Advertisement

Transmission of Impulses from Nerve to Muscle

  • B. L. Ginsborg
  • D. H. Jenkinson
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 42)

Abstract

In this chapter neuromuscular transmission will be discussed mainly from an electrophysiological standpoint although some specifically pharmacological topics, in particular the properties of the acetylcholine receptors, will also be considered. Since most of what is known about pre-synaptic mechanisms is based on electrical recordings of the muscle response, we have thought it best to discuss the relevant properties of muscle, as well as post-synaptic events during transmission, before considering the details of transmitter release. The main emphasis throughout will be on results obtained from experiments on isolated tissues; information on corresponding in vivo work, and a more broadly based account of the pharmacology of neuromuscular transmission, may be found in Chapter IV.

Keywords

Neuromuscular Junction Transmitter Release Neuromuscular Transmission Frog Muscle Motor Nerve Terminal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamič, S.: The action of acetylcholine on potassium permeability of denervated rat diaphragm. Biochim. biophys. Acta (Amst.) 102, 442–448 (1965).Google Scholar
  2. Adams, P.R.: Drug concentration-conductance curves at frog end-plates determined by voltage-clamp. J. Physiol. (Lond.) 241, 7–8P (1974a).Google Scholar
  3. Adams, P.R.: The mechanism by which amylobarbitone and thiopentone block the end-plate response to nictonic agonists. J. Physiol. (Lond.) 241, 41–42P (1974b).Google Scholar
  4. Adams, P.R., Cash, H.C., Quilliam, J.P.: Extrinsic and intrinsic acetylcholine and barbiturate effects on frog skeletal muscle. Brit. J. Pharmacol. 40, 552–553P (1970).Google Scholar
  5. Adrian, R.H.: The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (Lond.) 133, 631–658 (1956).Google Scholar
  6. Adrian, R.H.: Internal chloride concentration and chloride efflux of frog muscle. J. Physiol. (Lond.) 156, 623–632 (1961).Google Scholar
  7. Adrian, R.H., Bryant, S.H.: On the repetitive discharge in myotonic muscle fibres. J. Physiol. (Lond.) 240, 505–515 (1974).Google Scholar
  8. Adrian, R.H., Freygang, W.H.: The potassium and chloride conductance of frog muscle membrane. J. Physiol. (Lond.) 163, 61–103 (1962).Google Scholar
  9. Agin, D., Holtzman, D.: Glass microelectrodes: the origin and elimination of tip potentials. Nature (Lond.) 211, 1194–1195 (1966).Google Scholar
  10. Ahmad, K., Lewis, J.J.: The influence of drugs which stimulate skeletal muscle and of their antagonists on flux of calcium, potassium and sodium ions. J. Pharmacol. exp. Ther. 136, 298–304 (1962).PubMedGoogle Scholar
  11. Albuquerque, E. X., Barnard, E. A., Chiu, T.H., Lapa, A.J., Jolly, J.O., Jansson, S. E., Daly, J., Witkop, B.: Acetylcholine receptor and ion conductance modulator sites at the murine neuromuscular junction: evidence from specific toxin reactions. Proc. nat. Acad. Sci. (Wash.) 70, 949–953 (1973).Google Scholar
  12. Albuquerque, E.X., McIsaac, R.J.: Fast and slow mammalian muscles after denervation. Exp. Neurol. 26, 183–202 (1970).PubMedGoogle Scholar
  13. Albuquerque, E.X., Sokoll, M.D., Sonesson, B., Thesleff, S.: Studies on the nature of the cholinergic receptor. Europ. J. Pharmacol. 4, 40–46 (1968).Google Scholar
  14. Albuquerque, E.X., Thesleff, S.: Comparative study of membrane properties of innervated and chronically denervated fast and slow skeletal muscles of the rat. Acta physiol. scand. 73, 471–480 (1968).PubMedGoogle Scholar
  15. Albuquerque, E.X., Warnick, J.E., Tasse, J.R., Sansone, F.M.: Effects of vinblastine and colchicine on neural regulation of the fast and slow skeletal muscles of the rat. Exp. Neurol. 37, 607–634 (1972).PubMedGoogle Scholar
  16. Alnaes, E., Jansen, J.K.S., Rudjord, T.: Spontaneous junctional activity of fast and slow parietal muscle fibres of the hagfish. Acta physiol. scand. 60, 240–255 (1964).PubMedGoogle Scholar
  17. Alnaes, E., Rahamimoff, R.: Dual action of praseodymium (Pr3+) on transmitter release at the frog neuromuscular synapse. Nature (Lond.) 247, 478–479 (1974).Google Scholar
  18. Anderson, C.R., Stevens, C.F.: Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J. Physiol. (Lond.) 235, 655–691 (1973).Google Scholar
  19. Anderson, M.J., Cohen, M.W.: Fluorescent staining of acetylcholine receptors in vertebrate skeletal muscle. J. Physiol. (Lond.) 237, 385–400 (1974).Google Scholar
  20. Ariëns, E.J., Simonis, A.M., Van Rossum, J.M.: Drug-receptor interaction: interaction of one or more drugs with one receptor system. In: Ariëns, E.J. (Ed.): Molecular Pharmacology, Vol.1. New York: Academic Press 1964.Google Scholar
  21. Armstrong, C.M., Binstock, L.: Anomalous rectification in the squid giant axon injected with tetraethyl ammonium chloride. J. gen. Physiol. 48, 859–872 (1965).PubMedGoogle Scholar
  22. Armstong, W.M.C.D., Knoebel, S.B.: The effect of serum albumin on the efflux of 42K from frog sartorius muscle. J. cell. comp. Physiol. 67, 211–216 (1966).Google Scholar
  23. Arunlakshana, O., Schild, H.O.: Some quantitative uses of drug antagonists. Brit. J. Pharmacol. 14, 48–58 (1959).PubMedGoogle Scholar
  24. Auerbach, A., Betz, W.: Does curare affect transmitter release? J. Physiol. (Lond.) 213, 691–705 (1971).Google Scholar
  25. Axelsson, J., Thesleff, S.: The “desensitizing” effect of acetylcholine on the mammalian motor end-plate. Acta physiol. scand. 43, 15–26 (1958).PubMedGoogle Scholar
  26. Axelsson, J., Thesleff, S.: A study of supersensitivity in denervated mammalian skeletal muscle. J. Physiol. (Lond.) 147, 178–193 (1959).Google Scholar
  27. Baker, P.F.: Transport and metabolism of calcium ions in nerve. Progr. Biophys. molec. Biol. 24, 177–223 (1972).Google Scholar
  28. Balnave, R.J., Gage, P.W.: The inhibitory effect of manganese on transmitter release at the neuromuscular junction of the toad. Brit. J. Pharmacol. 47, 339–352 (1973).Google Scholar
  29. Barlow, R.B.: Introduction to Chemical Pharmacology (2nd Edit). Methuen, London (1964).Google Scholar
  30. Barlow, R.B., Scott, N.C., Stephenson, R.P.: The affinity and efficacy of onium salts on the frog rectus abdominis. Brit. J. Pharmacol. 31, 188–196 (1967).PubMedGoogle Scholar
  31. Barlow, R.B., Thompson, G.M., Scott, N.C.: The affinity and activity of compounds related to nicotine on the rectus abdominis muscle of the frog (Rana pipiens). Brit. J. Pharmacol. 37, 555–584 (1969).Google Scholar
  32. Barnard, E.A., Wieckowski, J., Chiu, T.H.: Cholinergic receptor molecules and cholinesterase molecules at mouse skeletal muscle junctions. Nature (Lond.) 234, 207–209 (1971).Google Scholar
  33. Barnard, E.A., Dolly, J. O., Porter, C.W., Albuquerque, E.X.: The acetylcholine receptor and the ionic conductance modulation system of skeletal muscle. Exp. Neurol. 48, 1–28 (1975).PubMedGoogle Scholar
  34. Barrett, E.F., Barrett, J.N., Martin, A.R., Rahamimoff, R.: A note on the interaction of spontaneous and evoked release at the frog neuromuscular junction. J. Physiol. (Lond.) 237, 453–463 (1974).Google Scholar
  35. Barrett, E.F., Stevens, C.F.: Quantal independence and uniformity of presynaptic release kinetics at the frog neuromuscular junction. J. Physiol. (Lond.) 227, 665–689 (1972a).Google Scholar
  36. Barrett, E.F., Stevens, C.F.: The kinetics of transmitter release at the frog neuromuscular junction. J. Physiol. (Lond.) 227, 691–708 (1972b).Google Scholar
  37. Barstad, J.A.B.: Presynaptic effect of the neuromuscular transmitter. Experientia (Basel) 18, 579–580 (1962).Google Scholar
  38. Barstad, J.A.B., Lilleheil, G.: Transversally cut diaphragm preparation from rat. Arch. int. Pharmacodyn. 175, 373–390 (1968).PubMedGoogle Scholar
  39. Belmar, J., Eyzaguirre, C.: Pacemaker site of fibrillation potentials in denervated mammalian muscle. J. Neurophysiol. 29, 425–441 (1966).PubMedGoogle Scholar
  40. Bendat, J.S., Piersol, A.G.: Random Data: Analysis and Measurement Procedures. New York: Wiley, Interscience 1971.Google Scholar
  41. Ben-Haim, D., Landau, E.M., Silman, L.: The role of a reactive disulphide bond in the function of the acetylcholine receptor at the frog neuromuscular junction. J. Physiol. (Lond.) 234, 305–325 (1973).Google Scholar
  42. Ben-Haim, D., Dreyer, F., Peper, K.: Acetylcholine receptor: modification of synaptic gating mechanism after treatment with a disulfide bond reducing agent. Pflügers Arch. ges. Physiol. 355, 19–26 (1975).Google Scholar
  43. Bennett, M.R., McLachlan, E.M., Taylor, R.S.: The formation of synapses in reinnervated mammalian striated muscle J. Physiol. (Lond.) 233, 481–500 (1973).Google Scholar
  44. Bennett, M.R., Florin, T.: A statistical analysis of the release of acetylcholine at newly formed synapses in striated muscle. J. Physiol. (Lond.) 238, 93–107 (1974).Google Scholar
  45. Benoit, P.R., Mambrini, J.: Modification of transmitter release by ions which prolong the presynaptic action potential. J. Physiol. (Lond.) 210, 681–695 (1970).Google Scholar
  46. Beránek, R., Vyskočil, F.: The action of tubocurarine and atropine on the normal and denervated rat diaphragm. J. Physiol. (Lond.) 188, 53–66 (1967).Google Scholar
  47. Beránek, R., Vyskočil, F.: The effect of atropine on the frog sartorius neuromuscular junction. J. Physiol. (Lond.) 195, 493–503 (1968).Google Scholar
  48. Berg, D.K., Hall, Z. W.: Increased extrajunctional acetylcholine sensitivity produced by chronic postsynaptic neuromuscular blockade. J. Physiol. (Lond.) 244, 659–676 (1975).Google Scholar
  49. Berg, D.K., Kelly, R.B., Sargent, P.B., Williamson, P., Hall, Z.W.: Binding of α-bungarotoxin to acetylcholine receptors in mammalian muscle. Proc. nat. Acad. Sci. (Wash.) 69, 147–151 (1972).Google Scholar
  50. Betz, W.J.: Depression of transmitter release at the neuromuscular junction of the frog. J. Physiol. (Lond.) 206, 629–644 (1970).Google Scholar
  51. Birks, R.I., Burstyn, P.G.R., Firth, D.R.: The form of sodium-calcium competition at the frog myoneural junction. J. gen. Physiol. 52, 887–907 (1968).PubMedGoogle Scholar
  52. Birks, R.L., Cohen, M.W.: Effects of sodium on transmitter release from frog motor nerve terminals. In: Paul, W.M., Daniel, E.E., Kay, C.M., Monckton, G. (Eds.): Muscle, Oxford: Pergamon Press 1965.Google Scholar
  53. Birks, R.L., Cohen, M.W.: The action of sodium pump inhibitors on neuromuscular transmission. Proc. roy. Soc. B 170, 381–399 (1968a).Google Scholar
  54. Birks, R.L., Cohen, M.W.: The influence of internal sodium on the behaviour of motor nerve endings. Proc. roy. Soc. B 170, 401–421 (1968b).Google Scholar
  55. Birks, R.L., Katz, B., Miledi, R.: Physiological and structural changes at the amphibian myoneural junction, in the course of nerve degeneration. J. Physiol. (Lond.) 150, 145–168 (1960).Google Scholar
  56. Bittner, G.D., Harrison, J.: A reconsideration of the Poisson hypothesis for transmitter release at the crayfish neuromuscular junction. J. Physiol. (Lond.) 206, 1–23 (1970).Google Scholar
  57. Blaber, L.C.: The prejunctional actions of some non-depolarizing blocking drugs. Brit. J. Pharmacol. 47, 109–116 (1973).Google Scholar
  58. Blaber, L.C., Christ, D.D.: The action of facilitatory drugs on the isolated tenuissimus muscle of the cat. Int. J. Neuropharmacol. 6, 473–484 (1967).PubMedGoogle Scholar
  59. Blackman, J.G., Skelsey, M.: Effect of guanidinium, N-methyl and N, N-dimethyl guanidinium and S-methyl-thiouronium salts on acetylcholine release in the rat isolated diaphragm. Proc. Univ. Otago med. Sch. 43, 15–17 (1965).Google Scholar
  60. Blioch, Z.L., Glagoleva, I.M., Liberman, E. A., Nenashev, V.A.: A study of the mechanism of quantal transmitter release at a chemical synapse. J. Physiol. (Lond.) 199, 11–35 (1968).Google Scholar
  61. Blioch, Z.L., Liberman, E.A.: The influence of beryllium ions on the end-plate potential and frequency of miniature end-plate potentials at the neuromuscular junction of frogs. Biofizika 15, 468–474 (1970).Google Scholar
  62. Boroff, D.A., Del Castillo, J., Evoy, W.H., Steinhardt, R.A.: Observations on the action of type A botulinum toxin on frog neuromuscular junctions. J. Physiol. (Lond.) 240, 227–253 (1974).Google Scholar
  63. Bowen, J.M.: Estimation of the dissociation constant of D-tubocurarine and the receptor for endogenous acetylcholine. J. Pharmacol. exp. Ther. 183, 333–340 (1972a).PubMedGoogle Scholar
  64. Bowen, J.M.: Effects of rare earths and yttrium on striated muscle and the neuromuscular junction. Canad. J. Physiol. Pharmacol. 50, 603–611 (1972b).Google Scholar
  65. Boyd, I.A., Martin, A.R.: Spontaneous subthreshold activity at mammalian neuromuscular junctions. J. Physiol. (Lond.) 132, 61–73 (1956a).Google Scholar
  66. Boyd, I. A., Martin, A.R.: The end-plate potential in mammalian muscle. J. Physiol. (Lond.) 132, 74–91 (1956b).Google Scholar
  67. Boyle, P.J., Conway, E.J.: Potassium accumulation in muscle and associated changes. J. Physiol. (Lond.) 100, 1–63 (1941).Google Scholar
  68. Bradley, P.B., Candy, J.M.: Iontophoretic release of acetylcholine, noradrenaline, 5-hydroxytryptamine and D-lysergic acid diethylamide from micropipettes. Brit. J. Pharmacol. 40, 194–201 (1970).Google Scholar
  69. Braun, M., Schmidt, R.F.: Potential changes recorded from the frog motor nerve terminal during its activation. Pflügers Arch. ges. Physiol. 287, 56–80 (1966).Google Scholar
  70. Braun, M., Schmidt, R.F., Zimmermann, M.: Facilitation at the frog neuromuscular junction during and after repetitive stimulation. Pflügers Arch. ges. Physiol. 287, 41–55 (1966).Google Scholar
  71. Brazil, O.V., Excell, R.J.: Action of crotoxin and crotactin from the venom of crotalis durissus terrificus (South American rattlesnake) on the frog neuromuscular junction. J. Physiol. (Lond.) 212, 34–35P (1971).Google Scholar
  72. Brooks, V.B.: An intracellular study of the action of repetitive nerve volleys and of botulinum toxin on miniature end-plate potentials. J. Physiol. (Lond.) 134, 264–277 (1956).Google Scholar
  73. Brown, G.L.: The actions of acetylcholine on denervated mammalian and frog’s muscle. J. Physiol. (Lond.) 89, 438–461 (1937).Google Scholar
  74. Brown, W.E.L., Hill, A.V.: The oxygen-dissociation curve of blood, and its thermodynamical basis. Proc. roy. Soc. B 94, 297–334 (1923).Google Scholar
  75. Bryant, S.H., Castillo, J. Del., Garcia, X., Gijon, E., Lee, C.F.: An electrically operated microtap. Electroenceph. clin. Neurophysiol. 23, 573–576 (1967).PubMedGoogle Scholar
  76. Bryant, S.H., Morales-Aguilera, A.: Chloride conductance in normal and myotonic muscle fibres and the action of monocarboxylic aromatic acids. J. Physiol. (Lond.) 219, 367–383 (1971).Google Scholar
  77. Burke, W.: Spontaneous potentials in slow muscle fibres of the frog. J. Physiol. (Lond.) 135, 511–521 (1957).Google Scholar
  78. Burke, W., Ginsborg, B.L.: The electrical properties of the slow muscle fibre membrane. J. Physiol. (Lond.) 132, 586–598 (1956 a).Google Scholar
  79. Burke, W., Ginsborg, B.L.: The action of the neuromuscular transmitter on the slow fibre membrane. J. Physiol. (Lond.) 132, 599–610 (1956b).Google Scholar
  80. Burns, B.D., Paton, W.D.M.: Depolarization of the motor end-plate by decamethonium and acetylcholine. J. Physiol. (Lond.) 115, 41–73 (1951).Google Scholar
  81. Carmody, J. J., Gage, P.W.: Lithium stimulates secretion of acetylcholine in the absence of extracellular calcium. Brain Res. 50, 476–479 (1973).PubMedGoogle Scholar
  82. Cavanaugh, D.J., Hearon, J.Z.: The kinetics of acetylcholine action on skeletal muscle. Arch. int. Pharmacodyn. 100, 68–78 (1954).PubMedGoogle Scholar
  83. Ceccarelli, B., Hurlbut, W.P., Mauro, A.: Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J. Cell Biol. 57, 499–524 (1973).PubMedGoogle Scholar
  84. Chagas, C.: Studies on the mechanism of curarization. Ann. N.Y. Acad. Sci. 81, 345–357 (1959).PubMedGoogle Scholar
  85. Chang, C.C., Chen, T.F., Cheng, H.C.: On the mechanism of neuromuscular blocking action of bretylium and guanethidine. J. Pharmacol. exp. Ther. 158, 89–98 (1967).PubMedGoogle Scholar
  86. Chang, C.C., Chen, T.F., Chuang, S.-T.: N, O-di and N, N, O-tri [3H]acetyl α-bungarotoxins as specific labelling agents of cholinergic receptors. Brit. J. Pharmacol. 47, 147–160 (1973a).Google Scholar
  87. Chang, C.C., Chen, T.F., Chuang, S.-T.: Influence of chronic neostigmine treatment on the number of acetylcholine receptors and the release of acetylcholine from the rat diaphragm. J. Physiol. (Lond.) 230, 613–618 (1973b).Google Scholar
  88. Chang, C.C., Chen, T.F., Lee, C.Y.: Studies of the presynaptic effect of β-bungarotoxin on neuromuscular transmission. J. Pharmacol. exp. Ther. 184, 339–345 (1973c).PubMedGoogle Scholar
  89. Chang, C.C., Huang, M.C.: Comparison of the presynaptic actions of botulinium toxin and β-bungarotoxin on neuromuscular transmission. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 282, 129–142 (1974).Google Scholar
  90. Chang, C.C., Huang, M.C., Lee, C.Y.: Mutual antagonism between botulinum and β-bungarotoxin. Nature (Lond.) 243, 166–167 (1973d).Google Scholar
  91. Chang, C.C., Lee, C.Y.: Isolation of neurotoxins from the venom of Bungarus multicinctus and their modes of neuromuscular blocking action. Arch. int. Pharmacodyn. 144, 241–257 (1963).PubMedGoogle Scholar
  92. Chang, C.C., Su, M.J.: Does α-bungarotoxin inhibit motor end-plate acetylcholinesterase? Nature (Lond.) 247, 480 (1974).Google Scholar
  93. Changeux, J.P., Kasai, M., Lee, C.Y.: Use of a snake venom to characterize the cholinergic receptor protein. Proc. nat. Acad. Sci. (Wash.) 67, 1241–1247 (1970).Google Scholar
  94. Chapman, R.A., Niedergerke, R.: Interaction between heart rate and calcium concentration in the control of contractile strength of the frog heart. J. Physiol. (Lond.) 211, 423–443 (1970).Google Scholar
  95. Chowdhury, T.K.: Techniques of intracellular microinjection. In: Lavallée, M., Schanne, O.F., Hébert, N.C. (Eds.): Glass microelectrodes. New York: Wiley 1969.Google Scholar
  96. Christensen, B.N., Martin, A.R.: Estimates of probability of transmitter release at the mammalian neuromuscular junction. J. Physiol. (Lond.) 210, 933–945 (1970).Google Scholar
  97. Ciani, S., Edwards, C.: The effect of acetylcholine on neuromuscular transmission in the frog. J. Pharmacol. exp. Ther. 142, 21–23 (1963).PubMedGoogle Scholar
  98. Clark, A.J.: The reaction between acetylcholine and muscle cells. J. Physiol. (Lond.) 61, 530–546 (1926a).Google Scholar
  99. Clark, A.J.: The antagonism of acetylcholine by atropine. J. Physiol. (Lond.) 61, 547–556 (1926b).Google Scholar
  100. Clark, A.W., Hurlbut, W.P., Mauro, A.: Changes in the fine structure of the neuromuscular junction of the frog caused by black widow spider venom. J. Cell Biol. 52, 1–14 (1972).PubMedGoogle Scholar
  101. Cark, A.W., Mauro, A., Longenecker, H.E., Hurlbut, W.P.: Effects of black widow spider venom on the frog neuromuscular junction: effects on the fine structure of the frog neuromuscular junction. Nature (Lond.) 225, 703–705 (1970).Google Scholar
  102. Clarke, G., Hill, R.G., Simmonds, M.A.: Microiontophoretic release of drugs from micropipettes: use of 24Na as a model. Brit. J. Pharmacol. 48, 156–161 (1973).Google Scholar
  103. Close, R.L: Dynamic properties of mammalian skeletal muscles. Physiol. Rev. 52, 129–197 (1972).PubMedGoogle Scholar
  104. Cochrane, D. E., Parsons, R.L.: The interaction between caffeine and calcium in the desensitization of muscle post-junctional membrane receptors. J. gen. Physiol. 59, 437–461 (1972).PubMedGoogle Scholar
  105. Cochrane, D.E., Williams, F.A., Parsons, R.L.: Activation-inactivation of muscle post-junctional membrane receptors in isotonic Mg2+ or Ca2+ Ringer. Fed. Proc. 31, 305 (1972).Google Scholar
  106. Cohen, L., Kita, H., Van Der Kloot, W.: The intervals between miniature end-plate potentials in the frog are unlikely to be independently or exponentially distributed. J. Physiol. (Lond.) 236, 327–339 (1974 a).Google Scholar
  107. Cohen, I., Kita, H., Van Der Kloot, W.: The stochastic properties of spontaneous quantal release of transmitter at the frog neuromuscular junction. J. Physiol. (Lond.) 236, 341–361 (1974b).Google Scholar
  108. Cohen, I., Kita, H., Van Der Kloot, W.: Stochastic properties of spontaneous transmitter release at the crayfish neuromuscular junction. J. Physiol. 236, 363–371 (1974 c).PubMedGoogle Scholar
  109. Colomo, F., Rahamimoff, R.: Interaction between sodium and calcium ions in the process of transmitter release at the neuromuscular junction. J. Physiol. (Lond.) 198, 203–218 (1968).Google Scholar
  110. Colomo, F., Rahamimoff, R., Stefani, E.: An action of 5-hydroxytryptamine on the frog motor end-plate. Europ. J. Pharmacol. 3, 272–274 (1968).Google Scholar
  111. Colquhoun, D.: The relation between classical and co-operative models for drug actions. In: Rang, H.P. (Ed.): Drug Receptors, pp. 149–182. London: Macmillan 1973.Google Scholar
  112. Colquhoun, D.: Mechanisms of drug action at the voluntary muscle end-plate. Ann. Rev. Pharmacol. 15, 307–325 (1975).PubMedGoogle Scholar
  113. Colquhoun, D., Rang, H.P., Ritchie, J.M.: The binding of tetrodotoxin and α-bungarotoxin to normal and denervated mammalian muscle. J. Physiol. (Lond.) 240, 199–226 (1974).Google Scholar
  114. Conway, E.J., Hingerty, D.: The influence of adrenalectomy on muscle constituents. Biochem. J. 40, 561–568 (1946).Google Scholar
  115. Cooke, J.D., Okamoto, K., Quastel, D.M.J.: The role of calcium in depolarization-secretion coupling at the motor nerve terminal. J. Physiol. (Lond.) 228, 459–497 (1973).Google Scholar
  116. Cooke, J.D., Quastel, D.M.J.: Transmitter release by mammalian motor nerve terminals in response to focal polarization. J. Physiol. (Lond.) 228, 377–405 (1973 a).Google Scholar
  117. Cooke, J.D., Quastel, D.M.J.: Cumulative and persistent effects of nerve terminal depolarization on transmitter release. J. Physiol. (Lond.) 228, 407–434 (1973b).Google Scholar
  118. Cooke, J.D., Quastel, D.M.J.: The specific effect of potassium on transmitter release by motor nerve terminals and its inhibition by calcium. J. Physiol. (Lond.) 228, 435–458 (1973c).Google Scholar
  119. Cookson, J.C., Paton, W.D.M.: Mechanisms of neuromuscular block. Anaesthesia 24, 395–416 (1969).PubMedGoogle Scholar
  120. Couteaux, R., Pécot-Dechavassine, M.: Vésicules synaptiques et poches au niveau des ‘zones actives’ de la jonction neuromusculaire. C. R. Acad. Sci. (Paris) 271, 2346–2349 (1970).Google Scholar
  121. Cowan, S.L.: The initiation of all-or-none responses in muscle by acetylcholine. J. Physiol. (Lond.) 88, 3P (1936).Google Scholar
  122. Crawford, A.C.: The dependence of evoked transmitter release on external calcium ions at very low mean quantal contents. J. Physiol. (Lond.) 240, 255–278 (1974).Google Scholar
  123. Crawford, A.C., Fettiplace, R.: A method for altering the intracellular calcium concentration. J. Physiol. (Lond.) 217, 20P (1971).Google Scholar
  124. Creese, R.: Sodium fluxes in diaphragm muscle and the effects of insulin and serum proteins. J. Physiol. (Lond.) 197, 255–278 (1968).Google Scholar
  125. Creese, R., England J. M.: Decamethonium in depolarized muscle and the effects of tubocurarine. J. Physiol. (Lond.) 210, 345–361 (1970).Google Scholar
  126. Creese, R., Maclagan, J.: Entry of decamethonium in rat muscle studied by autoradiography. J. Physiol. (Lond.) 210, 363–386 (1970).Google Scholar
  127. Creese, R., Northover, J.: Maintenance of isolated diaphragm with normal sodium content. J. Physiol. (Lond.) 155, 343–357 (1961).Google Scholar
  128. Creese, R., Taylor, D.B., Tilton, B.: The influence of curare on the uptake and release of a neuromuscular blocking agent labelled with radioactive iodine. J. Pharmacol. exp. Ther. 139, 8–17 (1963).PubMedGoogle Scholar
  129. Cronnelly, R., Dretchen, K.L., Sokoll, M.D., Long, J.P.: Ketamine: myoneural activity and interaction with neuromuscular blocking agents. Europ. J. Pharmacol. 22, 17–22 (1973).Google Scholar
  130. Cunningham, J.N.JNR., Carter, N.W., Rector, F.C., Seldin, D.W.: Resting transmembrane potential difference of skeletal muscle in normal subjects and severely ill patients. J. clin. Invest. 50, 49–59 (1971).PubMedGoogle Scholar
  131. Curtis, D.R.: Microelectrophoresis. In: Nastuk, W.L. (Ed.): Physical Techniques in Biological Research, Vol.V, Electrophysiological Methods, Part A, pp. 144–190. New York: Academic Press 1964.Google Scholar
  132. Datyner, M.E., Gage, P.W.: Presynaptic and postsynaptic effects of the venom of the Australian tiger snake at the neuromuscular junction. Brit. J. Pharmacol. 49, 340–354 (1973).Google Scholar
  133. De Bassio, W.A., Schnitzler, R.M., Parsons, R.L.: Influence of lanthanum on transmitter release at the neuromuscular junction. J. Neurobiology 2, 263–278 (1971).Google Scholar
  134. Deguchi, T., Narahashi, T.: Effects of procaine on ionic conductances of end-plate membranes. J. Pharmacol. exp. Ther. 176, 423–433 (1971).PubMedGoogle Scholar
  135. Del Castillo, J., Engbaek, L.: The nature of the neuromuscular block producted by magnesium. J. Physiol. (Lond.) 124, 370–384 (1954).Google Scholar
  136. Del Castillo, J., Escobar, I., Gijon, E.: Effects of the electrophoretic application of sulfhydryl reagents to the end-plate receptors. International Journal of Neurosciences 1, 199–209 (1970).Google Scholar
  137. Del Castillo, J., Katz, B.: The effect of magnesium on the activity of motor nerve endings. J. Physiol. (Lond.) 124, 553–559 (1954 a).Google Scholar
  138. Del Castillo, J., Katz, B.: Quantal components of the end-plate potential. J. Physiol. (Lond.) 124, 560–573 (1954 b).Google Scholar
  139. Del Castillo, J., Katz, B.: Statistical factors involved in neuromuscular facilitation and depression. J. Physiol. (Lond.) 124, 574–585 (1954c).Google Scholar
  140. Del Castillo, J., Katz, B.: Changes in end-plate activity produced by pre-synaptic polarization. J. Physiol. (Lond.) 124, 586–604 (1954d).Google Scholar
  141. Del Castillo, J., Katz, B.: The membrane change produced by the neuromuscular transmitter. J. Physiol. (Lond.) 125, 546–565 (1954 e).Google Scholar
  142. Del Castillo, J., Katz, B.: On the localization of acetylcholine receptors. J. Physiol. (Lond.) 128, 157–181 (1955a).Google Scholar
  143. Del Castillo, J., Katz, B.: Local activity at a depolarized nerve-muscle junction. J. Physiol. (Lond.) 128, 396–411 (1955b).Google Scholar
  144. Del Castillo, J., Katz, B.: Localization of active spots within the neuromuscular junction of the frog. J. Physiol. (Lond.) 132, 630–649 (1956).Google Scholar
  145. Del Castillo, J., Katz, B.: A study of curare action with an electrical micro-method. Proc. roy. Soc. B 146, 339–356 (1957 a).Google Scholar
  146. Del Castillo, J., Katz, B.: The identity of “intrinsic” and “extrinsic” acetylcholine receptors in the motor end-plate. Proc. roy. Soc. B 146, 357–361 (1957b).Google Scholar
  147. Del Castillo, J., Katz, B.: Interaction at end-plate receptors between different choline derivatives. Proc. roy. Soc. B. 146, 369–381 (1957 c).Google Scholar
  148. Del Castillo, J., Nelson, T.E., Sanchez, V.: Mechanism of the increased acetylcholine sensitivity of skeletal muscle in low pH solutions. J. cell. comp. Physiol. 59, 35–44 (1962).Google Scholar
  149. Del Castillo, J., Stark, L.: The effect of calcium ions on the motor end-plate potentials. J. Physiol. (Lond.) 116, 507–515 (1952).Google Scholar
  150. Dennis, M., Miledi, R.: Lack of correspondence between the amplitudes of spontaneous potentials and unit potentials evoked by nerve impulses at regenerating neuromuscular junctions. Nature (Lond.) New Biol. 232, 126–128 (1971).Google Scholar
  151. Dennis, M.J., Miledi, R.: Non-transmitting neuromuscular junctions during an early stage of end-plate reinnervation. J. Physiol. (Lond.) 239, 553–570 (1974a).Google Scholar
  152. Dennis, M. J., Miledi, R.: Characteristics of transmitter release at regenerating frog neuromuscular junctions. J. Physiol. (Lond.) 239, 571–594 (1974b).Google Scholar
  153. Detwiler, P.B.: The effects of germine-3-acetate on neuromuscular transmission. J. Pharmacol. exp. Ther. 180, 244–254 (1972).PubMedGoogle Scholar
  154. Diamond, J., Miledi, R.: A study of foetal and new-born rat muscle fibres. J. Physiol. (Lond.) 162, 393–408 (1962).Google Scholar
  155. Dockry, M., Kernan, R.P., Tangney, A.: Active transport of sodium and potassium in mammalian skeletal muscle and its modification by nerve and by cholinergic and adenergic agents. J. Physiol. (Lond.) 186, 187–200 (1966).Google Scholar
  156. Dodge, F. A. Jr., Miledi, R., Rahamimoff, R.: Strontium and quantal release of transmitter at the neuromuscular junction. J. Physiol. (Lond.) 200, 267–283 (1969).Google Scholar
  157. Dodge, F. A. Jr., Rahamimoff, R.: Co-operative action of Ca ions in the transmitter release at the neuromuscular junction. J. Physiol. (Lond.) 193, 419–432 (1967).Google Scholar
  158. Drachman, D.B., Witzke, F.: Trophic regulation of acetylcholine sensitivity of muscle: effect of electrical stimulation. Science 176, 514–516 (1972).PubMedGoogle Scholar
  159. Dretchen, K.L., Sokoll, M.D., Gergis, S.D., Long, L.P.: Relative effects of streptomycin on motor nerve terminal and end-plate. Europ. J. Pharmacol. 22, 10–16 (1973).Google Scholar
  160. Dreyer, F., Peper, K.: The acetylcholine sensitivity in the vicinity of the neuromuscular junction of the frog. Pflügers Arch. ges. Physiol. 348, 273–286 (1974 a).Google Scholar
  161. Dreyer, F., Peper, K.: The spread of acetylcholine sensitivity after denervation of frog skeletal muscle fibres. Pflügers Arch. ges. Physiol. 348, 287–292 (1974 b).Google Scholar
  162. Dreyer, F., Peper, K.: Density and dose-response curve of acetylcholine receptors in frog neuromuscular junction. Nature (Lond.). 253, 641–643 (1975).Google Scholar
  163. Duchen, L.W., Stefani, E.: Electrophysiological studies of neuromuscular transmission in hereditary “motor end-plate disease” of the mouse. J. Physiol. (Lond.) 212, 535–548 (1971).Google Scholar
  164. Duchen, L.W., Tonge, D. A.: The effect of tetanus toxin on neuromuscular transmission and on the morphology of motor end-plates in slow and fast skeletal muscle of the mouse. J. Physiol. (Lond.) 228, 157–172 (1973).Google Scholar
  165. Dudel, J., Kuffler, S.W.: The quantal nature of transmission and spontaneous miniature potentials at the crayfish neuromuscular junction. J. Physiol. (Lond.) 155, 514–529 (1961).Google Scholar
  166. Dunin-Barkovskii, V.L., Kovalev, S.A., Magazanik, L.G., Potapova, T.V., Chaylakhyan, L.M.: Equilibrium potentials of postsynaptic membrane activated with various cholinomimetics when the extracellular ionic medium is changed. Biofizika 14, 485–493 (1969). (Also: Neurosciences translations 11, 41-50; 1970).PubMedGoogle Scholar
  167. Eccles, J.C.: Specific ionic conductances at synapses. In: Agin, D.P. (Ed.): Perspectives in Membrane Biophysics. New York: Gordon and Breach 1972.Google Scholar
  168. Eccles, J.C., Katz, B., Kuffler, S.W.: Nature of the “end-plate potential” in curarized muscle. J. Neurophysiol. 4, 362–387 (1941).Google Scholar
  169. Eccles, J.C., O’connor, W.J.: Responses which nerve impulses evoke in mammalian striated muscle. J. Physiol. (Lond.) 97, 44–102 (1939).Google Scholar
  170. Edelson, A.M., Nastuk, W.L.: Pre-and post-junctional effects of 1-fluoro-2, 4-dinitrobenzene at the frog neuromuscular junction. J. Physiol. (Lond.) 229, 617–633 (1973).Google Scholar
  171. Edwards, C., Ikeda, K.: Effect of 2-PAM and succinylcholine on neuromuscular transmission in the frog. J. Pharmacol. exp. Ther. 138, 322–328 (1962).Google Scholar
  172. Eisenberg, R.S., Howell, J.N., Vaughan, P.C.: The maintenance of resting potentials in glycerol treated muscle fibres. J. Physiol. (Lond.) 215, 95–102 (1971).Google Scholar
  173. Elmqvist, D., Feldman, D.S.: Spontaneous activity at a mammalian neuromuscular junction in tetrodotoxin. Acta physiol. scand. 64, 475–476 (1965a).PubMedGoogle Scholar
  174. Elmqvist, D., Feldman, D.S.: Effects of sodium pump inhibitors on spontaneous acetylcholine release at the neuromuscular junction. J. Physiol. (Lond.) 181, 498–505 (1965b).Google Scholar
  175. Elmqvist, D., Feldman, D.S.: Influence of ionic environment on acetylcholine release from the motor nerve terminals. Acta physiol. scand. 67, 34–42 (1966).PubMedGoogle Scholar
  176. Elmqvist, D., Hofmann, W.W., Kugelberg, J., Quastel, D.M.J.: An electrophysiological investigation of neuromuscular transmission in myasthenia gravis. J. Physiol. (Lond.) 174, 417–434 (1964).Google Scholar
  177. Elmqvist, D., Johns, T.R., Thesleff, S.: A study of some electrophysiological properties of human intercostal muscle. J. Physiol. (Lond.) 154, 602–607 (1960).Google Scholar
  178. Elmqvist, D., Josefsson, J.O.: The nature of the neuromuscular block produced by neomycine. Acta physiol. scand. 54, 105–110 (1962).PubMedGoogle Scholar
  179. Elmqvist, D., Quastel, D.M.J.: Presynaptic action of hemicholinium at the neuromuscular junction. J. Physiol. (Lond.) 177, 463–482 (1965a).Google Scholar
  180. Elmqvist, D., Quastel, D.M.J.: A quantitative study of end-plate potentials in isolated human muscle. J. Physiol. (Lond.) 178, 505–529 (1965b).Google Scholar
  181. Elmqvist, D., Thesleff, S.: A study of acetylcholine induced contractures in denervated mammalian muscle. Acta pharmacol. (Kbh.) 17, 84–93 (1960).Google Scholar
  182. Engbaek, L.: Inhibitor ion: magnesium: In: Cheymol, J. (Ed.): Neuromuscular blocking and stimulating agents, Chapt. 14, pp. 391–423. Oxford: Pergamon Press 1972.Google Scholar
  183. Evans, M.H., Jaggard, P.J.: Some effects of dimethyl sulphoxide (DMSO) on the frog neuromuscular junction. Brit. J. Pharmacol. 49, 651–657 (1973).Google Scholar
  184. Evans, R.H.: Accumulation of calcium at motor end-plate. Brit. J. Pharmacol. 43, 433–434P (1971).Google Scholar
  185. Evans, R.H.: The entry of labelled calcium into the innervated region of the mouse diaphragm muscle. J. Physiol. (Lond.) 240, 517–533 (1974).Google Scholar
  186. Everett, A.J., Lowe, L.A., Wilkinson, S.: Revision of the structures of (+)-tubocurarine chloride and (+)-chondrocurine. Chem. Commun. 1970, 1020-1021.Google Scholar
  187. Falk, G., Fatt, P.: Linear electrical properties of striated muscle fibres observed with intracellular electrodes. Proc. roy. Soc. B 160, 69–123 (1964).Google Scholar
  188. Falk, G., Fatt, P.: Electrical impedance of striated muscle and its relation to contraction. In: Curtis, D.R., McIntyre, A.K. (Eds.): Studies in Physiology, pp.64–70. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  189. Fambrough, D.M.: Acetylcholine sensitivity of muscle fibre membranes: mechanism of regulation by motoneurons. Science 168, 372–373 (1970).PubMedGoogle Scholar
  190. Fambrough, D.M., Drachman, D.B., Satyamurti, S.: Neuromuscular junction in myasthenia gravis: decreased acetylcholine receptors. Science 182, 293–295 (1973).PubMedGoogle Scholar
  191. Fambrough, D.M., Hartzell, H.C.: Acetylcholine receptors: number and distribution at neuromuscular junctions in rat diaphragm. Science 176, 189–191 (1972).PubMedGoogle Scholar
  192. Fatt, P.: The electromotive action of acetylcholine at the motor end-plate. J. Physiol. (Lond.) 111, 408–422 (1950).Google Scholar
  193. Fatt, P.: Skeletal neuromuscular transmission. In: Handbook of Physiology, Section 1 (Neurophysiology), Vol. 1, pp. 199–213. Washington: Amer. Physiol. Soc. 1959.Google Scholar
  194. Fatt, P.: An analysis of the transverse electrical impedence of striated muscle. Proc. roy. Soc. B 159, 606–651 (1964).Google Scholar
  195. Fatt, P., Katz, B.: An analysis of the end-plate potential recorded with an intra-cellular electrode. J. Physiol. (Lond.) 115, 320–370 (1951).Google Scholar
  196. Fatt, P., Katz, B.: Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).Google Scholar
  197. Feltz, A., Jaoul, A.: Direct estimates of chloride activity in muscle fibres depolarized by carbachol. Brit. J. Pharmacol. 51, 304–306 (1974).Google Scholar
  198. Feltz, A., Mallart, A.: An analysis of acetylcholine responses of junctional and extra-junctional receptors of frog muscle fibres. J. Physiol. (Lond.) 218, 85–100 (1971a).Google Scholar
  199. Feltz, A., Mallart, A.: Ionic permeability changes induced by some cholinergic agonists on normal and denervated frog muscles. J. Physiol. (Lond.) 218, 101–116 (1971 b).Google Scholar
  200. Feng, T.P.: Studies on the neuromuscular junction. IV. The nature of junctional inhibition. Chin. J. Physiol. 11, 437–450 (1937).Google Scholar
  201. Feng, T.P.: Studies on neuromuscular transmission. XVIII. The local potentials around N-M junctions induced by single and multiple volleys. Chin. J. Physiol. 15, 367–404 (1940).Google Scholar
  202. Feng, T.P.: Studies on the neuromuscular junction. XXVI. The changes in the end-plate potential during and after prolonged stimulation. Chin. J. Physiol. 16, 341–372 (1941).Google Scholar
  203. Ferry, C.B., Marshall, A.R.: An anti-curare effect of hexamethonium at the mammalian neuromuscular junction. Brit. J. Pharmacol. 47, 353–362 (1973).Google Scholar
  204. Ferry, C.B., Norris, B.: Actions of bretylium tosylate at the neuromuscular junction. Brit. J. Pharmacol. 41, 607–621 (1971).Google Scholar
  205. Fertuck, H.C., Salpeter, M.M.: Localization of acetylcholine receptor by 125I-labelled α-bungarotoxin binding at mouse motor endplates. Proc. nat. Acad. Sci. (Wash.) 71, 1376–1378 (1974).Google Scholar
  206. Fisher, R. A.: The design of experiments, 8 th Ed. Edinburgh: Oliver and Boyd 1966.Google Scholar
  207. Frank, K., Becker, M.C.: Microelectrodes for Recording and Stimulation. In: Nastuk, W.L. (Ed.): Physical Techniques in Biological Research, Vol.V, Electrophysiological Methods, Part A, pp.23–87. New York: Academic Press 1964.Google Scholar
  208. Furshpan, E.J.: The effects of osmotic pressure changes on the spontaneous activity at motor nerve endings. J. Physiol. (Lond.) 134, 689–697 (1956).Google Scholar
  209. Furukawa, T., Furukawa, A.: Effects of methyl-and ethyl-derivatives of NH+4 on the neuro-muscular junction. Jap. J. Physiol. 9, 130–142 (1959).Google Scholar
  210. Furukawa, T., Sasaoka, T., Hosoya, Y.: Effects of tetrodotoxin on the neuromuscular junction. Jap. J. Physiol. 9, 143–152 (1959).Google Scholar
  211. Gaddum, J.H.: The quantitative effects of antagonistic drugs. J. Physiol. (Lond.) 89, 7P (1937).Google Scholar
  212. Gaddum, J.H., Hameed, K. A., Hathway, D.E., Stephens, F.F.: Quantitative studies of antagonists for 5-hydroxytryptamine. Quart. J. exp. Physiol. 40, 49–74 (1955).PubMedGoogle Scholar
  213. Gage, P.W.: The effect of methyl, ethyl and n-propyl alcohol on neuromuscular transmission in the rat. J. Pharmacol. exp. Ther. 150, 236–243 (1965).PubMedGoogle Scholar
  214. Gage, P.W., Eisenberg, R.S.: Capacitance of the surface and transverse tubular membrane of frog sartorius fibers. J. gen. Physiol. 53, 265–278 (1969).PubMedGoogle Scholar
  215. Gage, P.W., Hubbard, J. I.: Evidence for a Poisson distribution of miniature end-plate potentials and some implications. Nature (Lond.) 208, 395–396 (1965).Google Scholar
  216. Gage, P.W., Hubbard, J.I.: An investigation of the post-tetanic potentiation of end-plate potentials at a mammalian neuromuscular junction. J. Physiol. (Lond.) 184, 353–375 (1966).Google Scholar
  217. Gage, P.W., McBurney, R.N.: Miniature end-plate currents and potentials generated by quanta of acetylcholine in glycerol-treated toad sartorius fibres. J. Physiol. (Lond.) 226, 79–94 (1972 a).Google Scholar
  218. Gage, P.W., McBurney, R.N.: An analysis of the relationship between the current and potential generated by a quantum of acetylcholine in muscle fibres without transverse tubules. J. Membrane Biol. 12, 247–272 (1972 b).Google Scholar
  219. Gage, P.W., McBurney, R.N., Schneider, G.T.: Effects of some aliphatic alcohols on the conductance change caused by a quantum of acetylcholine at the toad end plate. J. Physiol. (Lond.) 244, 409–429 (1975).Google Scholar
  220. Gage, P.W., Quastel, D.M.J.: Competition between sodium and calcium ions in transmitter release at mammalian neuromuscular junctions. J. Physiol. (Lond.) 185, 95–123 (1966).Google Scholar
  221. Gainer, H., Reuben, J.P., Grundfest, H.: The augmentation of postsynaptic potentials in crustacean muscle fibres by caesium. A presynaptic mechanism. Comp. Biochem. Physiol. 20, 877–900 (1967).Google Scholar
  222. Galindo, A.: Procaine, pentobarbital and halothane: effects on the mammalian myoneural junction. J. Pharmacol. exp. Ther. 117, 360–368 (1971).Google Scholar
  223. Gallagher, J.P., Blaber, L.C.: Catechol, a facilitatory drug that demonstrates only a prejunctional site of action. J. Pharmacol. exp. Ther. 184, 129–135 (1973).PubMedGoogle Scholar
  224. Gallagher, J. P., Karczmar, A.G.: A direct facilitatory action for dopamine at the neuromuscular junction. Neuropharmacology 12, 783–791 (1973).PubMedGoogle Scholar
  225. Geddes, L.A.: Electrodes and the measurement of bioelectric events. New York: Wiley-Interscience 1972.Google Scholar
  226. Ginetzinsky, A.G., Shamarina, N.M.: The tonomotor phenomenon in denervated muscle. Usp. sovrem. Biol. 15, 283–294 (1942). Available as translation RTS 1710 from the British Library, Boston Spa, England.Google Scholar
  227. Ginsborg, B.L.: Spontaneous activity in muscle fibres of the chick. J. Physiol. (Lond.) 150, 707–717 (1960).Google Scholar
  228. Ginsborg, B.L.: Ion movements in junctional transmission. Pharmacol. Rev. 19, 289–316 (1967).PubMedGoogle Scholar
  229. Ginsborg, B.L.: Electrical changes in the membrane in junctional transmission. Biochim. biophys. Acta (Amst.) 300, 289–317 (1973).Google Scholar
  230. Ginsborg, B.L., Hamilton, J.T.: The effect of caesium ions on neuromuscular transmission in the frog. Quart. J. exp. Physiol. 53, 162–169 (1968).PubMedGoogle Scholar
  231. Ginsborg, B.L., Hirst, G.D.S.: The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J. Physiol. (Lond.) 224, 629–645 (1972).Google Scholar
  232. Ginsborg, B.L., Hirst, G.D.S., Maizels, J.V., Walker, J.: Specificity of adenosine on transmitter output at the neuromuscular junction. Brit. J. Pharmacol. 47, 637P (1973).Google Scholar
  233. Ginsborg, B.L., Stephenson, R.P.: On the simultaneous action of two competitive antagonists. Brit. J. Pharmacol. 51, 287–300 (1974).Google Scholar
  234. Gissen, A.J., Nastuk, W.L.: The mechanisms underlying neuromuscular block following prolonged exposure to depolarizing agents. Ann. N.Y. Acad. Sci. 135, 184–194 (1966).PubMedGoogle Scholar
  235. Glagoleva, I.M., Liberman, E. A., Khashaev, Z.KH-M.: Effect of uncouplers of oxidative phosphorylation on output of acetylcholine from nerve endings. Biofizika 15, 76–83 (1970).PubMedGoogle Scholar
  236. Göpfert, H., Schaefer, H.: Über den direkt und indirekt erregten Aktionsstrom und die Funktion der motorischen Endplatte. Pflügers Arch. ges. Physiol. 239, 597–619 (1938).Google Scholar
  237. Goldberg, A.L., Singer, J.J.: Evidence for a role of cyclic AMP in neuromuscular transmission. Proc. nat. Acad. Sci. (Wash.) 64, 134–141 (1969).Google Scholar
  238. Goldfine, C.: Dissociation constants of competitive antagonists at the mammalian neuromuscular junction. Thesis, London University (1973).Google Scholar
  239. Goldman, D.E.: Potential, impedance and rectification in membranes. J. gen. Physiol. 27, 37–60 (1943).PubMedGoogle Scholar
  240. Grampp, W., Harris, J.B., Thesleff, S.: Inhibition of denervation changes in skeletal muscle by blockers of protein synthesis. J. Physiol. (Lond.) 221, 743–754 (1972).Google Scholar
  241. Guth, L.: “Trophic” influences of nerve on muscle. Physiol. Rev. 48, 645–687 (1968).PubMedGoogle Scholar
  242. Hall, Z.W.: Multiple forms of acetylcholinesterase and their distribution in end-plate and non-end-plate regions of rat diaphragm muscle. J. Neurobiol. 4, 343–361 (1973).PubMedGoogle Scholar
  243. Harrington, L.: A linear dose-response curve at the motor end-plate. J. gen. Physiol. 62, 58–76 (1973).PubMedGoogle Scholar
  244. Harris, A.J., Miledi, R.: The effect of type D botulinum toxin on frog neuromuscular junctions. J. Physiol. (Lond.) 217, 497–515 (1971).Google Scholar
  245. Harris, A.J., Miledi, R.: A study of frog muscle maintained in organ culture. J. Physiol. (Lond.) 221, 207–226 (1972).Google Scholar
  246. Harris, E. J.: Anion interaction in frog muscle. J. Physiol. (Lond.) 141, 351–365 (1958).Google Scholar
  247. Harris, E. J., Nicholls, J.G.: The effect of denervation on the rate of entry of potassium into frog muscle. J. Physiol. (Lond.) 131, 473–476 (1956).Google Scholar
  248. Harris, E.J., Ochs, S.: Effects of sodium extrusion and local anaesthetics on muscle membrane resistance and potential. J. Physiol. (Lond.) 187, 5–21 (1966).Google Scholar
  249. Harris, J.B., Karlsson, E., Thesleff, S.: Effects of an isolated toxin from Australian Tiger Snake (Notechis scutatus scutatus) venom at the mammalian neuromuscular junction. Brit. J. Pharmacol. 47, 141–146 (1973).Google Scholar
  250. Hartzell, H.C., Fambrough, D.M.: Acetylcholine receptors: distribution and extrajunctional density in rat diaphragm after denervation correlated with acetylcholine sensitivity. J. gen. Physiol. 60, 248–262 (1972).PubMedGoogle Scholar
  251. Hartzell, H.C., Kuffler, S.W., Yoshikami, D.: Postsynaptic potentiation: interaction between quanta of acetylcholine at the skeletal neuromuscular synapse. J. Physiol. (Lond.). 251, 427–463 (1975).Google Scholar
  252. Head, S.D.: Depolarising neuromuscular blocking drugs: an electrophysiological investigation in mammalian skeletal muscle. Thesis. University of London, 1975.Google Scholar
  253. Heilbronn, E., Mattson., Ch.: The nicotinic cholinergic receptor protein: improved purification method, preliminary amino acid composition and observed auto-immune response. J. Neurochem. 22, 315–317 (1974).PubMedGoogle Scholar
  254. Henderson, E.G., Hancock, J.C.: Nicotine-induced depolarization and stimulation of potassium efflux in striated muscle. J. Pharmacol. exp. Ther. 177, 377–388 (1971).PubMedGoogle Scholar
  255. Hess, A., Pilar, G.: Slow fibres in the extraocular muscles of the cat. J. Physiol. (Lond.) 169, 780–798 (1963).Google Scholar
  256. Heuser, J., Katz, B., Miledi, R.: Structural and functional changes of frog neuromuscular junctions in high calcium solutions. Proc. roy. Soc. B 178, 407–415 (1971).Google Scholar
  257. Heuser, J., Miledi, R.: Effect of lanthanum ions on function and structure of frog neuromuscular junctions. Proc. roy. Soc. B 179, 247–260 (1971).Google Scholar
  258. Heuser, J. E., Reese, T.S.: Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344 (1973).PubMedGoogle Scholar
  259. Hidaka, T., Toida, N.: Neuromuscular transmission and excitation-contraction coupling in fish red muscle. Jap. J. Physiol. 19, 130–142 (1969).Google Scholar
  260. Hill, A. V.: The mode of action of nicotine and curari, determined by the form of the contraction curve and the method of temperature coefficients. J. Physiol. (Lond.) 39, 361–373 (1909).Google Scholar
  261. Hirst, G.D.S., Wood, D.R.: On the neuromuscular paralysis produced by procaine. Brit. J. Pharmacol. 41, 94–104 (1971a).Google Scholar
  262. Hirst, G.D.S., Wood, D.R.: Changes in the time course of transmitter action produced by procaine. Brit. J. Pharmacol. 41, 105–112 (1971b).Google Scholar
  263. Hodgkin, A.L.: Ionic movements and electrical activity in giant nerve fibres. Proc. roy. Soc. B 148, 1–37 (1958).Google Scholar
  264. Hodgkin, A.L., Horowicz, P.: Movements of sodium and potassium in single muscle fibres. J. Physiol. (Lond.) 145, 405–432 (1959 a).Google Scholar
  265. Hodgkin, A.L., Horowicz, P.: The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol. (Lond.) 148, 127–160 (1959 b).Google Scholar
  266. Hodgkin, A.L., Katz, B.: The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.) 108, 37–77 (1949).Google Scholar
  267. Hodgkin, A.L., Nakajima, S.: The effect of diameter on the electrical constants of frog skeletal muscle fibres. J. Physiol. (Lond.) 221, 105–120 (1972a).Google Scholar
  268. Hodgkin, A.L., Nakajima, S.: Analysis of the membrane capacity in frog muscle. J. Physiol. (Lond.) 221, 121–136 (1972b).Google Scholar
  269. Hofmann, W.W., Feigen, G.A., Genther, G.H.: Effects of veratrine, nitrate ion and γ-aminobutyric acid on mammalian miniature end-plate potentials. Nature (Lond.) 193, 175–176 (1962).Google Scholar
  270. Hofmann, W.W., Parsons, R.L., Feigen, G.A.: Effects of temperature and drugs on mammalian motor nerve terminals. Amer. J. Physiol. 211, 135–140 (1966).PubMedGoogle Scholar
  271. Hofmann, W.W., Thesleff, S.: Studies on the trophic influence of nerve on skeletal muscle. Europ. J. Pharmacol. 20, 256–260 (1972).Google Scholar
  272. Hoh, J.F.Y., Salafsky, B.: Effects of nerve cross-union on rat intracellular potassium in fast-twitch and slow-twitch rat muscles. J. Physiol. (Lond.) 216, 171–179 (1971).Google Scholar
  273. Howell, J.N., Jenden, D.J.: T-tubules of skeletal muscle: morphological alterations which interrupt excitation-contraction coupling. Fed. Proc. 26, 553 (1967).Google Scholar
  274. Hubbard J.I.: Repetitive stimulation at the mammalian neuromuscular junction and the mobilization of transmitter. J. Physiol. (Lond.) 169, 641–662 (1963).Google Scholar
  275. Hubbard, J.I.: Microphysiology of vertebrate neuromuscular transmission. Physiol. Rev. 53, 674–723 (1973).PubMedGoogle Scholar
  276. Hubbard, J.I., Jones, S.F.: Spontaneous quantal transmitter release: a statistical analysis and some implications. J. Physiol. (Lond.) 232, 1–21 (1973).Google Scholar
  277. Hubbard, J.L., Jones, S.F., Landau, E.M.: On the mechanism by which calcium and magnesium affect the spontaneous release of transmitter from mammalian motor nerve terminals. J. Physiol. (Lond.) 194, 355–380 (1968 a).Google Scholar
  278. Hubbard, J.I., Jones, S.F., Landau, E. M.: On the mechanism by which calcium and magnesium affect the release of transmitter by nerve impulses. J. Physiol. (Lond.) 196, 75–86 (1968 b).Google Scholar
  279. Hubbard J.I., Jones, S.F., Landau, E. M.: An examination of the effects of osmotic pressure changes upon transmitter release from mammalian motor nerve terminals. J. Physiol. (Lond.) 197, 639–657 (1968 c).Google Scholar
  280. Hubbard, J.L., Jones, S.F., Landau, E.M.: The effect of temperature change upon transmitter release, facilitation and post-tetanic potentiation. J. Physiol. (Lond.) 216, 591–609 (1971).Google Scholar
  281. Hubbard, J.L., Lliná S, R., Quastel, D.M.J.: Electrophysiological analysis of synaptic transmission. London: Edward Arnold 1969.Google Scholar
  282. Hubbard, J. I., Schmidt, R.F.: An electrophysiological investigation of mammalian motor nerve terminals. J. Physiol. (Lond.) 166, 145–167 (1963).Google Scholar
  283. Hubbard, J. I., Schmidt, R.F., Yokota, T.: The effect of acetylcholine upon mammalian motor nerve terminals. J. Physiol. (Lond.) 181, 810–829 (1965).Google Scholar
  284. Hubbard, J. I., Willis, W. D.: Hyperpolarization of mammalian motor nerve terminals. J. Physiol. (Lond.) 163, 115–137 (1962).Google Scholar
  285. Hubbard, J. I., Willis, W.D.: The effects of depolarization of motor nerve terminals upon the release of transmitter by nerve impulses. J. Physiol. (Lond.) 194, 381–405 (1968).Google Scholar
  286. Hubbard, J. I., Wilson, D.F.: Neuromuscular transmission in a mammalian preparation in the absence of blocking drugs and the effect of D-tubocurarine. J. Physiol. (Lond.) 228, 307–325 (1973).Google Scholar
  287. Hubbard, S. J.: The electrical constants and the component conductances of frog skeletal muscle after denervation. J. Physiol. (Lond.) 165, 443–456 (1963).Google Scholar
  288. Hurlbut, W.P., Longenecker, H.B., Mauro, A.: Effects of calcium and magnesium on the frequency of miniature end-plate potentials during prolonged tetanization. J. Physiol. (Lond.) 219, 17–38 (1971).Google Scholar
  289. Hutter, O.F., Padsha, S.M.: Effect of nitrate and other ions on the membrane resistance of frog skeletal muscle. J. Physiol. (Lond.) 146, 117–132 (1959).Google Scholar
  290. Hutter, O.F., Trautwein, W.: Neuromuscular facilitation by stretch of motor nerve endings. J. Physiol. (Lond.) 133, 610–625 (1956).Google Scholar
  291. Hutter, O.F., Warner, A.E.: The pH sensitivity of the chloride conductance of frog skeletal muscle. J. Physiol. (Lond.) 189, 403–425 (1967a).Google Scholar
  292. Hutter, O.F., Warner, A.E.: The effect of pH on the 36Cl efflux from frog skeletal muscle. J. Physiol. (Lond.) 189, 427–443 (1967b).Google Scholar
  293. Hutter, O.F., Warner, A.E.: Action of some foreign cations and anions on the chloride permeability of frog muscle. J. Physiol. (Lond.) 189, 445–460 (1967 c).Google Scholar
  294. Huxley, H.E.: Molecular basis of contraction in cross-striated muscles. In: Bourne, G.H. (Ed.): The structure and function of muscle, Vol.1, 2nd Ed. New York: Academic Press 1972.Google Scholar
  295. Ing, H.R., Wright, W.M.: The curariform action of quaternary ammonium salts. Proc. roy. Soc. B 109, 337–353 (1932).Google Scholar
  296. Jacobs, R.S., Shinnick, P.L.: Facilitatory sites of action of theophylline in isolated cat tenuissimus muscle. Int. J. Neuropharmacol. 12, 885–895 (1973).Google Scholar
  297. Jenkinson, D.H.: The nature of the antagonism between calcium and magnesium ions at the neuromuscular junction. J. Physiol. (Lond.) 138, 434–444 (1957).Google Scholar
  298. Jenkinson, D.H.: The antagonism between tubocurarine and substances which depolarize the motor end-plate. J. Physiol. (Lond.) 152, 309–324 (1960).Google Scholar
  299. Jenkinson, D.H., Nicholls, J.G.: Contractures and permeability changes produced by acetylcholine in depolarized denervated muscle. J. Physiol. (Lond.) 159, 111–127 (1961).Google Scholar
  300. Jenkinson, D.H., Stamenovic, B.A., Whitaker, B.D.L.: The effect of noradrenaline on the end-plate potential in twitch fibres of the frog. J. Physiol. (Lond.) 195, 743–754 (1968).Google Scholar
  301. Jenkinson, D.H., Terrar, D.A.: Influence of chloride ions on changes in membrane potential during prolonged application of carbachol to frog skeletal muscle. Brit. J. Pharmacol. 47, 363–376 (1973).Google Scholar
  302. Johnson, E.W., Parsons, R.L.: Characteristics of postjunctional carbamycholine receptor activation and inhibition. Amer. J. Physiol. 222, 793–799 (1972).PubMedGoogle Scholar
  303. Johnson, E.W., Wernig, A.: The binomial nature of transmitter release at the crayfish neuromuscular junction. J. Physiol. (Lond.) 218, 757–767 (1971).Google Scholar
  304. Jones, R., Vrbová, G.: Effect of muscle activity on denervation hypersensitivity. J. Physiol. (Lond.) 210, 144–145P (1970).Google Scholar
  305. Jones, R., Vrbová, G.: Two factors responsible for the development of denervation hypersensitivity. J. Physiol. (Lond.) 236, 517–538 (1974).Google Scholar
  306. Jones, S.F., Kwanbunbumpen, S.: The effects of nerve stimulation and hemicholinium on synaptic vesicles at the mammalian neuromuscular junction. J. Physiol. (Lond.) 207, 31–50 (1970a).Google Scholar
  307. Jones, S.F., Kwanbunbumpen, S.: Some effects of nerve stimulation and hemicholinium on quantal transmitter release at the mammalian neuromuscular junction. J. Physiol. (Lond.) 207, 51–61 (1970b).Google Scholar
  308. Josefsson, J.O., Thesleff, S.: Electromyographic findings in experimental botulinum intoxication. Acta physiol. scand. 51, 163–168 (1961).PubMedGoogle Scholar
  309. Kahn, R., Leyaouanc, A.: Appendix to: Feltz, A. and A. Mallart: An analysis of acetylcholine responses of junctional and extrajunctional receptors of frog muscle fibres. J. Physiol. (Lond.) 218, 85–100 (1971).Google Scholar
  310. Kajimoto, N., Kirpekar, S.M.: Effect of manganese and lanthanum on spontaneous release of acetylcholine at frog motor nerve terminals. Nature (Lond.) New Biol. 235, 29–30 (1972).Google Scholar
  311. Karis, J.H., Gissen, A.J., Nastuk, W.L.: Mode of action of diethyl ether in blocking neuromuscular transmission. Anesthesiology 27, 42–51 (1966 a).PubMedGoogle Scholar
  312. Karis, J.H., Gissen, A. J., Nastuk, W.L.: The effect of volatile anaesthetic agents on neuromuscular transmission. Anesthesiology 28, 128–134 (1967).PubMedGoogle Scholar
  313. Karis, J.H., Nastuk, W.L., Katz, R.L.: The action of tacrine on neuromuscular transmission: a comparison with hexafluorenium. Brit. J. Anaesth. 38, 762–774 (1966 b).PubMedGoogle Scholar
  314. Karlin, A.: On the application of “a Plausible Model” of allosteric proteins to the receptor for acetylcholine. J. theor. Biol. 16, 306–320 (1967).PubMedGoogle Scholar
  315. Kasai, M., Changeux, J.P.: In vitro excitation of purified membrane fragments by cholinergic agonists. 11. The permeability change caused by cholinergic agonists. J. Membrane Biol. 6, 24–57 (1971).Google Scholar
  316. Katz, B.: Impedance changes in frog’s muscle associated with electronic and “end-plate” potentials. J. Neurophysiol. 5, 169–184 (1942).Google Scholar
  317. Katz, B.: The transmission of impulses from nerve to muscle, and the subcellular unit of synaptic action. Proc. roy. Soc. B 155, 455–477 (1962).Google Scholar
  318. Katz, B.: Nerve, muscle and synapse. New York: McGraw-Hill 1966.Google Scholar
  319. Katz, B.: The release of neural transmitter substances. Liverpool: University Press 1969.Google Scholar
  320. Katz, B., Miledi, R.: The localized action of “end-plate drugs” in the twitch fibres of the frog. J. Physiol. (Lond.) 155, 399–415 (1961).Google Scholar
  321. Katz, B., Miledi, R.: Further observations on the distribution of acetylcholine-reactive sites in skeletal muscle. J. Physiol. (Lond.) 170, 379–388 (1964a).Google Scholar
  322. Katz, B., Miledi, R.: The development of acetylcholine sensitivity in nerve-free segments of skeletal muscle. J. Physiol. (Lond.) 170, 389–396 (1964 b).Google Scholar
  323. Katz, B., Miledi, R.: Propagation of electric activity in motor nerve terminals. Proc. roy. Soc. B 161, 453–482 (1965 a).Google Scholar
  324. Katz, B., Miledi, R.: The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc. roy. Soc. B 161, 483–495 (1965b).Google Scholar
  325. Katz, B., Miledi, R.: The effect of calcium on acetylcholine release from the motor nerve terminals. Proc. roy. Soc. B 161, 496–503 (1965 c).Google Scholar
  326. Katz, B., Miledi, R.: The effect of temperature on the synaptic delay at the neuromuscular junction. J. Physiol. (Lond.) 181, 656–670 (1965d).Google Scholar
  327. Katz, B., Miledi, R.: The quantal release of transmitter substances. In: Curtis, D.R., McIntyre, A.K. (Eds.): Studies in Physiology, pp.118–124. Berlin-Heidelberg-New York: Springer 1965e.Google Scholar
  328. Katz, B., Miledi, R.: Modification of transmitter release by electrical interference with motor nerve endings. Proc. roy. Soc. B 167, 1–7 (1967 a).Google Scholar
  329. Katz, B., Miledi, R.: Tetrodotoxin and neuromuscular transmission. Proc. roy. Soc. B 167, 8–22 (1967b).Google Scholar
  330. Katz, B., Miledi, R.: The release of acetylcholine from nerve endings by graded electric pulses. Proc. roy. Soc. B 167, 23–38 (1967 c).Google Scholar
  331. Katz, B., Miledi, R.: The timing of calcium action during neuromuscular transmission. J. Physiol. (Lond.) 189, 535–544 (1967 d).Google Scholar
  332. Katz, B., Miledi, R.: A study of synaptic transmission in the absence of nerve impulses. J. Physiol. (Lond.) 192, 407–436 (1967 e).Google Scholar
  333. Katz, B., Miledi, R.: The role of calcium in neuromuscular facilitation. J. Physiol. (Lond.) 195, 481–492 (1968a).Google Scholar
  334. Katz, B., Miledi, R.: The effect of local blockage of motor nerve terminals. J. Physiol. (Lond.) 199, 729–741 (1968 b).Google Scholar
  335. Katz, B., Miledi, R.: Tetrodotoxin-resistant electrical activity in presynaptic terminals. J. Physiol. (Lond.) 203, 459–487 (1969 a).Google Scholar
  336. Katz, B., Miledi, R.: Spontaneous and evoked activity of motor nerve endings in calcium ringer. J. Physiol. (Lond.) 203, 689–706 (1969 b).Google Scholar
  337. Katz, B., Miledi, R.: Further study of the role of calcium in synaptic transmission. J. Physiol. (Lond.) 207, 789–801 (1970).Google Scholar
  338. Katz, B., Miledi, R.: The effect of prolonged depolarization on synaptic transfer in the stellate ganglion of the squid. J. Physiol. (Lond.) 216, 503–512 (1971).Google Scholar
  339. Katz, B., Miledi, R.: The statistical nature of the acetylcholine potential and its molecular components. J. Physiol. (Lond.) 224, 665–699 (1972).Google Scholar
  340. Katz, B., Miledi, R.: The characteristics of “end-plate noise” produced by different depolarizing drugs. J. Physiol. (Lond.) 230, 707–717 (1973a).Google Scholar
  341. Katz, B., Miledi, R.: The binding of acetylcholine to receptors and its removal from the synaptic cleft. J. Physiol. (Lond.) 231, 549–574 (1973 b).Google Scholar
  342. Katz, B., Miledi, R.: The effect of α-bungarotoxin on acetylcholine receptors. Brit. J. Pharmacol. 49, 138–139 (1973c).Google Scholar
  343. Katz, B., Miledi, R.: The effect of atropine on acetylcholine action at the neuromuscular junction. Proc. roy. Soc. B 184, 221–226 (1973d).Google Scholar
  344. Katz, B., Miledi, R.: The effect of procaine on the action of acetylcholine at the neuromuscular junction. J. Physiol. (Lond.) 249, 269–284 (1975).Google Scholar
  345. Katz, B., Thesleff, S.: On the factors which determine the amplitude of the “miniature end-plate potential”. J. Physiol. (Lond.) 137, 267–278 (1957 a).Google Scholar
  346. Katz, B., Thesleff, S.: A study of the “desensitization” produced by acetylcholine at the motor end-plate. J. Physiol. (Lond.) 138, 63–80 (1957 b).Google Scholar
  347. Kelly, J.S.: Antagonism between Na+ and Ca2+ at the neuromuscular junction. Nature (Lond.) 205, 296–297 (1965).Google Scholar
  348. Kelly, J.S.: The antagonism of Ca2+ by Na+ and other monovalent ions at the frog neuromuscular junction. Quart. J. exp. Physiol. 53, 239–249 (1968).PubMedGoogle Scholar
  349. Kemenskaya, M.A., Thesleff, S.: The neuromuscular blocking action of an isolated toxin from the elapid (Oxyuranus scutellactus). Acta physiol. scand. 90, 716–724 (1974).Google Scholar
  350. Kernan, R.P.: Membrane potential changes during sodium transport in frog sartorius muscle. Nature (Lond.) 193, 986–987 (1962).Google Scholar
  351. Kernan, R.P.: Resting potential of isolated rat muscles measured in plasma. Nature (Lond.) 200, 474–475 (1963).Google Scholar
  352. Kernan, R.P.: Membrane potential and chemical transmitter in active transport of ions by rat skeletal muscle. J. gen. Physiol. 51, 204–210 (1968).PubMedGoogle Scholar
  353. Kernan, R.P.: Active transport and ionic concentration gradients in muscle. In: Harris, E.J. (Ed.): Transport and accumulation in biological systems, 3rd Ed. London: Butterworth 1972.Google Scholar
  354. Khromov-Borisov, N.V., Michelson, M.J.: The mutual disposition of cholinoreceptors of locomotor muscles and the changes in their disposition in the course of evolution. Pharmacol. Rev. 18, 1051–1090 (1966).PubMedGoogle Scholar
  355. Kim, K.C., Karczmar, A.G.: Adaptation of the neuromuscular junction to constant concentrations of acetylcholine. Int. J. Neuropharmacol. 6, 51–61 (1967).PubMedGoogle Scholar
  356. Kirschner, L.B., Stone, W.E.: Action of inhibitors at the myoneural junction. J. gen. Physiol. 34, 821–834 (1951).PubMedGoogle Scholar
  357. Kita, H., Van Der Kloot, W.: Action of Co and Ni at the frog neuromuscular junction. Nature (Lond.) New Biology 245, 52–53 (1973).Google Scholar
  358. Klaus, W., Lüllmann, H., Muscholl, E.: Der Kalium-Flux des normalen und denervierten Rattenzwerchfells. Pflügers Arch. ges. Physiol. 271, 761–775 (1960a).Google Scholar
  359. Klaus, W., Lüllmann, H., Muscholl, E.: Der Einfluß von Acetylcholin auf die 42Kalium-Abgabe postnataler denervierter und reinnervierter Skeletmuskulatur. Experientia (Basel) 16, 498 (1960 b).Google Scholar
  360. Klaus, W., Lüllmann, H., Muscholl, E.: Die Wirkung von Acetylcholin auf den K-und Na-Flux und ihre pharmakologische Beeinflussung am denervierten Rattenzwerchfell. Arch. exp. Path. Pharmak. 241, 281–292 (1961).Google Scholar
  361. Koenig, J., Pécot-Dechavassine, M.: Relations entre l’apparition des potentials miniaturs spontanés et l’ultrastructure des plaques motrices en voie de reinnervation et de néoformation chez le rat. Brain Res. 27, 43–57 (1971).PubMedGoogle Scholar
  362. Koester, J., Nastuk, W.L.: Reversal potentials of cholinergic partial agonists. Fed. Proc. 29, 716 (1970).Google Scholar
  363. Koketsu, K.: Action of tetraethylammonium chloride on neuromuscular transmission in frogs. Amer. J. Physiol. 193, 213–218 (1958).PubMedGoogle Scholar
  364. Koketsu, K., Nishi, S.: Restoration of neuromuscular transmission in sodium-free hydrazinium solution. J. Physiol. (Lond.) 147, 239–252 (1959).Google Scholar
  365. Kordaš, M.: The effect of atropine and curarine on the time course of the end-plate potential in frog sartorius muscle. Int. J. Neuropharmacol. 7, 523–530 (1968).PubMedGoogle Scholar
  366. Kordaš, M.: The effect of membrane polarization on the time course of the end-plate current in frog sartorius muscle. J. Physiol. (Lond.) 204, 493–502 (1969).Google Scholar
  367. Kordaš, M.: The effect of procaine on neuromuscular transmission. J. Physiol. (Lond.) 209, 689–699 (1970).Google Scholar
  368. Kordaš, M.: An attempt at an analysis of the factors determining the time course of the end-plate current. I. The effect of prostigmine and of the ratio of Mg2+ to Ca2+. J. Physiol. (Lond.) 224, 317–332 (1972a).Google Scholar
  369. Kordaš, M.: An attempt at an analysis of the factors determining the time course of the end-plate current. II. Temperature. J. Physiol. (Lond.) 224, 333–348 (1972b).Google Scholar
  370. Kraatz, H.G., Trautwein, W.: Die Wirkung von 2, 4-Dinitrophenol (DNP) auf die neuromuskuläre Erregungsübertragung. Arch. exp. Path. Pharmak. 231, 419–439 (1957).Google Scholar
  371. Kriebel, M.E., Gross, C.E.: Multimodal distribution of frog miniature endplate potentials in adult, denervated and tadpole leg muscle. J. gen. Physiol. 64, 85–103 (1974).PubMedGoogle Scholar
  372. Krnjević, K., Miledi, R.: Some effects produced by adrenaline upon neuromuscular propagation in rats. J. Physiol. (Lond.) 141, 291–304 (1958a).Google Scholar
  373. Krnjević, K., Miledi, R.: Acetylcholine in mammalian neuromuscular transmission. Nature (Lond.) 182, 805–806 (1958 b).Google Scholar
  374. Krnjević, K., Mitchell, J.F., Szerb, J.C.: Determination of iontophoretic release of acetylcholine from micropipettes. J. Physiol. (Lond.) 165, 421–436 (1963).Google Scholar
  375. Kruckenberg, P., Bauer, H.: Die Dissoziation-konstante zwischen Curare und dem Acetylcholin-Receptor. Pflügers Arch. ges. Physiol. 326, 184–192 (1971).Google Scholar
  376. Kuba, K.: The action of phenol on neuromuscular transmission in the red muscle of fish. Jap. J. Physiol. 19, 762–774 (1969).Google Scholar
  377. Kuba, K.: Effects of catecholamines on the neuromuscular junction in the rat diaphragm. J. Physiol. (Lond.) 211, 551–570 (1970).Google Scholar
  378. Kuba, K., Tomita, T.: Noradrenaline action on nerve terminal in the rat diaphragm. J. Physiol. (Lond.) 217, 19–31 (1971).Google Scholar
  379. Kuffler, S.W., Yoshikami, D.: The distribution of acetylcholine sensitivity at the post-synaptic membrane of vertebrate skeletal twitch muscles: iontophoretic mapping in the micron range. J. Physiol. (Lond.) 244, 703–730 (1975).Google Scholar
  380. Kuno, M: Quantum aspects of central and ganglionic synaptic transmission in vertebrates. Physiol. Rev. 51, 647–678 (1971).PubMedGoogle Scholar
  381. Kuno, M., Turkanis, S. A., Weakly, J.N.: Correlation between nerve terminal size and transmitter release at the neuromuscular junction of the frog. J. Physiol. (Lond.) 213, 545–556 (1971).Google Scholar
  382. Lambert, D.H., Parsons, R.L.: Influence of polyvalent cations on the activation of muscle end-plate receptors. J. gen. Physiol. 56, 309–321 (1970).PubMedGoogle Scholar
  383. Landau, E.M.: The interaction of presynaptic polarization with calcium and magnesium in modifying spontaneous transmitter release from mammalian motor nerve terminals. J. Physiol. (Lond.) 203, 281–299 (1969).Google Scholar
  384. Landau, E.M., Smolinsky, A., Lass, Y.: Post-tetanic potentiation and facilitation do not share a common calcium-dependent mechanism. Nature (Lond.) New Biol. 244, 155–157 (1973).Google Scholar
  385. Landowne, D., Potter, L.T., Terrar, D.A.: Structure-function relationship in excitable membranes. Ann. Rev. Physiol. 37, 485–508 (1975).Google Scholar
  386. Lane, N.J., Gage, P.W.: Effects of Tiger snake venom on the ultrastructure of motor nerve terminals. Nature (Lond.) New Biology 244, 94–96 (1973).Google Scholar
  387. Langley, J.N.: On the reaction of cells and of nerve endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J. Physiol. (Lond.) 33, 374–413 (1905).Google Scholar
  388. Langley, J.N.: On the contraction of muscle, chiefly in relation to the presence of “receptive” substances. J. Physiol. (Lond.) 36, 347–384 (1907).Google Scholar
  389. Langley, J.N.: The antagonism of curari and nicotine in skeletal muscles. J. Physiol. (Lond.) 48, 73–108 (1914).Google Scholar
  390. Lavallée, M., Schanne, O.F., Hébert, N.C.: Glass microelectrodes. New York: Wiley 1969.Google Scholar
  391. Lee, C.Y.: Chemistry and pharmacology of polypeptide toxins in snake venoms. Ann. Rev. Pharmacol. 12, 265–286 (1972).PubMedGoogle Scholar
  392. Lee, C.Y., Chang, C.C., Chen, Y.M.: Reversibility of neuromuscular blockade by neurotoxins from elapid and sea snake venoms. J. Formosan Med. Ass. 71, 344–349 (1972).Google Scholar
  393. Lee, C.Y., Tseng, L.F., Chiu, J.H.: Influence of denervation on localization of neurotoxins from elapid venoms in rat diaphragm. Nature (Lond.) 215, 1177–1178 (1967).Google Scholar
  394. Lester, H.A.: Blockade of acetylcholine receptors by cobra toxin: electrophysiological studies. Molec. Pharmacol. 8, 623–631 (1972a).Google Scholar
  395. Lester, H.A.: Vulnerability of desensitized or curare-treated acetylcholine receptors to irreversible blockade by cobra toxin. Molec. Pharmacol. 8, 633–644 (1972b).Google Scholar
  396. Li, C.L., Shy, G.M., Wells, J.: Some properties of mammalian skeletal muscle fibres with particular reference to fibrillation potentials. J. Physiol. (Lond.) 135, 522–535 (1957).Google Scholar
  397. Lievremont, M., Czajka, M., Tazieff-Depierre, F.: Etude in situ d’une fixation de calcium et de sa libération a la jonction neuromusculaire. C.R. Acad. Sci. (Paris) 267D, 1988–1991 (1968).Google Scholar
  398. Liley, A.W.: An investigation of spontaneous activity at the neuromuscular junction of the rat. J. Physiol. (Lond.) 132, 650–666 (1956 a).Google Scholar
  399. Liley, A.W.: The quantal components of the mammalian end-plate potential. J. Physiol. (Lond.) 133, 571–587 (1956b).Google Scholar
  400. Liley, A.W.: The effects of presynaptic polarization on the spontaneous activity at the mammalian neuromuscular junction. J. Physiol. (Lond.) 134, 427–443 (1956c).Google Scholar
  401. Liley, A.W.: Spontaneous release of transmitter substance in multiquantal units. J. Physiol. (Lond.) 136, 595–605 (1957).Google Scholar
  402. Liley, A.W., North, K. A. K.: An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. J. Neurophysiol. 16, 509–527 (1953).PubMedGoogle Scholar
  403. Ling, G., Gerard, R.W.: The normal membrane potential of frog sartorius fibers. J. cell. comp. Physiol. 34, 383–396 (1949).Google Scholar
  404. Lipicky, R.J., Bryant, S.H., Salmon, J.H.: Cable parameters, sodium, potassium, chloride and water content, and potassium efflux in isolated external intercostal muscle of normal volunteers and patients with myotonia congenita. J. clin. Invest. 50, 2091–2103 (1971).PubMedGoogle Scholar
  405. Lømo, T., Rosenthal, J.: Control of acetylcholine sensitivity by muscle activity in the rat. J. Physiol. (Lond.) 221, 493–513 (1972).Google Scholar
  406. Longenecker, H.E., Hurlbut, W.P., Mauro, A., Clark, A.W.: Effects of black widow spider venom on the frog neuromuscular junction. Nature (Lond.) 225, 701–703 (1970).Google Scholar
  407. Lu, T.-C.: Affinity of curare-like compounds and their potency in blocking neuromuscular transmission. J. Pharmacol. exp. Ther. 174, 560–566 (1970).PubMedGoogle Scholar
  408. Lubińska, L., Zelena, J.: Acetylcholinesterase at muscle-tendon junctions during postnatal development in rats. J. Anat. (Lond.) 101, 295–308 (1967).Google Scholar
