Advertisement

Pharmacology of Anticholinesterase Drugs

  • F. Hobbiger
Chapter
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 42)

Abstract

The transmission of nerve impulses at the neuromuscular junction involves the following consecutive events
  1. 1)

    arrival of an impulse at the nerve terminal,

     
  2. 2)

    release of acetylcholine (ACh) from the nerve terminal into the synaptic cleft,

     
  3. 3)

    transient occupation by ACh of receptors (cholinoceptors) at the surface of the postsynaptic membrane, leading to a nonspecific increase in membrane permeability which gives rise to the end-plate potential (e.p.p.),

     
  4. 4)

    initiation by the e.p.p., on attaining a critical amplitude of 10 to 20 mV, of a propagated muscle action potential which triggers a contraction of the muscle fibre,

     
  5. 5)

    termination of the action of ACh on the postsynaptic membrane by its removal from the synaptic cleft.

     

Keywords

Nerve Terminal Neuromuscular Junction AChE Inhibition Motor Endplate Quantal Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamič, Š.: Accumulation of acetylcholine by the rat diaphragm. Biochem. Pharmacol. 19, 2445–2451 (1970).PubMedGoogle Scholar
  2. Adrian, E.D., Bronk, D.W.: The discharge of impulses in motor nerve fibres. Part I. Impulses in single fibres of the phrenic nerve. J. Physiol. (Lond.) 66, 81–101 (1928).Google Scholar
  3. Adrian, E.D., Bronk, D.W.: The discharge of impulses in motor nerve fibres. Part II. The frequency of discharge in reflex and voluntary contractions. J. Physiol. (Lond.) 67, 119–151 (1929).Google Scholar
  4. Aeschlimann, J. A., Reinert, M.: Pharmacological action of some analogues of physostigmine. J. Pharmacol. exp. Ther. 43, 413–444 (1931).Google Scholar
  5. Aldridge, W.N.: The inhibition of erythrocyte cholinesterase by triesters of phosphoric acid: 3. The nature of the inhibitory process. Biochem. J. 54, 442–448 (1953).PubMedGoogle Scholar
  6. Aldridge, W.N., Reiner, E.: Enzyme inhibitors as substrates. In: Neuberger, A., Tatum, E.L. (Eds.): North-Holland Research Monographs Frontiers of Biology, Vol.26. Amsterdam: North-Holland Publ. Comp. 1972.Google Scholar
  7. Andersson-Cedergren, E.: Ultrastructure of motor endplate and sarcoplasmic components of mouse skeletal muscle fibre as revealed by three-dimensional reconstructions from serial sections. J. ultrastruct. Res., Suppl 1, 1–191 (1959).Google Scholar
  8. Argent, D.E., Dinnick, O.P., Hobbiger, F.: Prolonged apnoea after suxamethonium in man. Brit. J. Anaesth. 27, 24–30 (1955).PubMedGoogle Scholar
  9. Ariens, A.Th.., Meeter, E., Wolthuis, O.L., Bentheim, R.M.J. VAN: Reversible necrosis at the endplate region in striated muscles of the rat poisoned with cholinesterase inhibitors. Experientia (Basel) 25, 57–59 (1969).Google Scholar
  10. Auerbach, A., Betz, W.: Does curare affect transmitter release? J. Physiol. (Lond.) 213, 691–705 (1971).Google Scholar
  11. Augustinsson, K.-B.: Cholinesterases. A study in comparative enzymology. Acta physiol. scand. 15, Suppl. 52, 1–182 (1948).Google Scholar
  12. Augustinsson, K.-B.: Classification and comparative enzymology of the cholinesterases and methods for their determination. In: Koelle, G.B. (Ed.): Handbuch der experimentellen Pharmakologie, Ergänzungswerk XV, Cholinesterases and Anticholinesterase Agents, pp.89–128. Berlin-Göttingen-Heidelberg: Springer 1963.Google Scholar
  13. Austin, L., Berry, W.K.: Two selective inhibitors of cholinesterase. Biochem. J. 54, 695–700 (1953).PubMedGoogle Scholar
  14. Axelsson, J., Thesleff, S.: The desensitizing effect of acetylcholine on the mammalian motor end-plate. Acta physiol. scand. 43, 15–26 (1958).PubMedGoogle Scholar
  15. Bacq, Z.M., Brown, G.L.: Pharmacological experiments on mammalian voluntary muscle in relation to the theory of chemical transmission. J. Physiol. (Lond.) 89, 45–60 (1937).Google Scholar
  16. Barnard, E. A., Rymaszewska, T., Wieckowski, J.: Cholinesterases at individual neuromuscular junctions. In: Triggle, D.J., Moran, J.F., Barnard, E. A. (Eds.): Cholinergic Ligand Interactions, pp. 175–200. New York: Academic Press 1971 a.Google Scholar
  17. Barnard, E. A., Wieckowski, J., Chiu, T.H.: Cholinergic receptor molecules and cholinesterase molecules at mouse skeletal muscle junctions. Nature (Lond.) 234, 207–209 (1971 b).Google Scholar
  18. Barnes, J. M., Denz, F. A.: The reaction of rats to diets containing octamethyl pyrophosphoramide (Schradan) and 0,0-diethyl-S-ethyl mercaptoethyl thiophosphate (Systox). Brit. J. industr. Med. 11, 11–19 (1954).PubMedGoogle Scholar
  19. Barnes, J.M., Duff, J.I.: The role of cholinesterase at the myoneural junction. Brit. J. Pharmacol. 8, 334–339 (1953).PubMedGoogle Scholar
  20. Barnett, R. J.: The fine structural localization of acetylcholinesterase at the myoneural junction. J. Cell Biol. 12, 247–262 (1962).Google Scholar
  21. Barstad, J.A.B.: Presynaptic effect of the neuromuscular transmitter. Experientia (Basel) 18, 579–582 (1962).Google Scholar
  22. Barstad, J.A.B., Lilleheil, G.: Transversally cut diaphragm preparation from rat. Arch. int. Pharmacodyn. 175, 373–390 (1968).PubMedGoogle Scholar
  23. Beani, L., Bianchi, C., Ledda, F.: The effect of tubocurarine on acetylcholine release from motor nerve terminals. J. Physiol. (Lond.) 174, 172–183 (1964).Google Scholar
  24. Bergman, R. A., Johns, R. J., Afifi, A. K.: Ultrastructural alterations in muscle from patients with myasthenia gravis and Eaton-Lambert syndrome. Ann. N.Y. Acad. Sci. 183, 88–122 (1971).PubMedGoogle Scholar
  25. Bergner, A.D., Wagley, P.F.: An effect of pyridine-2-aldoxime methiodide (2-PAM) on cholinesterase at motor end-plates. Proc. Soc. exp. Biol. (N.Y.) 97, 90–92 (1958).Google Scholar
  26. Berry, W. K.: The turnover number of cholinesterase. Biochem. J. 49, 615–620 (1951).PubMedGoogle Scholar
  27. Berry, W.K., Lovatt Evans, C.: Cholinesterase and neuromuscular block. J. Physiol. (Lond.) 115, 46P–47P (1951).Google Scholar
  28. Berry, W.K., Rutland, J.P.: Choline ester hydrolases in diaphragm muscle. Biochem. Pharmacol. 20, 669–682 (1971).PubMedGoogle Scholar
  29. Blaber, L. C.: The antagonism of muscle relaxants by ambenonium and methoxyambenonium in the cat. Brit. J. Pharmacol. 15, 476–484 (1960).PubMedGoogle Scholar
  30. Blaber, L.C.: Facilitation of neuromuscular transmission by anticholinesterase drugs. Brit. J. Pharmacol. 20, 63–73 (1963).PubMedGoogle Scholar
  31. Blaber, L.C.: The effect of facilitatory concentrations of decamethonium on the storage and release of transmitter at the neuromuscular junction of the cat. J. Pharmacol. exp. Ther. 175, 664–672 (1970).Google Scholar
  32. Blaber, L.C.: The mechanism of the facilitatory action of edrophonium in cat skeletal muscle. Brit. J. Pharmacol. 46, 498–507 (1972).Google Scholar
  33. Blaber, L.C.: The prejunctional actions of some non-depolarising blocking drugs. Brit. J. Pharmacol. 47, 109–116 (1973).Google Scholar
  34. Blaber, L. C., Bowman, W. C.: The interaction between benzoquinonium and anticholinesterases in skeletal muscle. Arch. int. Pharmacodyn. 138, 90–104 (1962).PubMedGoogle Scholar
  35. Blaber, L. C., Bowman, W. C.: The effects of some drugs on the repetitive discharges produced in nerve and muscle by anticholinesterases. Int. J. Neuropharmacol. 2, 1–16 (1963 a).Google Scholar
