Skip to main content

The Bernoulli Principle and the Dirichlet Problem

  • Conference paper
Mathematical Economics and Game Theory

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 141))

  • 297 Accesses

Abstract

Let M be a class of lotteries where a lottery is defined by a probability measure μ on the real line R. Among all preference relations ≲ on the lotteries in M. the Bernoulli principle singles out those which are based on expected utility in the sense that

$$\mu \lesssim v$$

if and only if

$$\int {{\text{ud}}} \mu \leqslant \int {{\text{ud}}v \left( {\mu ,v \in {\text{M}}} \right)} $$

for some utility function u on R. For a parametric model M =( μx) X εE we are thus led to consider those functions h on the parameter space E, let us call them Bernoulli functions for M, which are of the form

$${\text{h}}\left( {\text{x}} \right) = \int {{\text{ud}}{\mu _{\text{X}}}{\text{ }}\left( {{\text{x}} \in {\text{E}}} \right).} $$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airault, H. and H. Föllmer: Relative Densities of Semimartingales. Invent. Math. 27, 299–327 (1974)

    Article  Google Scholar 

  2. Blumenthal, R.M. and R.K. Getoor: Markov Processes and Potential Theory. New York: Academic Press 1968

    Google Scholar 

  3. Doob, J.L.: A probability approach to the heat equation. Trans. Amer. Math. Soc. 80, 216–280 (1955)

    Article  Google Scholar 

  4. Dynkin, E.B.: Markov Processes I,II. Berlin-Heidelberg-New York: Springer 1965

    Google Scholar 

  5. Feller, W.: An Introduction to Probability Theory and Its Applications II. New York-London: Wiley 1966

    Google Scholar 

  6. Föllmer, H.: Feine Topologie am Martinrand eines Standardprozesses. Z. Wahrscheinlichkeitstheorie verw. Geb.12, 127–244 (1969)

    Article  Google Scholar 

  7. Granger, C.W., and O. Morgenstern: Predictability of Stock Market Prices. Lexington, Mass.: Heath 1970

    Google Scholar 

  8. Mandelbrot, B.: The Pareto-Lévy Law and the Distribution of Income. Intern. Econ. Rev.1, 79–106 (1960)

    Article  Google Scholar 

  9. v. Neumann, J. and O. Morgenstern: Theory of Games and Economic Behavior. Princeton: Princeton University Press 1967

    Google Scholar 

  10. Schneeweiss, H,: Entscheidungskriterien bei Risiko. Berlin-Heidelberg-New York: Springer 1967

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Föllmer, H. (1977). The Bernoulli Principle and the Dirichlet Problem. In: Henn, R., Moeschlin, O. (eds) Mathematical Economics and Game Theory. Lecture Notes in Economics and Mathematical Systems, vol 141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45494-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45494-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08063-3

  • Online ISBN: 978-3-642-45494-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics