Apamin. Biochem. Z. 343, 192–203 (1965a).PubMedGoogle Scholar
  62. Habermann, E., Reiz, K.G.: Ein neues Verfahren zur Gewinnung der Komponenten von Bienengift, insbesondere des zentral wirksamen Peptids Apamin. Biochem. Z. 341, 451–466 (1965b).Google Scholar
  63. Habermann, E., Zeuner, G.: Comparative studies of native and synthetic melittins. Naunyn Schmiedebergs Arch. Pharmacol. 270, 1–9 (1970).Google Scholar
  64. Hahn, G., Ostermayer, H.: Über das Bienengift (I. Mitteil). Ber. deutsch. Chem. Ges. 69B, 2407–2419 (1936).CrossRefGoogle Scholar
  65. Hanson, J.M., Morley, J., Soria-Herrera, C.: Anti-inflammatory property of 401 (MCD-Peptide), a peptide from the venom of the bee Apis mellifera (L.) Brit. J. Pharmacol. 50, 383–392 (1974).Google Scholar
  66. Haux, P.: Die Aminosäurensequenz von MCD-Peptid, einem spezifisch mastzellendegranulierenden Peptid aus Bienengift. Z. Physiol. Chem. 350, 536–546 (1969).CrossRefGoogle Scholar
  67. Haux, P., Sawerthal, H., Habermann, E.: Sequenzanalyse des Bienengift-Neurotoxins (Apamin) aus seinen tryptischen und chymotryptischen Spaltstücken. Z. Physiol. Chem. 348, 737–738 (1967).Google Scholar
  68. Hegner, D., Schnorr, B.: Die Wirkung von Melittin und einigen basischen Polymeren auf lysosomale Membranen. Naunyn Schmiedebergs Arch. Pharmacol. 260, 135–136 (1968).Google Scholar
  69. Hegner, D., Schummer, U., Schnepel, G.H.: The interaction of a lytic peptide, melittin, with spin-labeled membranes. Biochim. Biophys. Acta 291, 15–22 (1973).PubMedCrossRefGoogle Scholar
  70. Higgenbotham, R.D., Karnella, S.: The significance of the mast cell response to bee venom. J. Immunol. 106, 233–240 (1970).Google Scholar
  71. Hollander, J.L.: Bee venom in the treatment of chronic arthritis. Amer. J. Med. Sci. 201, 796–801 (1941).CrossRefGoogle Scholar
  72. Ivanov, C.P., Shkenderov, S., Krysteva, M.A.: Isolation and purification of hyaluronidase from bee venom. Tr. Acad. Bulg. Sci. 25, 2–7 (1972).Google Scholar
  73. Jentsch, J.: Weitere Untersuchungen zur Aminosäuresequenz des Melittins. IV: Messung der optischen Rotationsdispersion. Z. Naturforsch. 24, 33–35 (1969).Google Scholar
  74. Jentsch, J.: Drei Melittine im Bienengift. Liebigs Ann. Chem. 757, 193–195 (1972).CrossRefGoogle Scholar
  75. Jentsch, J., Dielenberg, D.: Mindestens zwei Phospholipasen A im Bienengift. Liebigs Ann. Chem. 757, 187–192 (1972).CrossRefGoogle Scholar
  76. Kaiser, E., Michl, H.: Die Biochemie der tierischen Gifte. Vienna: Franz Deuticke 1958.Google Scholar
  77. Katz, L., Piliero, S.J.: A study of adjuvant-induced polyarthritis in the rat with special reference to associated immunological phenomena. Ann. N.Y. Acad. Sci. 147, 517–536 (1969).PubMedCrossRefGoogle Scholar
  78. Kerr, W.E., Cruz, C.: Funcóes diferentes tomadas pela glándula mandibular na evolucão des abelhas em geral e em Trigona (Oxytrigona) tataira em especial. Rev. Bras. Biol. 21, 1–16 (1961).Google Scholar
  79. Kerr, W.E., De Lello, E.: Sting glands in stingless bees—a vestigial character (Hymenoptera: Apidae). N.Y. Entomol. Soc. LXX, 190-243 (1962).Google Scholar
  80. Kreil, G.: Isolierung und Charakterisierung von Melittin, dem Haupttoxin des Bienengiftes. Monatsch. Chem. 96, 2061–2063 (1965).CrossRefGoogle Scholar
  81. Kreil, G.: Structure of melittin isolated from two species of honey bees. FEBS Letters 33, 241–243 (1973a).CrossRefGoogle Scholar
  82. Kreil, G.: Biosynthesis of melittin, a toxic peptide from bee venom: amino acid sequence of the precursor. Europ. J. Biochem. 33, 558–566 (1973b).PubMedCrossRefGoogle Scholar
  83. Kreil, G., Bachmayer, H.: Biosynthesis of melittin, a toxic peptide from bee venom: detection of a possible precursor. Europ. J. Biochem. 20, 344–350 (1971).PubMedCrossRefGoogle Scholar
  84. Kreil, G., Kreil-Kiss, G.: The isolation of N-formylglycine from a polypeptide present in bee venom. Biochem. Biophys. Res. Commun. 27, 275–280 (1967).PubMedCrossRefGoogle Scholar
  85. Kristeva, M., Mesrob, B., Ivanov, C., Shkenderov, S.: Partial characterization of hyaluronidase from bee venom. Dokl. Bolg. Akad. Nauk 26, 917–918 (1973).Google Scholar
  86. Langer, J.: Über das Gift unserer Honigbiene. Arch. Exp. Path. Pharmak. Leipz. 38, 381–396 (1897).CrossRefGoogle Scholar
  87. Langlois, C., Shulman, S., Arbesman, C.E.: The allergic response to stinging insects: III. The specificity of venom sac antigens [rabbit]. J. Allergy Clin. Immunol. 36, 109–120 (1965).Google Scholar
  88. Lindauer, M.: Communication among the honeybees and stingless bees of India. Bee World 38, 3-14; 34-39 (1957).Google Scholar
  89. Lomer, R., Boguet, P., Izard, Y.: Sensibilité et hypersensibilité aux venins des Hyménoptéres. Presse Méd. 66, 1887–1890 (1958).PubMedGoogle Scholar
  90. Lorenzetti, O.J., Fortenberry, B., Busby, E.: Influence of bee venom in the adjuvant-induced arthritic rat model. Res. Commun. Chem. Pathol. Pharmacol. 4, 339–352 (1972).PubMedGoogle Scholar
  91. Lowy, P.H., Sarmiento, L., Mitchell, H.K.: Polypeptides minimine and melittin from bee venom: Effects on Drosophila. Arch. Biochem. Biophys. 145, 338–343 (1971).PubMedCrossRefGoogle Scholar
  92. Lübke, K., Matthes, S., Kloss, G.: Isolation and structure of Nα-formyl melittin. Experientia (Basel) 27, 765–767 (1971).CrossRefGoogle Scholar
  93. Maa, T.C.: An enquiry into the systematics of the tribus Apidini or honey bees (Hymenoptera). Treubia 21, 525–640 (1953).Google Scholar
  94. Markovic, O., Molnar, L.: Isolation and determination of honeybee poison. Chem. Zvesti 8, 80–90 (1954).Google Scholar
  95. Markovic, O., Rexova, L.: The components of various types of honeybee venoms. Chem. Zvesti 17, 767–684 (1963).Google Scholar
  96. Maschwitz, U.W.: Alarm substances and alarm behavior in social Hymenoptera. Nature 204, 324–327 (1964).CrossRefGoogle Scholar
  97. Mebs, D.: Chemistry of animal venoms, poisons, and toxins. Experientia 29, 1328–1334 (1973).CrossRefGoogle Scholar
  98. Mello, M.L.S.: A qualitative analysis of the proteins in venoms from Apis mellifera (including A.m. adansonii) and Bombus atratus. J. Apic. Res. 9, 113–120 (1970).Google Scholar
  99. Merl, T.: The bodies of bees as formic acid carriers. Z. Nahr Genussm. 42, 250–251 (1921).Google Scholar
  100. Mitchell, H.K., Lowy, P.H., Sarmiento, L., Dickson, L.: Melittin: Toxicity to Drosophila and inhibition of acetylcholinesterase. Arch. Biochem. Biophys. 145, 344–348 (1971).PubMedCrossRefGoogle Scholar
  101. Miura, Y., Sugiyama, H., Maki, Y., Seto, S.: The solid phase synthesis of 19-tyrosine melittin. Chem. Pharm. Bull. 20, 215–218 (1972).CrossRefGoogle Scholar
  102. Mohammed, A.H., El Karemi, M.M.A.: Immunity of beekeepers to some constituents of bee venom: phospholipase A antibodies. Nature 189, 837–838 (1961).PubMedCrossRefGoogle Scholar
  103. Mollay, C., Kreil, G.: Enhancement of bee venom phospholipase A2 activity by melittin, direct lytic factor from cobra venom and polymixin B. FEBS Letters 46, 141–144 (1974).PubMedCrossRefGoogle Scholar