  36. Blaber, L.C., Bowman, W.C.: Studies on the repetitive discharges evoked in motor nerve and skeletal muscle after injection of anticholinesterase drugs. Brit. J. Pharmacol. 20, 326–344 (1963 b).PubMedGoogle Scholar
  37. Blaber, L.C., Christ, D.D.: The action of facilitatory drugs on the isolated tenuissimus muscle of the cat. Int. J. Neuropharmacol. 6, 473–484 (1967).PubMedGoogle Scholar
  38. Blaber, L. G., Creasey, N. H.: The mode of recovery of cholinesterase activity in vivo after organophosphorus poisoning. I. Erythrocyte cholinesterase. Biochem. J., 77, 591–596 (1960).PubMedGoogle Scholar
  39. Blaber, L.C., Goode, J.W.: A comparison of the action of facilitatory and depolarizing drugs at the mammalian motor nerve terminal. Int. J. Neuropharmacol. 7, 429–440 (1968).PubMedGoogle Scholar
  40. Blaber, L.C., Karczmar, A.G.: Multiple cholinoceptive and related sites at the neuromuscular junction. Ann. N.Y. Acad. Sci. 144, 571–583 (1967).Google Scholar
  41. Blaschko, H., Bülbring, E., Chou, T.C.: Tubocurarine antagonism and inhibition of cholinesterase. Brit. J. Pharmacol. 4, 29–32 (1949).PubMedGoogle Scholar
  42. Bombinski, T. J., Dubois, K. P.: Toxicity and mechanism of action of “disyston”. Arch. Ind. Hlth. 17, 192–197 (1958).Google Scholar
  43. Bowman, W.C.: The neuromuscular blocking action of benzoquinonium chloride in the cat and in the hen. Brit. J. Pharmacol. 13, 521–530 (1958).PubMedGoogle Scholar
  44. Bowman, W.C., Webb, S.N.: Acetylcholine and anticholinesterase drugs. International Encyclopaedia of Pharmacology and Therapeutics. Section 14, Volume 2, J. Cheymol, Ed., pp.427–502. Oxford: Pergamon Press 1972.Google Scholar
  45. Boyd, I.A., Martin, A. R.: Spontaneous subthreshold activity at mammalian neuromuscular junctions. J. Physiol. (Lond.) 132, 61–73 (1956a).Google Scholar
  46. Boyd, I.A., Martin, A. R.: The endplate potential in mammalian muscle. J. Physiol. (Lond.) 132, 74–91 (1956 b).Google Scholar
  47. Briscoe, G.: Changes in muscle contraction curves produced by drugs of the eserine and curarine groups. J. Physiol. (Lond.) 93, 194–205 (1938).Google Scholar
  48. Brodeur, J., Dubois, K. P.: Studies on the mechanism of acquired tolerance by rats to 0,0-diethyl S-2-(ethylthio)ethyl phosphorodithioate (Di-Syston). Arch. int. Pharmacodyn. 149, 560–570 (1964).PubMedGoogle Scholar
  49. Brown, G.L.: Action potentials of normal mammalian muscle. Effects of acetylcholine and eserine. J. Physiol. (Lond.) 89, 220–237 (1937a).Google Scholar
  50. Brown, G.L.: The actions of acetylcholine on denervated mammalian and frog’s muscle. J. Physiol. (Lond.) 89, 438–461 (1937b).Google Scholar
  51. Brown, G.L., Dale, H.H., Feldberg, W.: Reactions of the normal mammalian muscle to acetylcholine and to eserine. J. Physiol. (Lond.) 87, 394–424 (1936).Google Scholar
  52. Brown, M.C., Matthews, P. B. C.: The effect on a muscle twitch of the back response of its motor nerve. J. Physiol. (Lond.) 150, 332–346 (1960).Google Scholar
  53. Brücke, F.: Dicholinesters of α-w-dicarboxylic acids and related substances. Pharmacol. Rev. 8, 265–335 (1956).PubMedGoogle Scholar
  54. Buckley, G.A., Heading, C.E.: Tolerance to neostigmine. Brit. J. Pharmacol. 40, 590P–591P (1970).Google Scholar
  55. Buckley, G. A., Heading, C.E.: The effects of prolonged neostigmine treatment. J. Physiol. (Lond.) 219, 6P–7P (1971).Google Scholar
  56. Buckley, G.A., Nowell, P.T.: Micro-colorimetric determination of cholinesterase activity of motor endplates in the rat diaphragm. J. Pharm. Pharmacol. 18, 146 S–150 S (1966).Google Scholar
  57. Bülbring, E., Chou, T.: The relative activity of prostigmine homologues and other substances as antagonists to tubocurarine. Brit. J. Pharmacol. 2, 8–22 (1947).Google Scholar
  58. Burgen, A. S.V., Chipman, L. M.: Location of cholinesterase in central nervous system. Quart. J. Exper. Physiol. 37, 61–74 (1952).Google Scholar
  59. Burgen, A. S.V., Hobbiger, F.: Inhibition of cholinesterase by alkyl phosphates and alkylphenolphosphates. Brit. J. Pharmacol. 6, 593–605 (1951).PubMedGoogle Scholar
  60. Burgen, A.S.V., Keele, C.A., Slome, D.: Pharmacological actions of tetraethylpyrophosphate and hexaethyltetraphosphate. J. Pharmacol. exp. Ther. 96, 396–409 (1949).PubMedGoogle Scholar
  61. Burns, B.D., Paton, W.D.M.: Depolarisation of the motor end-plate by decamethonium and acetylcholine. J. Physiol. (Lond.) 115, 41–73 (1951).Google Scholar
  62. Candole, C.A. De., Douglas, W.W., Lovatt Evans, C., Holmes, R., Spencer, K.E.V., Torrance, R.W., Wilson, K.M.: The failure of respiration in death by anticholinesterase poisoning. Brit. J. Pharmacol. 8, 466–475 (1953).Google Scholar
  63. Casida, J.E., Allen, T.G., Stahmann, M.A.: Mammalian conversion of octamethyl-pyrophosphoramide to a toxic phosphoramide-N-oxide. J. biol. Chem. 210, 607–616 (1954).PubMedGoogle Scholar
  64. Castillo, J. Del., Katz, B.: A comparison of acetylcholine and stable depolarizing agents. Proc. roy. Soc. B 146, 362–368 (1957).Google Scholar
  65. Chang, C.C., Chen, T.F., Chuang, S.-T.: Influence of chronic neostigmine treatment on the number of acetylcholine receptors and the release of acetylcholine from the rat diaphragm. J. Physiol. (Lond.) 230, 613–618 (1973).Google Scholar
  66. Chang, C. C., Cheng, H. C., Chen, T. F.: Does d-tubocurarine inhibit the release of acetylcholine from motor nerve endings? Jap. J. Physiol. 17, 505–515 (1967).Google Scholar
  67. Chang, H.C., Gaddum, J.H.: Choline esters in tissue extracts. J. Physiol. (Lond.) 79, 255–285 (1933).Google Scholar
  68. Chennels, M., Floyd, W.F., Wright, S.: Action of condensed alkyl phosphates on the nervemuscle preparation and the central nervous system of the cat. J. Physiol. (Lond.) 108, 375–397 (1949).Google Scholar
  69. Cheymol, J., Bourillet, F., Ogura, Y.: Action de quelques paralysants neuromusculaires sur la libération de l’acétylcholine au niveau des terminaisons nerveuses motrices. Arch. int. Pharmacodyn. 139, 187–197 (1962).PubMedGoogle Scholar
  70. Chokroverty, S., Parameswar, K. S., Co, C: Nonspecific esterases in the myoneural junction of human striated muscle. J. Histochem. Cytochem. 19, 798–800 (1971).PubMedGoogle Scholar
  71. Christ, D.D., Blaber, L.C.: The actions of benzoquinonium in the isolated cat tenuissimus muscle. J. Pharmacol. exp. Ther. 160, 159–165 (1968).PubMedGoogle Scholar
  72. Christoff, N., Anderson, P. J., Slotwiner, P., Song, S.K.: Electrophoretic and histochemical evaluation of anticholinesterase drugs. Ann. N.Y. Acad. Sci. 135, 150–162 (1966).PubMedGoogle Scholar
  73. Citrin, G.: Actions of KC1 on the neuromuscular junction. Fed. Proc. 26, 512 (1967).Google Scholar
  74. Citrin, G.: Interaction of anticholinesterases and acetylcholine (ACh) on mammalian motor nerve terminals (M.N.T.). Fed. Proc. 27, 407 (1968).Google Scholar
  75. Cohen, J. A., Oosterbaan, R. A.: The active site of acetylcholinesterase and related esterases and its reactivity towards substrates and inhibitors. In: Koelle, G.B. (Ed.): Handbuch der experimentellen Pharmakologie, Ergänzungswerk XV. Cholinesterases and Anticholinesterase Agents, pp. 299–373. Berlin-Göttingen-Heidelberg: Springer 1963.Google Scholar
  76. Cohen, J.A., Oosterbaan, R. A., Warringa, M.G.P.J.: The turnover number of aliesterase, pseudo-and true-cholinesterase and the combination of these enzymes with diisopropylfluorophosphate. Biochim. biophys. Acta (Amst.) 18, 228–235 (1955).Google Scholar
  77. Cohen, J. A., Posthumus, C. H.: The mechanism of action of anti-cholinesterases. Acta physiol. pharmacol. neerl. 4, 17–36 (1955).PubMedGoogle Scholar
  78. Cooper, F.A.: Delnav 2:3-p dioxane S-bis-(0,0-diethyl dithiophosphate) as an ixocide. Vet. Rec. 74, 103–112 (1962).Google Scholar
  79. Couteaux, R.: Morphological and cytochemical observations on the post-synaptic membrane at motor end-plates and ganglionic synapses. Exp. Cell. Res., Suppl. 5, 294–322 (1958).Google Scholar
  80. Couteaux, R., Taxi, J.: Recherches histochimiques sue la distribution des activités cholinestérasiques au niveau de la synapse myoneurale. Arch. Anat micro. Morph. exp. 41, 352–392 (1952).Google Scholar
  81. Cowan, S. L.: The action of eserine-like and curare-like substances on the responses of frog’s nerve-muscle preparations to repetitive stimulation. J. Physiol. (Lond.) 93, 215–262 (1938).Google Scholar
  82. Cowan, S. L.: The actions of eserine-like compounds upon frog’s nerve-muscle preparations, and conditions in which a single shock can evoke an augmented muscular response. Proc. roy. Soc. B 129, 356–391 (1940).Google Scholar
  83. Csillik, B.: Functional structure of the post-synaptic membrane in the myoneural junction. Budapest: Akademiai Kiado 1965.Google Scholar
  84. Csillik, B., Knyihar, E.: On the effect of motor nerve degeneration on the fine-structural localization of esterases in the mammalian motor end-plate. J. Cell Sci. 3, 529–538 (1968).PubMedGoogle Scholar
  85. Dahlbäck, O., Elmqvist, D., Johns, T.R., Radner, S., Thesleff, S.: An electrophysiologic study of the neuromuscular junction in myasthenia gravis. J. Physiol. (Lond.) 156, 336–343 (1961).Google Scholar
  86. Dale, H.H., Feldberg, W., Vogt, M.: Release of acetylcholine at voluntary motor nerve-endings. J. Physiol. (Lond.) 86, 353–380 (1936).Google Scholar
  87. Davies, D.R., Green, A.L.: The kinetics of reactivation, by oximes, of cholinesterase inhibited by organophosphorus compounds. Biochem. J. 63, 529–535 (1956).PubMedGoogle Scholar
  88. Davies, D.R., Green, A.L.: The mechanism of hydrolysis by cholinesterase and related enzymes. In: Nord, F.F. (Ed.): Advanc. Enzymol., Vol.20, pp.283–318. New York: Interscience Publishers Inc. 1958.Google Scholar
  89. Davies, J.E., Davis, J.H., Frazier, D.E., Mann, J.B., Reich, G.A., Tocci, P.M.: Disturbances of metabolism in organophosphate poisoning. Industr. Med. Surg. 36, 58–62 (1967).Google Scholar
  90. Davis, D. A., Wasserkrug, H.L., Heyman, I.A., Padmanabhan, K. C., Seligman, G.A., Plapinger, R.E., Seligman, A.M.: Comparison of ultrastructural cholinesterase demonstration in the motor end-plate with α-acetylthiol-m-toluenediazonium ion and 3-acetoxy-5-indolediazonium ion. J. Histochem. Cytochem. 20, 161–172 (1972).PubMedGoogle Scholar
  91. Denz, F.A.: On the histochemistry of the myoneural junction. Brit. J. exp. Path. 34, 329–339 (1953).PubMedGoogle Scholar
  92. Douglas, W.W., Paton, W.D.M: The mechanism of motor end-plate depolarization due to a cholinesterase-inhibiting drug. J. Physiol. (Lond.) 124, 325–344 (1954).Google Scholar
  93. Dubois, K.P.: Toxicological evaluation of the anticholinesterase agents. In: Koelle, G.B. (Ed.): Handbuch der experimentellen Pharmakologie, Ergänzungswerk XV. Cholinesterases and Anticholinesterase Agents, pp.833–859. Berlin: Springer-Verlag 1963.Google Scholar
  94. Dun, F.T., Feng, T.P.: Studies on the neuromuscular junction. XX. The site of origin of the junctional after discharge in muscles treated with guanidine, barium or eserine. Chin. J. Physiol. 15, 433–444 (1940).Google Scholar
  95. Eccles, J.C., Jaeger, J. C.: The relationship between the mode of operation and the dimensions of the junctional region at synapses and motor endorgans. Proc. roy. Soc. B 148, 38–56 (1958).Google Scholar
  96. Eccles, J.C., Katz, B., Kuffler, S.W.: Electric potential changes accompanying neuromuscular transmission. Biol. Symp. 3, 349–370 (1941).Google Scholar
  97. Eccles, J.C., Katz, B., Kuffler, S. W.: Effect of eserine on neuromuscular transmission. J. Neurophysiol. 5, 211–230 (1942).Google Scholar
  98. Eccles, J.C., Macfarlane, W. V.: Actions of anti,-cholinesterases of endplate potential of frog muscle. J. Neurophysiol. 12, 59–80 (1949).PubMedGoogle Scholar
  99. Ellin, R.I., Wills, J.H.: Oximes antagonistic to inhibitors of cholinesterase. J. pharm. Sci. 53, 995–1007 (Part 1) and 1143-1150 (Part 2) (1964).PubMedGoogle Scholar
  100. Ellman, G.L., Courtney, K. D., Andres, V., Featherstone, R.M.: A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88–95 (1961).PubMedGoogle Scholar
  101. Elmqvist, D., Hofmann, W., Kugelberg, J., Quastel, D.M.J.: An electrophysiological investigation of neuromuscular transmission in myasthenia gravis. J. Physiol. (Lond.) 174, 417–434 (1964).Google Scholar
  102. Elmqvist, D., Quastel, D.M.J.: A quantitative study of end-plate potentials in isolated human muscle. J. Physiol. (Lond.) 178, 505–529 (1965).Google Scholar
  103. Enander, J.: Experiments with methyl-fluorophosphorylcholine-inhibited cholinesterase. Acta chem. scand. 12, 780–781 (1958).Google Scholar
  104. Engel, A.G., Santa, T.: Histometric analysis of the ultrastructure of the neuromuscular junction in myasthenia gravis and in the myasthenic syndrome. Ann. N.Y. Acad. Sci. 183, 46–63 (1971).PubMedGoogle Scholar
  105. Erankö, O., Teräväinen, H.: Distribution of esterases in the myoneural junction of the striated muscle of the rat. J. Histochem. Cytochem. 15, 399–403 (1967).PubMedGoogle Scholar
  106. Erdmann, W.D., Lendle, L.: Vergiftungen mit esteraseblockierenden Insecticiden aus der Gruppe der organischen Phosphorsäureester (E605 und Verwandte). In: Heilmeyer, L., Schoen, R., Glanzmann, E., De Rudder, B. (Eds.): Ergeb. inn. Med. Kinderheilk., Bd. 10, pp. 103–184. Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  107. Fambrough, D.M., Hartzell, H.C.: Acetylcholine receptors: Number and distribution at neuromuscular junctions in rat diaphragm. Science 176, 189–191 (1972).PubMedGoogle Scholar
  108. Fatt, P., Katz, B.: An analysis of the endplate potential recorded with an intracellular electrode. J. Physiol. (Lond.) 115, 320–370 (1951).Google Scholar
  109. Fatt, P., Katz, B.: Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).Google Scholar
  110. Feng, T.P.: Studies on the neuromuscular junction. VI. Potentiation by eserine of response to single indirect stimulus in amphibian nerve-muscle preparations. Chin. J. Physiol. 12, 51–58 (1937).Google Scholar
  111. Feng, T.P.: Studies on the neuromuscular junction. XVIII. The local potentials around N-M junctions induced by single and multiple volleys. Chin. J. Physiol. 15, 367–404 (1940).Google Scholar
  112. Feng, T.P.: The local activity around the skeletal N-M junctions produced by nerve impulses. Biol. Symp. 3, 121–152 (1941).Google Scholar
  113. Feng, T. P., Li, T.H.: Studies on the neuromuscular junction. XXIII. A new aspect of the phenomena of eserine potentiation and post-tetanic facilitation in mammalian muscle. Chin. J. Physiol. 16, 37–56 (1941).Google Scholar
  114. Fischer, G.: Inhibierung und Restitution der Azetylcholinesterase an der motorischen Endplatte im Zwerchfell der Ratte nach Intoxikation mit Soman. Histochemie 16, 144–149 (1968).PubMedGoogle Scholar
  115. Fischer, G.: Die Acetylcholinesterase an der motorischen Endplatte des Rattenzwerchfells nach Intoxikation mit Paraoxon und Soman bei Applikation von Oximen. Experientia (Basel) 26, 402–403 (1970).Google Scholar
  116. Fleisher, J.H., Corrigan, J.P., Howard, J.W.: Potentiation of the response of frog rectus muscle to acetylcholine by isopropyl methyl phosphonofluoridate and its modification by pyridine-2-aldoxime methiodide. Brit. J. Pharmacol. 13, 291–295 (1958).PubMedGoogle Scholar
  117. Fleisher, J.H., Hansa, J., Killos, P.J., Harrison, C.S.: Effects of 1,1’-trimethylene bis(4-formyl-pyridinium bromide dioxime (TMB-4) on cholinesterase activity and neuromuscular block following poisoning with sarin and DFP. J. Pharmacol. exp. Ther. 130, 461–468 (1960).PubMedGoogle Scholar
  118. Fleisher, J.H., Moen, T.H., Ellington, N.R.: Effects of 2-PAM and TMB-4 on neuromuscular transmission. J. Pharmacol. exp. Ther. 149, 311–319 (1965).PubMedGoogle Scholar
  119. Foldes, F. T., Glaser, G. H.: Diagnostic tests in myasthenia gravis: an overview. Ann. N.Y. Acad. Sci. 183, 275–286 (1971).PubMedGoogle Scholar
  120. Fredriksson, T., Tibbling, G.: Reversal of effects on the rat nerve-diaphragm preparation produced by methylfluorophosphorylcholines. Biochem. Pharmacol. 2, 63–67 (1959).Google Scholar
  121. Funke, A., Bagot, J., Depierre, F.: Anticholinestérasiques. I. Synthèse de diphénoxyalcanes porteurs d’une ou deux fonctions phenoliques libres. C.R. Acad. Sci. (Paris) 239, 329–331 (1954).Google Scholar
  122. Gage, J.C.: A cholinesterase inhibitor derived from 0,0-diethyl 0-p-nitrophenyl thiophosphate in vivo. Biochem. J. 54, 426–430 (1953).PubMedGoogle Scholar
  123. Galindo, A.: Prejunctional effect of curare; its relative importance. J. Neurophysiol. 34, 289–301 (1971).PubMedGoogle Scholar
  124. Glaser, G.H.: Crisis, precrisis and drug resistance in myasthenia gravis. Ann. N.Y. Acad. Sci. 135, 335–345(1966).PubMedGoogle Scholar
  125. Goyer, R.G.: The effects of P-2-AM on the release of acetylcholine from the isolated diaphragm of the rat. J. Pharm. Pharmacol. 22, 42–45 (1970).PubMedGoogle Scholar
  126. Grob, D.: Therapy of myasthenia gravis. In: Koelle, G. B. (Ed.): Handbuch der experimentellen Pharmakologie, Ergänzungswerk XV. Cholinesterases and Anticholinesterase Agents, pp.989–1027. Berlin-Göttingen-Heidelberg: Springer 1963.Google Scholar
  127. Grob, D.: Spontaneous end-plate activity in normal subjects and in patients with myasthenia gravis. Ann. N.Y. Acad. Sci. 183, 248–269 (1971).PubMedGoogle Scholar
  128. Grob, D., Johns, R.J.: Use of oximes in the treatment of intoxication by anticholinesterase compounds in patients with myasthenia gravis. Amer. J. Med. 24, 512–518 (1958a).PubMedGoogle Scholar
  129. Grob, D., Johns, R. J.: Treatment of anticholinesterase intoxication in normal subjects and myasthenia patients with oximes. J. Amer. med. Ass. 166, 1855–1858 (1958b).Google Scholar
  130. Grob, D., Johns, R.J., Harvey, McG.: Studies in neuromuscular function. Johns Hopk. Hosp. Bull. 99, 115–238 (1956).Google Scholar
  131. Groblewski, G.E., McNamara, B.P., Wills, J.H.: Stimulation of denervated muscle by DFP and related compounds. J. Pharmacol. exp. Ther. 118, 116–122 (1956).PubMedGoogle Scholar
  132. Häggqvist, G.: Cholinesterases and innervation of skeletal muscle. Acta physiol. scand. 48, 63–70 (1960).PubMedGoogle Scholar
  133. Hall, Z.W., Kelly, R.B.: Enzymatic detachment of endplate acetylcholinesterase from muscle. Nature (Lond.) New Biol. 232, 62–63 (1971).Google Scholar
  134. Hawkins, R.D., Gunter, J.M.: Studies on cholinesterase. 5. The selective inhibition of pseudocholinesterase in vivo. Biochem. J. 40, 192–197 (1946).Google Scholar
  135. Hayes, W.J., Jr.: Toxicity of pesticides to man, risks from present levels. Proc. roy. Soc. B 167, 101–127 (1967).Google Scholar
  136. Heath, D.F.: Organophosphorus poisons. Oxford: Pergamon Press 1961.Google Scholar
  137. Heffron, P. F.: Actions of the selective inhibitor of cholinesterase tetramonoisopropyl pyrophosphortetramide on the rat phrenic nerve-diaphragm preparation. Brit. J. Pharmacol. 46, 714–724 (1972).Google Scholar
  138. Heilbronn, E.: In vitro reactivation and “ageing” of tabun-inhibited blood cholinesterases. Studies with N-methylpyridinium-2-aldoxime methane sulphonate and N,N’-trimethylene bis(-pyridinium-4-aldoxime) dibromide. Biochem. Pharmacol. 12, 25–36 (1963).PubMedGoogle Scholar
  139. Heilbronn, E.: Structure and reactions of DFP sensitive enzymes. E. Heilbronn (Ed.): Stockholm: Research Institute of National Defence 1967.Google Scholar
  140. Hobbiger, F.: The action of carbamic esters and tetraethylpyrophosphate on normal and curarized frog rectus muscle. Brit. J. Pharmacol. 5, 37–48 (1950).PubMedGoogle Scholar
  141. Hobbiger, F.: Inhibition of cholinesterase by irreversible inhibitors in vitro and in vivo. Brit. J. Pharmacol. 6, 21–30 (1951).PubMedGoogle Scholar
  142. Hobbiger, F.: The mechanisms of anticurare action of certain neostigmine analogues. Brit. J. Pharmacol. 7, 223–236 (1952).PubMedGoogle Scholar
  143. Hobbiger, F.: Chemical reactivation of phosphorylated human and bovine true cholinesterases. Brit. J. Pharmacol. 11, 295–303 (1956).PubMedGoogle Scholar
  144. Hobbiger, F.: Protection against the lethal effects of organophosphates by pyridine-2-aldoxime methiodide. Brit. J. Pharmacol. 12, 438–446 (1957).PubMedGoogle Scholar
  145. Hobbiger, F.: Reactivation of phosphorylated acetylcholinesterase. In: Koelle, G.B. (Ed.): Handbuch der experimentellen Pharmakologie, Ergänzungswerk XV. Cholinesterases and Anticholinesterase Agents, pp.921–988. Berlin-Göttingen-Heidelberg: Springer 1968.Google Scholar
  146. Hobbiger, F.: Anticholinesterases. In: Laurence, D.R., Bacharach, A.L. (Eds.): Evaluation of Drug Activities Pharmacometrics, Part 2, pp.459–489. London: Academic Press 1964.Google Scholar
  147. Hobbiger, F.: Anticholinesterases. In: Robson, T.M, Stacey, R.S. (Eds.): Recent Advances in Pharmacology, 4th Ed., pp.291–310. London: J. & A. Churchill 1968.Google Scholar
  148. Hobbiger, F.: Chemotherapy in pesticide poisoning. In: Kahn, M. A., Haufe, W.O. (Eds.): Toxicology, Biodegradation and Efficacy of Livestock Pesticides, pp.252–281. Amsterdam: Swets & Zeitlinger 1972.Google Scholar
  149. Hobbiger, F., Peck, A.W.: Hydrolysis of suxamethonium by different types of plasma. Brit. J. Pharmacol. 37, 258–271 (1969).Google Scholar
  150. Hobbiger, F., Peck, A.W.: The relationship between the level of cholinesterase in plasma and the action of suxamethonium in animals. Brit. J. Pharmacol. 40, 775–789 (1970).Google Scholar
  151. Hobbiger, F., Pitman, M., Sadler, P. W.: Reactivation of phosphorylated acetocholinesterases by pyridinium aldoximes and related compounds. Biochem. J. 75, 363–372 (1960).PubMedGoogle Scholar
  152. Hobbiger, F., Sadler, P.W.: Protection against lethal organophosphate poisoning by quaternary pyridine aldoximes. Brit. J. Pharmacol. 14, 192–201 (1959).PubMedGoogle Scholar
  153. Hobbiger, F., Vojvodić, V.: The reactivating and antidotal actions of N, N’-trimethylene-bis(pyridinium-4-aldoxime) (TMB-4) and N, N’-oxydimethylenebis(pyridinium-4-aldoxime) (Toxogonin), with particular reference to their effect on phosphorylated acetylcholinesterase in the brain. Biochem. Pharmacol. 15, 1677–1690 (1966).Google Scholar
  154. Hodge, H.C., Maynard, E.A., Hurwitz, L., Distefano, V., Downs, W.L., Jones, C.K., Blanchet, H. J., Jr.: Studies of the toxicity and enzyme kinetics of ethyl-p-nitrophenyl thionobenzene phosphonate (EPN). J. Pharmacol. exp. Ther. 122, 29–39 (1954).Google Scholar
  155. Holmes, R., Robins, E.L.: The reversal by oximes of neuromuscular block produced by anticholinesterases. Brit. J. Pharmacol. 10, 490–495 (1955).PubMedGoogle Scholar
  156. Holmstedt, B.: Synthesis and pharmacology of dimethylamidoethoxy-phosphoryl cyanide (Tabun) together with a description of some allied anticholinesterase compounds containing the N-P bond. Acta. physiol. scand. 25, Suppl. 90, 1–120 (1951).Google Scholar
  157. Holmstedt, B.: A modification of the thiocholine method for the determination of cholinesterase. I. Biochemical evaluation of selective inhibitors. Acta physiol. scand. 40, 322–330. II. Histochemical application. Acta physiol. scand. 40, 331-337 (1957).PubMedGoogle Scholar
  158. Holmstedt, B.: Pharmacology of organophosphorus cholinesterase inhibitors. Pharmacol. Rev. 11, 567–688 (1959).PubMedGoogle Scholar
  159. Holmstedt, B.: Structure-activity relationships of the organophosphorus anticholinesterase agents. In: Koelle, G.B. (Ed.): Handbuch der experimentellen Pharmakologie, Ergänzungswerk XV, pp.428–485. Berlin-Göttingen-Heidelberg: Springer 1963.Google Scholar
  160. Holmstedt, B.: The ordeal bean of old calabar: the pageant of physostigma venenosum in medicine. In: Swain, T. (Ed.): Plants in the development of modern medicine, pp.303–360. Cambridge: Harvard University Press 1972.Google Scholar
  161. Hoppe, J.O., Funnell, J.E., Lape, H.: The effects of structural variation in the quaternary nitrogen centers of benzoquinonium chloride upon neuromuscular blocking activity. J. Pharmacol. exp. Ther. 115, 106–119 (1955).PubMedGoogle Scholar
  162. Hubbard, J.I.: The effect of calcium and magnesium on the spontaneous release of transmitters from mammalian nerve endings. J. Physiol. (Lond.) 159, 507–517 (1961).Google Scholar
  163. Hubbard, J.I.: Mechanism of transmitter release. In: Butler, J.A.V., Noble, D. (Eds.): Progress in Biophysics and Molecular Biology. Oxford: Pergamon Press 1970.Google Scholar
  164. Hubbard, J.I., Llinás, R., Quastel, D.M.: In: Davson, H., Greenfield, A.D.M., Whittam, R., Brindley, G. S. (Eds.): Monographs of the Physiological Society. Number 19. Electrophysiological analysis of synaptic transmission. London: Edward Arnold Ltd. 1969a.Google Scholar
  165. Hubbard, J.I., Schmidt, R.F.: Stimulation of motor nerve terminals. Nature (Lond.) 191, 1103–1104 (1961).Google Scholar
  166. Hubbard, J.I., Schmidt, R.F., Yokota, T.: The effect of acetylcholine upon mammalian motor nerve terminals. J. Physiol. (Lond.) 181, 810–829 (1965).Google Scholar
  167. Hubbard, J.I., Willis, W.D.: The effects of depolarisation of motor nerve terminals upon the release of transmitter by nerve impulses. J. Physiol. (Lond.) 194, 381–405 (1968).Google Scholar
  168. Hubbard, J.I., Wilson, D.F.: Neuromuscular transmission in a mammalian preparation in the absence of blocking drugs and the effect of D-tubocurarine. J. Physiol. (Lond.) 228, 307–325 (1973).Google Scholar
  169. Hubbard, J.I., Wilson, D.F., Miyamoto, M.: Reduction of transmitter release by D-tubocurarine. Nature (Lond.) 223, 531–533 (1969b).Google Scholar
  170. Hunt, C. C.: The effect of di-isopropyl fluorophosphate on neuromuscular transmission. J. Pharmacol. exp. Ther. 91, 77–83 (1947).PubMedGoogle Scholar
  171. Hunt, C.C., Riker, W.F., Jr.: The effect of chronic poisoning with di-isopropyl fluorophosphate on neuromuscular function in the cat. J. Pharmacol. exp. Ther. 91, 298–305 (1947).PubMedGoogle Scholar
  172. Hutter, O.F.: Post-tetanic restoration of neuromuscular transmission blocked by D-tubocurarine. J. Physiol. (Lond.) 118, 216–227 (1952).Google Scholar
  173. Jacob, J., Pecot-Dechavassine, M.: Hydrolyse enzymatique de la propionylcholine, de l’acétylthiocholine et de la butyrylthiocholine par le rectus de grenouille. Experientia (Basel) 14, 330(1958).Google Scholar
  174. Johns, R.J., McQuillen, M.P.: Syndroms simulating myasthenia gravis: asthenia with anticholinesterase tolerance. Ann. N.Y. Acad. Sci. 135, 385–397 (1966).PubMedGoogle Scholar
  175. Kalow, W., Genest, K.: A method for the detection of atypical forms of human serum cholinesterase. Determination of dibucaine numbers. Canad. J. Biochem. 35, 339–346 (1957).PubMedGoogle Scholar
  176. Kalow, W., Gunn, D.R.: The relations between dose of succinylcholine and duration of apnea in man. J. Pharmacol. exp. Ther. 120, 203–214 (1957).PubMedGoogle Scholar
  177. Kalow, W., Staron, N.: On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers. Canad. J. Biochem. 35, 1305–1320 (1957).PubMedGoogle Scholar
  178. Karczmar, A.G.: Antagonism between a bis-quaternary oxamide, WIN 8078, and depolarizing and competitive blocking drugs. J. Pharmacol. exp. Ther. 119, 39–47 (1957).PubMedGoogle Scholar
  179. Karczmar, A.G.: Neuromuscular pharmacology. Ann. Rev. Pharmacol. 7, 241–276 (1967).PubMedGoogle Scholar
  180. Katz, B.: Nerve, muscle and synapse. New York: McGraw-Hill Inc. 1966.Google Scholar
  181. Katz, B.: The release of neural transmitter substances. Springfield/Ill.: Charles C. Thomas 1969.Google Scholar
  182. Katz, B., Thesleff, S.: The interaction between edrophonium (Tensilon) and acetylcholine at the motor end-plate. Brit. J. Pharmacol. 12, 260–264 (1957).PubMedGoogle Scholar
  183. Kelemen, M. H., Volle, R.L.: Plasma cholinesterase activity and neuromuscular paralysis by succinylcholine. Arch. int. Pharmacodyn. 159, 477–483 (1966).PubMedGoogle Scholar
  184. Kewitz, H.: A specific antidote against lethal alkyl phosphate intoxication. III. Repair of chemical lesion. Arch. Biochem. 66, 263–270 (1957).PubMedGoogle Scholar
  185. Kewitz, H., Wilson, I.B., Nachmansohn, D.: A specific antidote against lethal alkyl phosphate intoxication. II. Antidotal properties. Arch. Biochem. 64, 456–465 (1956).PubMedGoogle Scholar
  186. Koelle, G.B.: Histochemical demonstration of reversible anticholinesterase action at selective cellular sites in vivo. J. Pharmacol. exp. Ther. 120, 488–503 (1957).PubMedGoogle Scholar
  187. Koelle, G.B.: Handbuch der experimentellen Pharmakologie, Ergänzungswerk, XV. In: Koelle, G.B. (Ed.): Cholinesterases and anticholinesterase agents. Berlin-Göttingen-Heidelberg: Springer 1963a.Google Scholar
  188. Koelle, G.B.: Cytological distributions and physiological functions of cholinesterase. In: Koelle, G.B. (Ed.): Handbuch der experimentellen Pharmakologie, Ergänzungswerk, XV, pp. 187–298, Cholinesterases and Anticholinesterase Agents. Berlin-Göttingen-Heidelberg: Springer 1963 b.Google Scholar
  189. Koelle, G.B.: Current concepts of synaptic structure and function. Ann. N.Y. Acad. Sci. 183, 5–25 (1971).PubMedGoogle Scholar
  190. Koelle, G.B., Davis, R., Devlin, M.: Acetyl disulfide, (CH3COS)2, and bis-(thioacetoxy) aurate (I) complex, Au(CH3COS)2, histochemical substrates of unusual properties with acetylcholinesterase. J. Histochem. Cytochem. 16, 754–764 (1968).PubMedGoogle Scholar