  104. Morse, R.A., Shearer, D.A., Boch, R., Benton, A.W.: Observations on alarm substances in the genus Apis. J. Apic. Res. 6, 113–118 (1967).Google Scholar
  105. Müller, E.: Die Giftproduktion der Honigbiene. VII Int. Congr. Ent. 3, 1857–1864 (1939).Google Scholar
  106. Munjal, D., Elliott, W.B.: Studies of antigenic fractions in honeybee (Apis mellifera) venom. Toxicon 9, 229–236 (1971a).PubMedCrossRefGoogle Scholar
  107. Munjal, D., Elliott, W.B.: A simple method for the isolation of a phospholipase A from honeybee (Apis mellifera) venom. Toxicon 9, 403–409 (1971b).PubMedCrossRefGoogle Scholar
  108. Munjal, D., Elliot, W.B.: Further studies on the properties of phospholipase A from honeybee (Apis mellifera) venom. Toxicon 10, 367–375 (1972).PubMedCrossRefGoogle Scholar
  109. Nagamitu, G.: Beiträge zur physiologischen Wirkung des Histamins: Über das Gift der Honigbienen. Okayama-Igakkai-Zasshi 47, 3005–3012 (1935).Google Scholar
  110. Nelson, D.A., O’Connor, R.: The venom of the honeybee (Apis mellifera): Free amino acids and peptides. Can. J. Biochem. 46, 1221–1226 (1968).PubMedGoogle Scholar
  111. Neumann, W., Habermann, E.: Beiträge zur Charakterisierung der Wirkstoffe des Bienengiftes. Naunyn Schmiedebergs Arch. Pharmacol. 222, 367–387 (1954a).Google Scholar
  112. Neumann, W., Habermann, E.: Über die Phospholipase A des Bienengiftes. Z. Phys. Chem. 296, 166–179 (1954b).CrossRefGoogle Scholar
  113. Neumann, W., Stracke, A.: Untersuchungen mit Bienengift und Histamin an der Formaldehydearthritis der Ratte. Naunyn Schmiedebergs Arch. Pharmacol. 213, 8–17 (1951).Google Scholar
  114. O’Connor, R., Erickson, R.: Hymenoptera antigens: an immunological comparison of venoms, venom sac extracts and whole insect extracts. Ann. Allergy 23, 151–157 (1965).PubMedGoogle Scholar
  115. O’Connor, R., Henderson, G., Moran, M., Nelson, D., Peck, M.L.: The quantitative investigation of wasp, hornet, and bee venoms. Abstr. Papers of 150th Meeting Am. Chem. Soc., 10 (Sept. 1965).Google Scholar
  116. O’Connor, R., Henderson, G., Nelson, D., Parker, R., Peck, M.L.: The venom of the honeybee (Apis mellifera): general character, in Animal Toxins. New York: Pergamon Press, 1967, pp. 17-22.Google Scholar
  117. O’Connor, R., Rosenbrook, W., Erickson, R.: Hymenoptera: Pure venom from bees, wasps and hornets. Science 139, 420 (1963).PubMedCrossRefGoogle Scholar
  118. O’Connor, R., Rosenbrook, W., Erickson, R.: Disc electrophoresis of Hymenoptera venoms and body proteins. Science 145, 1320–1321 (1964a).PubMedCrossRefGoogle Scholar
  119. O’Connor, R., Stier, R.A., Rosenbrook, W., Erickson, R.W.: Death from “wasp” sting. Ann. Allergy 22, 385–393 (1964b).PubMedGoogle Scholar
  120. Olson, F.C., Munjal, D., Malviya, A.N.: Structural and respiratory effects of melittin (Apis mellifera) on rat liver mitochondria. Toxicon 12, 419–425 (1974).PubMedCrossRefGoogle Scholar
  121. Ortel, S., Markwardt, F.: Untersuchungen über die antibakteriellen Eigenschaften des Bienengiftes. Pharmazie 10, 743–746 (1955).PubMedGoogle Scholar
  122. Owen, M.D.: Insect venoms: Identification of dopamine and noradrenaline in wasp and bee stings. Experientia 27, 544–545 (1971).PubMedCrossRefGoogle Scholar
  123. Owen, M.D., Braidwood, J.L.: A quantitative and temporal study of histamine and histidine in honey bee (Apis mellifera L.) venom. Can. J. Zool. 52, 387–392 (1974).PubMedCrossRefGoogle Scholar
  124. Palmer, DJ.: Extraction of bee venom for research. Bee World 42, 225–226 (1961).Google Scholar
  125. Parrish, H.M.: Analysis of 460 fatalities from venomous animals in the United States. Am. J. Med. Sci. 245, 129–141 (1963).PubMedCrossRefGoogle Scholar
  126. Pearce, F.L.: Absence of nerve growth factor in the venoms of bees, scorpions, spiders and toads. Toxicon 11, 309–310 (1973).PubMedCrossRefGoogle Scholar
  127. Peck, M.L., O’Connor, R.: Procamine and other basic peptides in the venom of the honeybee (Apis mellifera). J. Agric. Food Chem. 22, 51–53 (1974).PubMedCrossRefGoogle Scholar
  128. Peck, M.L., O’Connor, R., Johnson, T.: Investigations of histamine-terminal peptides (1975).Google Scholar
  129. Perlman, E.: Near fatal reactions to bee and wasp stings: a review and report of seven cases. J. Mt. Sinai Hosp. 22, 336–341 (1955).Google Scholar
  130. Pursley, R.E.: Stinging Hymenoptera. Am. Bee J. 113, 131-132; 135 (1973).Google Scholar
  131. Rexova, L., Markovic, O.: Chemical characterization of some low-molecular components of honeybee poison. Chem. Zvesti 17, 884–890 (1963).Google Scholar
  132. Rocha e Silva, M.: Pharmacological properties of simple compounds of histamine with amino acids. J. Pharmacol. 77, 198–205 (1943).Google Scholar
  133. Rocha e Silva, M.: Inhibition of histamine effects by compounds of histamine, histidine, and arginine. J. Pharmacol. 80, 399–408 (1944).Google Scholar
  134. Rothenbacher, H., Benton, A.W.: Pathologic features in mice hyposensitized to bee venom. Am. J. Vet. Res. 33, 1867–1874 (1972).PubMedGoogle Scholar
  135. Rothschild, A.M.: Histamine release by bee venom phospholipase A and melittin in the rat. Brit. J. Pharmacol. Chemother. 25, 59–66 (1965).Google Scholar
  136. Schoetensack, W.: Bienengift und Bernsteinsäuredehydrierung. Naunyn Schmiedebergs Arch. Pharmacol. 218, 107–108 (1953).Google Scholar
  137. Schröder, E., Lübke, K., Lehmann, M., Beetz, L: Haemolytic activity and action on the surface tension of aqueous solutions of synthetic melittins and their derivatives. Experientia 27, 764–765 (1971).PubMedCrossRefGoogle Scholar
  138. Sessa, G., Freer, J.G., Colacicco, G., Weismann, G.: Interaction of a lytic polypeptide, melittin, with lipid membrane systems. J. Biol. Chem. 244, 3575–3582 (1969).PubMedGoogle Scholar
  139. Shearer, D.A., Boch, R.: 2-Heptanone in the mandibular gland secretion of the honey-bee. Nature 206, 530 (1965).CrossRefGoogle Scholar
  140. Shepherd, G.W., Elliott, W.B., Arbesman, C.E.: Fractionation of bee venom. I. Preparation and characterization of four antigenic components. Prep. Biochem. 4, 71–88 (1974).Google Scholar
  141. Shipman, W., Cole, L.J.: Increased resistance of mice to x-irradiation after the injection of bee venom. Nature 215, 311–312 (1967).PubMedCrossRefGoogle Scholar
  142. Shipman, W.H., Cole, L.J.: A surfactant bee venom fraction. Anal. Biochem. 29, 490–497 (1969).PubMedCrossRefGoogle Scholar
  143. Shipolini, R., Bradbury, A.F., Callewaert, G.L., Vernon, C.A.: The structure of apamin. Chem. Commun., 679-680 (1967).Google Scholar
  144. Shipolini, R., Callewaert, C.L., Cottrell, R.C., Doonan, S., Vernon, C.A., Banks, E.C.: Phospholipase A from bee venom. Europ. J. Biochem. 20, 459–468 (1971a).PubMedCrossRefGoogle Scholar
  145. Shipolini, R.A., Callewaert, G.L., Cottrell, R.C., Vernon, CA.: The primary sequence of phospholipase A from bee venom. FEBS Letters 17, 39–40 (1971b).PubMedCrossRefGoogle Scholar
  146. Shkenderov, S.: A protease inhibitor in bee venom. FEBS Letters 33, 343–347 (1973).PubMedCrossRefGoogle Scholar
  147. Shkenderov, S.: Anaphylactogenic properties of bee venom and its fractions. Toxicon 12, 529–534 (1974).PubMedCrossRefGoogle Scholar
  148. Shulman, S., Langlois, C., Miller, J.B., Arbesman, CE.: The allergic response to stinging insects: V. Fractionation of whole body and venom sac extracts of bee. J. Allergy Clin. Immunol. 37, 350–358 (1966).Google Scholar
  149. Simpson, J.: Repellancy of the mandibular gland scent of worker honeybees. Nature 209, 531–532 (1966).CrossRefGoogle Scholar
  150. Snodgrass, R.E.: Anatomy of the Honeybee. Ithaca, N.Y.: Comstock 1956.Google Scholar
  151. Spoerri, P.E., Jentsch, J., Glees, P.: Apamin from bee venom: Effects of the neurotoxin on cultures of the embryonic mouse cortex. Neurobiol. 3, 207–214 (1973).Google Scholar
  152. Tetsch, C., Wolff, K.: Untersuchungen über Analogien zwischen Bienen-und Schlangen-(Crotalus) Gift Biochem. Z. 288, 126–136 (1936).Google Scholar
  153. Vazquez-Colon, L., Elliott, W.B.: On the response of rat liver mitochondria to treatment with bee venom. Toxicon 4, 61–63 (1966).PubMedCrossRefGoogle Scholar
  154. Vernon, C.A., Hanson, J.M., Brimblecombe, R.W.: Peptides. British Patent No. 1324823 (1969).Google Scholar
  155. Vick, J.A., Mehlman, B., Brooks, R., Phillips, S.J., Shipman, W.: Effect of bee venom and melittin on plasma cortisol in the unanesthetized monkey. Toxicon 10, 581–586 (1972).PubMedCrossRefGoogle Scholar
  156. Vick, J.A., Shipman, W.H.: Effects of whole bee venom and its fractions (apamin and melittin) on plasma cortisol levels in the dog. Toxicon 10, 377–380 (1972).PubMedCrossRefGoogle Scholar
  157. Vick, J.A., Shipman, W.H., Brooks, R.: Beta adrenergic and anti-arrhythmic effects of cardiopep, a newly isolated substance from whole bee venom. Toxicon 12, 139–144 (1974).PubMedCrossRefGoogle Scholar
  158. Vincent, J.E., Bonta, I.L., Noordhoek, J.: Some effects of guinea pig serum and heparin on hemolysis induced by Naja naja, Agkistrodon piscivorus and Apis mellifera venom. Toxicon 10, 415–417 (1972).PubMedCrossRefGoogle Scholar
  159. Vogt, W., Patzer, P., Lege, L., Oldigs, H., Wille, G.: Synergism between phospholipase A and various peptides and SH-reagents in causing haemolysis. Naunyn Schmiedebergs Arch. Pharmacol. 265, 442–454 (1970).PubMedCrossRefGoogle Scholar
  160. Vyatchannikov, N.K., Sinka, A.Y.: Effect of melittin, the major constituent of bee venom, on the central nervous system. Farmakol. Toksikol. (Moscow) 36, 526–530 (1973).Google Scholar
  161. Wegelin, C.: Anatomic findings in patients dying of bee and wasp stings. Schweiz. Med. Wochenschr. 78, 1253–1261 (1948).PubMedGoogle Scholar
  162. Wellhöner, H.-H.: Spinale Wirkungen von Apamin. Naunyn Schmiedebergs Arch. Pharmacol. 262, 29–41 (1969).Google Scholar
  163. Welsh, J.H., Batty, C.S.: 5-Hydroxytryptamine content of some arthropod venoms and venomcontaining parts. Toxicon 1, 165–173 (1963).CrossRefGoogle Scholar
  164. Welsh, J.H., Moorhead, M.: The quantitative distribution of 5-hydroxytryptamine in the invertebrates, especially their nervous systems. J. Neurochem. 6, 146–169 (1960).CrossRefGoogle Scholar
  165. Werle, E., Gleissner, R.: Über die Herkunft des Histamins der Bienen. Z. Vitamin Hormon Fermentforsch. 4, 450–455 (1951).Google Scholar
  166. Zlotkin, E.: Chemistry of animal toxins. Experientia 29, 1453–1588 (1973).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 1978

Authors and Affiliations

  • R. O’Connor
  • M. L. Peck

There are no affiliations available

Personalised recommendations