  191. Koelle, G.B., Davis, R., Gromadzki, C. G.: Electron microscopic localisation of cholinesterases by means of gold salts. Ann. N.Y. Acad. Sci. 144, 613–625 (1967).Google Scholar
  192. Koelle, G.B., Friedenwald, J. S.: A histochemical method for localizing cholinesterase activity. Proc. Soc. exp. Biol. (N.Y.) 70, 617–622 (1949).Google Scholar
  193. Koelle, G.B., Gilman, A.: Anticholinesterase drugs. Pharmacol. Rev. 1, 166–216 (1949).Google Scholar
  194. Koelle, G.B., Steiner, E. C.: The cerebral distributions of a tertiary and a quaternary anticholinesterase agent following intravenous and intraventricular injection. J. Pharmacol. exp. Ther. 118, 420–434 (1956).PubMedGoogle Scholar
  195. Kordas, M.: A study of the end-plate potential in sodium deficient solution. J. Physiol. (Lond.) 198, 81–90 (1968).Google Scholar
  196. Koster, R.: Synergisms and antagonisms between physostigmine and di-isopropyl fluorophosphate in cats. J. Pharmacol. exp. Ther. 88, 39–46 (1946).PubMedGoogle Scholar
  197. Kraupp, O., Stumpf., Ch.., Herzfeld, E., Pillat, B.: Pharmakologische Eigenschaften einiger langwirksamer Cholinesterase-Hemmkörper aus der Reihe der Polymethylen-Bis-Carbaminoyl-m-Trimethylammoniumphenole). Arch. int. Pharmacodyn. 102, 281–303 (1955).PubMedGoogle Scholar
  198. Krnjević, K., Miledi, R.: Failure of neuromuscular propagation in rats. J. Physiol. (Lond.) 140, 440–461 (1958).Google Scholar
  199. Krnjević, K., Mitchell, J.F.: The release of acetylcholine in the isolated rat diaphragm. J. Physiol. (Lond.) 155, 246–262 (1961).Google Scholar
  200. Kuba, K., Tomita, T.: Effect of prostigmine on the time course of the end-plate potential in the rat diaphragm. J. Physiol. (Lond.) 213, 533–544 (1971).Google Scholar
  201. Kuffler, S. W.: Incomplete neuromuscular transmission in twitch system of frog’s skeletal muscles. Fed. Proc. 11, 87 (1952).Google Scholar
  202. Kuffler, S.W., Vaughan Williams, E.M.: Small nerve junctional potentials. The distribution of small motor nerves to frog skeletal muscle, and the membrane characteristics of the fibres they innervate. J. Physiol. (Lond.) 121, 289–317 (1953 a).Google Scholar
  203. Kuffler, S.W., Vaughan Williams, E.M.: Properties of the slow skeletal muscle fibres of the frog. J. Physiol. (Lond.) 121, 318–340 (1953 b).Google Scholar
  204. Kuperman, A.S., Gill, E.W., Riker, W. F., Jr.: The relationship between cholinesterase inhibition and drug induced facilitation of mammalian neuromuscular transmission. J. Pharmacol. exp. Ther. 132, 65–73 (1961).PubMedGoogle Scholar
  205. Kuperman, A. S., Okamoto, M.: The relationship between anti-curare activity and time course of the end-plate potential; a structure-activity approach. Brit. J. Pharmacol. 23, 575–591 (1964).PubMedGoogle Scholar
  206. Kupfer, C., Koelle, G.B.: A histochemical study of cholinesterase during the formation of the motor end-plate of the albino rat. Journal of Experimental Zoology 116, 397–413 (1951).PubMedGoogle Scholar
  207. Lambert, E. H., Elmqvist, D.: Quantal components of end-plate potentials in the myasthenic syndrome. Ann. N.Y. Acad. Sci. 183, 183–199 (1971).PubMedGoogle Scholar
  208. Lancaster, R.: Inhibition of acetylcholinesterase in the brain and diaphragm of rats by a tertiary organophosphorus anticholinesterase and its quaternary analogue; in vivo and in vitro studies. J. Neurochem. 19, 2587–2597 (1972).PubMedGoogle Scholar
  209. Lancaster, R.: Relationships between in vivo and in vitro inhibition of acetylcholinesterase (AChE) and impairment of neuromuscular transmission in the rat phrenic-nerve diaphragm by a tertiary anticholinesterase and its quaternary analogue. Biochem. Pharmacol. 22, 1875–1881 (1973).PubMedGoogle Scholar
  210. Lands, A.M., Hoppe, J.O., Arnold, A., Kirchner, F. K.: An investigation of the structure-activity correlations within a series of ambenonium analogs. J. Pharmacol. exp. Ther. 123, 121–127 (1958).PubMedGoogle Scholar
  211. Liley, A. W.: An investigation of spontaneous activity at the neuromuscular junction of the rat J. Physiol. (Lond) 132, 650–656 (1956a).Google Scholar
  212. Liley, A.W.: The effects of presynaptic polarization on the spontaneous activity at the mammalian neuromuscular junction. J. Physiol. (Lond) 134, 427–443 (1956 b).Google Scholar
  213. Lilleheil, G., Naess, K.: A presynaptic effect of D-tubocurarine in the neuromuscular junction. Acta physiol. scand. 52, 120–136 (1961).PubMedGoogle Scholar
  214. Litwiller, R.W.: Succinylcholine hydrolysis: a review. Anaesthesiology 31, 356–360 (1969).Google Scholar
  215. Lloyd, D.P.C.: Stimulation of peripheral nerve terminations by active muscle. J. Neurophysiol. 5, 153–165 (1942).Google Scholar
  216. Long, J.P.: Structure-activity relationships of the reversible anticholinesterase agents. In: Koelle, G.B. (Ed): Handbuch der experimentellen Pharmakologie, Ergänzungswerk, XV, pp.374–427. Cholinesterases and Anticholinesterase Agents. Berlin-Göttingen-Heidelberg: Springer 1963.Google Scholar
  217. Lowndes, H., Johnson, D. D.: The effect of lidocaine on twitch potentiation and repetitive neural activity produced by soman and neostigmine. Canad. Physiol. Pharmac. 49, 464–468 (1971).Google Scholar
  218. Maanen, F.F. Van: Effectiveness of anticurarizing agents at different frequencies of stimulation. Fed Proc. 11, 398–399 (1952).Google Scholar
  219. Machne, X., Unna, R. W.: Actions on the central nervous system. In: Koelle, G.B. (Ed): Handbuch der experimentellen Pharmakologie, Ergänzungswerk, XV, pp.679–700. Cholinesterases and Anticholinesterase Agents. Berlin-Göttingen-Heidelberg: Springer 1963.Google Scholar
  220. Macfarlane, D.W., Pelikan, E. W., Unna, K.R.: Evaluation of curarizing drugs in man. V. Antagonism to curarizing effects of D-tubocurarine by neostigmine, m-hydroxy phenyltrimethylammonium and m-hydroxy phenylethyldimethylammonium. J. Pharmacol. exp. Ther. 100, 382–392 (1950).PubMedGoogle Scholar
  221. Macintosh, F.C.: Biological estimation of acetylcholine. In: Gerard, R.W. (Ed.): Methods in medical research, Vol. 3, pp. 78–92. Chicago: The Year Book Publ. 1950.Google Scholar
  222. Maclagan J.: A comparison of the responses of the tenuissimus muscle to neuromuscular blocking drugs in vivo and in vitro. Brit. J. Pharmacol. 18, 204–216 (1962).PubMedGoogle Scholar
  223. Marney, A., Nachmansohn, D.: Choline esterase in voluntary muscle. J. Physiol. (Lond.) 92, 37–47 (1938).Google Scholar
  224. Martin, A.R.: A further study of the statistical composition of the end-plate potential. J. Physiol. (Lond.) 130, 114–122 (1955).Google Scholar
  225. Martin, A.R.: Quantal nature of synaptic transmission. Physiol. Rev. 46, 51–66 (1966).Google Scholar
  226. Masland, R.L., Wigton, R. S.: Nerve activity accompanying fasciculation produced by prostigmin. J. Neurophysiol. 3, 269–275 (1940).Google Scholar
  227. McIsaac, R.J., Koelle, G.B.: Comparison of the effects of inhibition of external, internal, and total acetylcholinesterase upon ganglionic transmission. J. Pharmacol. exp. Ther. 126, 9–20 (1959).PubMedGoogle Scholar
  228. McPhillips, J.J.: Altered sensitivity to drugs following repeated injections of a cholinesterase inhibitor to rats. Toxicol. appl. Pharmacol. 14, 67–73 (1969).PubMedGoogle Scholar
  229. McPhillips, J.J., Coon, J.M.: Adaptation to octamethyl pyrophosphoramide in rats. Toxicol. appl. Pharmacol. 8, 66–76 (1966).PubMedGoogle Scholar
  230. Meer, G Van Der., Meeter, E.: The mechanism of action of anticholinesterases. II. The effect of dnsopropylfluorophosphonate (DFP) on the isolated rat phrenic nerve-diaphragm preparation. A. Irreversible effects. Acta physiol. pharmacol. neerl. 4, 454–471 (1956).Google Scholar
  231. Meer, G Van Der, Wolthuis, O. L.: The effect of oximes on isolated organs intoxicated with organophosphorus anticholinesterases. Biochem. Pharmacol. 14, 1299–1312(1965).PubMedGoogle Scholar
  232. Meeter, E.: The relation between end-plate depolarization and the repetitive response elicited in the isolated rat phrenic nerve-diaphragm preparation by DFP. J. Physiol. (Lond) 144, 38–51 (1958).Google Scholar
  233. Miledi, R., Potter, L.T.: Acetylcholine receptors in muscle fibres. Nature (Lond.) 233, 599–603 (1971).Google Scholar
  234. Mittag, T.W., Ehrenpreis, S., Hehir, R.M.: Functional acetylcholinesterase of rat diaphragm muscle. Biochem. Pharmacol. 20, 2263–2273 (1971).PubMedGoogle Scholar
  235. Modell, W., Krop, S., Hitchcock, P., Riker, W.F., Jr.: General systemic actions of diisopropyl fluorophosphate (DFP) in cats. J. Pharmacol. exp. Ther. 87, 400–413 (1946).PubMedGoogle Scholar
  236. Mounter, L.A.: Metabolism of organophosphorus anticholinesterases. In: Koelle, G.B. (Ed): Handbuch der experimentellen Pharmakologie, Ergänzungswerk, XV, pp.486–504. Cholinesterases and Anticholinesterase Agents. Berlin-Göttingen-Heidelberg: Springer 1963.Google Scholar
  237. Namba, T., Grob, D.: Cholinesterase activity of the motor endplate in isolated muscle membrane, J. Neurochem. 15, 1445–1454 (1968).PubMedGoogle Scholar
  238. Nastuk, W.L., Alexander, J.T.: The action of 3-hydroxyphenyldimethylethylammonium (Tensilon) on neuromuscular transmission in the frog. J. Pharmacol. exp. Ther. 111, 302–328 (1954).PubMedGoogle Scholar
  239. Neitlich, H. W.: Increased plasma cholinesterase activity and succinylcholine resistance: a genetic variant. J. clin. Invest. 45, 380–387 (1966).PubMedGoogle Scholar
  240. O’brien, R. D.: Toxic phosphorus esters. New York: Academic Press 1960.Google Scholar
  241. O’brien, R.D.: The reaction of carbamates with acetylcholinesterase. In: Heilbronn, E. (Ed.): Structure and reactions of DFP sensitive enzymes, pp. 113–123. Stockholm: Research Institute of National Defence 1967.Google Scholar
  242. Ogston, A.G.: Removal of acetylcholine from a limited volume by diffusion. J. Physiol. (Lond.) 128, 222–223 (1955).Google Scholar
  243. Osserman, K. E., Genkins, G.: Critical reappraisal of the use of edrophonium (tensilon) chloride tests in myasthenia gravis and significance of clinical classification. Ann. N.Y. Acad. Sci. 135, 312–326 (1966).PubMedGoogle Scholar
  244. Osserman, K.E., Kaplan, L.I.: Studies in myasthenia gravis. Use of edrophonium chloride (tensilon) in differentiating myasthenic from cholinergic weakness. Arch. Neurol. Psychiat. (Chic.) 70, 385–392 (1953).Google Scholar
  245. Pal, J.: Physostigmin, ein Gegengift des Curare. Zbl. Physiol. 14, 255–258 (1900).Google Scholar
  246. Parkes, M.W., Sacra, P.: Protection against the toxicity of cholinesterase inhibitors by acetylcholine antagonists. Brit. J. Pharmacol. 9, 299–305 (1954).PubMedGoogle Scholar
  247. Peck, A.W.: Relative importance of the enzymic hydrolysis of suxamethonium in plasma and tissues: studies on rhesus monkeys. Brit. J. Pharmacol. 45, 64–70 (1972).Google Scholar
  248. Polak, R.L., Meeuws, M. M.: The influence of atropine on the release and uptake of acetylcholine by the isolated cerebral cortex of the rat. Biochem. Pharmacol. 15, 989–992 (1966).PubMedGoogle Scholar
  249. Potter, L.T.: Synthesis, storage and release of [14C]acetylcholine in isolated rat diaphragm muscles. J. Physiol. (Lond.) 206, 145–166 (1970).Google Scholar
  250. Preusser, H. J.: Die Ultrastruktur der motorischen Endplatte im Zwerchfell der Ratte und Veränderungen nach Inhibierung der Acetylcholinesterase. Z. Zellforsch. 80, 436–457 (1967).PubMedGoogle Scholar
  251. Quinby, G.E., Doornink, G.M.: Tetraethyl pyrophosphate poisoning following airplane dusting. J. Amer. med. Ass. 191, 1–6 (1965).Google Scholar
  252. Randall, L.O.: Anticurare action of phenolic quaternary ammonium salts. J. Pharmacol. exp. Ther. 100, 83–93 (1950).PubMedGoogle Scholar
  253. Randall, L. O., Lehmann, G.: Pharmacological properties of some neostigmine analogs. J. Pharmacol. exp. Ther. 99, 16–32 (1950).PubMedGoogle Scholar
  254. Randic, M., Straughan, D. W.: Antidromic activity in the rat phrenic nerve-diaphragm preparation. J. Physiol. (Lond.) 173, 130–148 (1964).Google Scholar
  255. Raventos, J.: The effects of arterial injections of drugs on the frog’s gastrocnemius. J. Physiol. (Lond.) 90, 8P–9P (1937).Google Scholar
  256. Reiner, E., Aldridge, W.N.: Effect of pH on inhibition and spontaneous reactivation of acetyl-cholinesterase treated with esters of phosphorus acids and of carbamic acids. Biochem. J. 105, 171–179 (1967).PubMedGoogle Scholar
  257. Remen, L.: Zur Pathogenese und Therapie der Myasthenia gravis pseudo paralytica. Dtsch. Z. Nervenheilk. 128, 66–78 (1932).Google Scholar
  258. Rider, J.A., Ellinwood, L. E., Coon, J.M.: Production of tolerance in the rat to octamethyl pyrophosphoramide (OMPA). Proc. Soc. exp. Biol. (N.Y.) 81, 455–459 (1952).Google Scholar
  259. Riker, W.F., Jr.: Actions of acetylcholine on mammalian motor nerve terminals. J. Pharmacol. exp. Ther. 152, 397–416 (1966).PubMedGoogle Scholar
  260. Riker, W.F., Jr., Okamoto, M.: Pharmacology of motor nerve terminals. Ann. Rev. Pharmacol. 9, 173–208 (1969).PubMedGoogle Scholar
  261. Riker, W.F., Jr., Roberts, J., Standaert, F.G., Fujimori, H.: The motor nerve terminal as the primary focus for drug-induced facilitation of neuromuscular transmission. J. Pharmacol. exp. Ther. 121, 286–312 (1957).PubMedGoogle Scholar
  262. Riker, W.F., Jr., Werner, G., Roberts, J., Kuperman, A.: Pharmacologic evidence for the existence of a presynaptic event in neuromuscular transmission. J. Pharmacol. exp. Ther. 125, 150–158 (1959a).PubMedGoogle Scholar
  263. Riker, W.F., Jr., Werner, G., Roberts, J., Kuperman, A.: The presynaptic element in neuromuscular transmission. Ann. N.Y. Acad. Sci. 81, 328–344 (1959b).Google Scholar
  264. Riker, W. F., Jr., Wescoe, W. C.: The direct action of prostigmine on skeletal muscle; its relationship to the choline esters. J. Pharmacol. exp. Ther. 88, 58–66 (1946).PubMedGoogle Scholar
  265. Riker, W.F., Jr., Wescoe, W.C., Brothers, M. J.: Studies on the interrelationships of certain cholinergic compounds. II. The effects of 3-acetoxy phenyltrimethylammonium methylsulphate on neuromuscular transmission. J. Pharmacol. exp. Ther. 97, 208–221 (1949).PubMedGoogle Scholar
  266. Roberts, D. V., Thesleff, S.: Acetylcholine release from motor-nerve endings in rats treated with neostigmine. Europ. J. Pharmacol. 6, 281–285 (1969).Google Scholar
  267. Roberts, D.V., Wilson, A.: The toxicity of pesticides to man. In: Khan, M.A., Haufe, W.O. (Eds.): Toxicology, Biodegradation and Efficacy of Livestock Pesticides, pp.182–201. Amsterdam: Swets & Zeitlinger 1972.Google Scholar
  268. Rothberger, J.C: Über die gegenseitigen Beziehungen zwischen Curare und Physostigmin. Pflügers Arch. ges. Physiol. 87, 117–169 (1901).Google Scholar
  269. Salpeter, M. M.: Electron microscope radioautography as a quantitative tool in enzyme cytochemistry. I. The distribution of acetylcholinesterase at motor endplates of a vertebrate twitch muscle. J. Cell Biol. 32, 379–389 (1967).PubMedGoogle Scholar
  270. Salpeter, M. M.: Electron microscope radioautography as a quantitative tool in enzyme cytochemistry. II. The distribution of DFP-reactive sites at motor endplates of a vertebrate twitch muscle. J. Cell Biol. 42, 122–134 (1969).PubMedGoogle Scholar
  271. Schaumann, W.: Über den Einfluß von Atropin auf die zentrale Hemmung der Atmung durch Anticholinesterasen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 236, 415–420 (1959).Google Scholar
  272. Schaumann, W.: Beziehungen zwischen den peripheren und zentralen Wirkungen von Cholinesterase-Hemmern und der Inaktivierung der Cholinesterase. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 239, 96–113 (1960).Google Scholar
  273. Schaumann, W., Job, C.: Differential effects of a quaternary cholinesterase inhibitor, phospholine, and its tertiary analogue, compound 217-AO, on central control of respiration and on neuromuscular transmission. The antagonism by 217-AO of the respiratory arrest caused by morphine. J. Pharmacol. exp. Ther. 123, 114–120 (1958).PubMedGoogle Scholar
  274. Schuberth, J., Sundwall, A.: Effects of some drugs on the uptake of acetylcholine in cortex slices of mouse brain. J. Neurochem. 14, 807–812 (1967).Google Scholar
  275. Smith, C. M., Cohen, H. L., Pelikan, E. W., Unna, K. R.: Mode of action of antagonists to curare. J. Pharmacol. exp. Ther. 105, 391–399 (1952).PubMedGoogle Scholar
  276. Standaert, F.G.: Effect of pH on twitch facilitating potency of 3-hydroxyphenyltriethylammonium ion. Proc. Soc. exp. Biol. (N.Y.) 102, 138–139 (1959).Google Scholar
  277. Standaert, F.G.: Post tetanic repetitive activity in cat soleus nerve. Its origin, cause and mechanism of generation. J. gen. Physiol. 47, 53–70 (1963).Google Scholar
  278. Standaert, F.G.: The mechanism of post tetanic potentiation in cat soleus and gastrocnemius muscles. J. gen. Physiol. 47, 987–1001 (1964).PubMedGoogle Scholar
  279. Stedman, E.: XCIV. Studies on the relationship between chemical constitution and physiologic action. Part I. Position isomerism in relation to the miotic activity of some synthetic urethanes. Biochem. J. 20, 719–734 (1926).PubMedGoogle Scholar
  280. Stedman, E., Barger, G.: Physostigmine. (Eserine); part III. J. chem. Soc. 127, 247–258 (1925).Google Scholar
  281. Thesleff, S.: Acetylcholine utilization in myasthenia gravis. Ann. N.Y. Acad. Sci. 135, 195–208 (1966).PubMedGoogle Scholar
  282. Thesleff, S., Quastel, D. M. J.: Neuromuscular pharmacology. Ann. Rev. Pharmacol. 5, 263–284 (1965).Google Scholar
  283. Tiegs, O. W.: Innervation of voluntary muscle. Physiol. Rev. 33, 90–144 (1953).PubMedGoogle Scholar
  284. Toivonen, T., Ohela, K., Kaipaineu, W. J.: Parathion poisoning in Finland. Lancet 1, 168 (1965).PubMedGoogle Scholar
  285. Vandekar, M., Heath, D.F.: The reactivation of cholinesterase after inhibition in vivo by some dimethyl phosphate esters. Biochem. J. 67, 202–208 (1957).PubMedGoogle Scholar
  286. Walker, M. B.: Treatment of myasthenia gravis with physostigmine. Lancet 1934 I, 1200–1201.Google Scholar
  287. Walker, M. B.: Case showing the effect of prostigmine on myasthenia gravis. Proc. roy. Soc. Med. 28, 759–761 (1935).PubMedGoogle Scholar
  288. Walther, H.: Zur Abhängigkeit der Wirkung von Neostigmin, Nivalin und Paraoxon von der Reizfrequenz. Acta biol. med. germ. 22, 767–778 (1969).PubMedGoogle Scholar
  289. Waser, P.G., Reller, J.: Bestimmung der Zahl aktiver Zentren der Acetylcholinesterase in motorischen Endplatten. Experientia (Basel) 21, 402–403 (1965).Google Scholar
  290. Werner, G.: Neuromuscular facilitation and antidromic discharges in motor nerves: their relation to activity in motor nerve terminals. J. Neurophysiol. 23, 171–187 (1960a).PubMedGoogle Scholar
  291. Werner, G.: Generation of antidromic activity in motor nerves. J. Neurophysiol. 23, 453–461 (1960b).PubMedGoogle Scholar
  292. Werner, G.: Antidromic activity in motor nerves and its relation to a generator event in nerve terminals. J. Neurophysiol. 24, 401–416 (1961).PubMedGoogle Scholar
  293. Werner, G., Kuperman, A. S.: Actions on the neuromuscular junction. In: Koelle, G.B. (Ed.): Handbuch der experimentellen Pharmakologie, Ergänzungswerk, XV, pp. 570–678. Cholinesterases and Anticholinesterase Agents. Berlin-Göttingen-Heidelberg: Springer 1963.Google Scholar
  294. Wescoe, W.C., Riker, W.F., Jr.: The pharmacology of anti-curare agents. Ann. N.Y. Acad. Sci. 54, 438–455(1951).PubMedGoogle Scholar
  295. Wescoe, W.C., Riker, W.F., Jr., Brothers, M. J.: Studies on the interrelationship of certain cholinergic compounds. I. The pharmacology of 3-acetoxy phenyltrimethylammonium methylsulphate. J. Pharmacol. exp. Ther. 97, 190–207 (1949).PubMedGoogle Scholar
  296. Westerberg, M.R., Magee, K.R., Shideman, F.E.: Effect of 3-hydroxyphenyldimethylethylammonium chloride (Tensilon) in myasthenia gravis. Univ. Mich. med. Bull. 17, 311–316 (1951).PubMedGoogle Scholar
  297. White, A.C., Stedman, E.: On the physostigmine-like action of certain synthetic urethanes. J. Pharmacol. exp. Ther. 41, 259–288 (1931).Google Scholar
  298. Whittaker, V.P.: The application of subcellular fractionation techniques to the study of brain function. Progr. Biophys. 15, 39–96 (1965).PubMedGoogle Scholar
  299. Whittaker, V.P.: Origin and function of synaptic vesicles. Ann N.Y. Acad. Sci. 183, 21–32 (1966).Google Scholar
  300. Whittaker, V.P., Wijesundera, S.: The hydrolysis of succinyldicholine by cholinesterase. Biochem. J. 51, 475–479 (1952).Google Scholar
  301. Wills, J. H.: Pharmacological antagonists of the anticholinesterase agents. In: Koelle, G. B. (Ed.): Handbuch der experimentellen Pharmakologie, Ergänzungswerk, XV, pp. 883–920. Cholinesterases and Anticholinesterase Agents. Berlin-Göttingen-Heidelberg: Springer 1963.Google Scholar
  302. Wills, J.H., Kunkel, A.M., O’leary, J.F., Oikemus, A.H.: Effect of 2-PAM on neuromuscular blockade induced by certain chemicals. Proc. Soc. exp. Biol. (N.Y.) 101, 196–197 (1959).Google Scholar
  303. Wilson, I. B.: The interaction of tensilon and neostigmine with acetylcholinesterase. Arch. int. Pharmacodyn. 104, 204–213 (1955).PubMedGoogle Scholar
  304. Wilson, I.B., Harrison, M.A., Ginsburg, S.: Carbamylderivatives of acetylcholinesterase. J. biol. Chem. 236, 1498–1500 (1961).PubMedGoogle Scholar
  305. Wilson, I.B., Quan, C.: Acetylcholinesterase studies on molecular complimentariness. Arch. Biochem. 73, 131–143 (1958).PubMedGoogle Scholar
  306. Wislicki, L.: Differences in the effect of oximes on striated muscle and respiratory centre. Arch. int. Pharmacodyn. 129, 1–17 (1960).PubMedGoogle Scholar
  307. Wolfe, H.R., Durham, W.F., Armstrong, J.F.: Exposure of workers to pesticides. Arch. environm. Hlth. 14, 622–633 (1967).Google Scholar
  308. Wright, D.L., Plummer, D.T.: Multiple forms of acetylcholinesterase from human erythrocytes. Biochem. J. 133, 521–527 (1973).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • F. Hobbiger

There are no affiliations available

Personalised recommendations