  409. Lundberg, A., Quilisch, H.: Presynaptic potentiation and depression of neuromuscular transmission in frog and rat. Acta physiol. scand. 30, Suppl. III, 111–120 (1953 a).Google Scholar
  410. Lundberg, A., Quilisch, H.: On the effect of calcium on presynaptic potentiation and depression at the neuromuscular junction. Acta physiol. scand. 30, Suppl. III, 121–129 (1953b).Google Scholar
  411. Lunt, G.G., Stefani, E., De Robertis, E.: Increased incorporation of [G — 3H]Leucine into a possible “receptor” proteolipid in denervated muscle in vivo. J. Neurochem. 18, 1545–1553 (1971).PubMedGoogle Scholar
  412. Mackay, D.: A new method for the analysis of drug-receptor interactions. Advanc. Drug Res. 3, 1–19 (1966).Google Scholar
  413. Maclagan, J.: A comparison of the responses of the tenuissimus muscle to neuromuscular blocking drugs in vivo and in vitro. Brit. J. Pharmacol. 18, 204–216 (1962).PubMedGoogle Scholar
  414. Maclagan, J., Vrbová, G.: A study of the increased sensitivity of denervated and reinnervated muscle to depolarizing drugs. J. Physiol. (Lond.) 182, 131–143 (1966).Google Scholar
  415. Maeno, T.: Analysis of sodium and potassium conductances in the procaine end-plate potential. J. Physiol. (Lond.) 183, 592–606 (1966).Google Scholar
  416. Maeno, T., Edwards, C.: Neuromuscular facilitation with low frequency stimulation and effects of some drugs. J. Neurophysiol. 32, 785–792 (1969).PubMedGoogle Scholar
  417. Maeno, T., Edwards, C., Hashimura, S.: Differences in effects on end-plate potentials between procaine and lidocaine as revealed by voltage-clamp experiments. J. Neurophysiol. 34, 32–46 (1971).PubMedGoogle Scholar
  418. Magazanik, L.G.: Mechanism of desensitization of the post-synaptic membrane of the muscle fibre. Biofizika 13, 199–203 (1968).PubMedGoogle Scholar
  419. Magazanik, L.G.: Effect of sympathomimetic amines on the desensitization of the frog motor end-plate to acetylcholine. Sechenov physiol. J. U.S.S.R. 55, 1147–1155 (1969).Google Scholar
  420. Magazanik, L.G.: On the mechanism of influence of the diethylaminoethyl ether of diphenylpropylacetic acid (SKF-525 A) on neuromuscular synapses. (In Russian). Bull. Biol. Méd. Exp. URSS 69, (3) 10–13 (1970).Google Scholar
  421. Magazanik, L.G.: On the mechanism of antiacetylcholine effects of some mononitrogen anticholinergics in the neuromuscular synapse. Farmakol. i Toksikol. 3, 292–296 (1971a).Google Scholar
  422. Magazanik, L.G.: Influence of certain membrane stabilizers on the function of a neuromuscular synapse. Sechenov physiol. J. U.S.S.R. 57, 1313–1321 (1971 b).Google Scholar
  423. Magazanik, L.G., Potapova, T.V.: Effect of changes in extracellular ionic medium on equilibrium potentials of the extrasynaptic membrane of denervated muscle. Biofizika 14, 658–661 (1969). (English version in Neurosciences Translations 12, 1-4, (1970)PubMedGoogle Scholar
  424. Magazanik, L.G., Shekhirev, N.N.: Desensitization to acetylcholine in various frog muscles. Sechenov physiol. J. U.S.S.R. 56, 582–588 (1970).Google Scholar
  425. Magazanik, L.G., Vyskočil, F.: Different action of atropine and some analogues on the end-plate potentials and induced acetylcholine potentials. Experientia (Basel) 25, 618–619 (1969).Google Scholar
  426. Magazanik, L.G., Vyskočil, F.: Dependence of acetylcholine desensitization on the membrane potential of frog muscle fibre and on the ionic changes in the medium. J. Physiol. (Lond.) 210, 507–518 (1970).Google Scholar
  427. Magazanik, L.G., Vyskočil, F.: The loci of α-bungarotoxin action on the muscle postjunctional membrane. Brain Res. 48, 420–423 (1972).PubMedGoogle Scholar
  428. Magazanik, L.G., Vyskočil, F.: Desensitization at the motor end-plate. In: Rang, H.P. (Ed.): Drug receptors, pp. 105–119. London: Macmillan 1973.Google Scholar
  429. Magazanik, L.G., Vyskočil, F.: The effect of temperature on desensitization kinetics at the post-synaptic membrane of the frog muscle fibre. J. Physiol. (Lond.) 249, 285–300 (1975).Google Scholar
  430. Magleby, K.L.: The effect of repetitive stimulation on facilitation of transmitter release at the frog neuromuscular junction. J. Physiol. (Lond.) 234, 327–352 (1973 a).Google Scholar
  431. Magleby, K.L.: The effect of tetanic and post-tetanic potentiation on facilitation of transmitter release at the frog neuromuscular junction. J. Physiol. (Lond.) 234, 353–371 (1973 b).Google Scholar
  432. Magleby, K.L., Stevens, C.F.: The effect of voltage on the time course of end-plate currents. J. Physiol. (Lond.) 223, 151–171 (1972a).Google Scholar
  433. Magleby, K.L., Stevens, C.F.: A quantitative description of end-plate currents. J. Physiol. (Lond.) 223, 173–197 (1972b).Google Scholar
  434. Magleby, K.L., Zengel, J.E.: A dual effect of repetitive stimulation on post-tetanic potentiation of transmitter release at the frog neuromuscular junction. J. Physiol. (Lond.) 245, 163–182 (1975 a).Google Scholar
  435. Magleby, K.L., Zengel, J.E.: A quantitative description of tetanic and post-tetanic potentiation of transmitter release at the frog neuromuscular junction. J. Physiol. (Lond.) 245, 183–208 (1975 b).Google Scholar
  436. Mahler, H.R., Cordes, E.H.: Biological Chemistry. 2nd ed. New York: Harper and Row 1971.Google Scholar
  437. Mallart, A., Martin, A.R.: An analysis of facilitation of transmitter release at the neuromuscular junction of the frog. J. Physiol. (Lond.) 193, 679–694 (1967).Google Scholar
  438. Mallart, A., Martin, A.R.: The relation between quantum content and facilitation at the neuromuscular junction of the frog. J. Physiol. (Lond.) 196, 593–604 (1968).Google Scholar
  439. Mallart, A., Trautmann, A.: Ionic properties of the neuromuscular junction of the frog: effects of denervation and pH. J. Physiol. (Lond.) 234, 553–567 (1973).Google Scholar
  440. Mambrini, J., Benoit, P.R.: Action de la caféine sur les jonctions neuro-musculaires de la grenouille. C.R. Soc. Biol. (Paris) 157, 1373–1377 (1963).Google Scholar
  441. Mambrini, J., Benoit, P.R.: Action du calcium sur la jonction neuro-musculaire chez la grenouille. C.R. Soc. Biol. (Paris) 158, 1454–1458 (1964).Google Scholar
  442. Manalis, R.S., Cooper, G.P.: Presynaptic and postsynaptic effects of lead at the frog neuromuscular junction. Nature (Lond.) 243, 354–355 (1973).Google Scholar
  443. Manthey, A.A.: The effect of calcium on the desensitization of membrane receptors at the neuromuscular junction. J. gen. Physiol. 49, 963–976 (1966).PubMedGoogle Scholar
  444. Manthey, A.A.: Further studies of the effect of calcium on the time course of the action of carbamylcholine at the neuromuscular junction. J. gen. Physiol. 56, 407–419 (1970).PubMedGoogle Scholar
  445. Manthey, A.A.: The antagonistic effects of calcium and potassium on the time course of action of carbamylcholine at the neuromuscular junction. J. Membrane Biol. 9, 319–340 (1972).Google Scholar
  446. Martin, A.R.: A further study of the statistical composition of the end-plate potential. J. Physiol. (Lond.) 130, 114–122 (1955).Google Scholar
  447. Martin, A.R.: Quantal nature of synaptic transmission. Physiol. Rev. 46, 51–66 (1966).Google Scholar
  448. Martin, A.R.: Synaptic Transmission. In: Hunt, C.C. (Ed.): MTP International Review of Science. Physiology Series I: Neurophysiology, Vol. 3, pp. 53–80. London: Butterworths 1975.Google Scholar
  449. Martin, A.R., Pilar, G.: Quantal components of the synaptic potential in the ciliary ganglion of the chick. J. Physiol. (Lond.) 175, 1–16 (1964 a).Google Scholar
  450. Martin, A.R., Pilar, G.: Presynaptic and postsynaptic events during post-tetanic potentiation and facilitation in the avian ciliary ganglion. J. Physiol. (Lond.) 175, 17–30 (1964 b).Google Scholar
  451. Masland, R.L., Wigton, R.S.: Nerve activity accompanying fasciculation produced by prostigmine. J. Neurophysiol. 3, 269–275 (1940).Google Scholar
  452. Meiri, U., Rahamimoff, R.: Neuromuscular transmission: inhibition by manganese ions. Science 176, 308–309 (1972).PubMedGoogle Scholar
  453. Meldrum, B.S.: The actions of snake venoms on nerve and muscle. The pharmacology of phospholipase A and of polypeptide toxins. Pharmacol. Rev. 17, 393–445 (1965).PubMedGoogle Scholar
  454. Mellanby, J., Thompson, P.A.: The effect of tetanus toxin at the neuromuscular junction of the goldfish. J. Physiol. (Lond.) 224, 407–419 (1972).Google Scholar
  455. Menrath, R.L.E., Blackman, J.G.: Observations on the large spontaneous potentials which occur at end-plates of the rat diaphragm. Proc. Univ. Otago med. Sch. 48, 72–73 (1970).Google Scholar
  456. Michelson, M.J., Zeimal, E.V.: Acetylcholine: an approach to the molecular mechanism of action. Oxford: Pergamon Press 1973.Google Scholar
  457. Miledi, R.: The acetylcholine sensitivity of frog muscle fibres after complete or partial denervation. J. Physiol. (Lond.) 151, 1–23 (1960a).Google Scholar
  458. Miledi, R.: Junctional and extra-junctional acetylcholine receptors in skeletal muscle fibres. J. Physiol. (Lond.) 151, 24–30 (1960 b).Google Scholar
  459. Miledi, R.: Induction of receptors. In: Mongar, J.L., De Reuck, A.V.S. (Eds.): Enzymes and drug action, pp.220–235. London: Churchill 1962.Google Scholar
  460. Miledi, R.: Strontium as a substitute for calcium in the process of transmitter release at the neuromuscular junction. Nature (Lond.) 212, 1233–1234 (1966).Google Scholar
  461. Miledi, R.: Transmitter release induced by injection of calcium ions into nerve terminals. Proc. roy. Soc. B 183, 421–425 (1973).Google Scholar
  462. Miledi, R., Molinoff, P., Potter, L.T.: Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature (Lond.) 229, 554–557 (1971 a).Google Scholar
  463. Miledi, R., Potter, L.T.: Acetylcholine receptors in muscle fibres. Nature (Lond.) 233, 599–603 (1971).Google Scholar
  464. Miledi, R., Slater, C.R.: Electrophysiology and electronmicroscopy of rat neuromuscular junction after nerve degeneration. Proc. roy. Soc. B 169, 289–306 (1968).Google Scholar
  465. Miledi, R., Stefani, E.: Miniature potentials in denervated slow muscle fibres of the frog. J. Physiol. (Lond.) 209, 179–186 (1970).Google Scholar
  466. Miledi, R., Stefani, E., Steinbach, A.B.: Induction of the action potential mechanism in slow muscle fibres of the frog. J. Physiol. (Lond.) 217, 737–754 (1971 b).Google Scholar
  467. Miledi, R., Stefani, E., Zelena, J.: Neural control of acetylcholine-sensitivity in rat muscle fibres. Nature (Lond.) 220, 497–498 (1968).Google Scholar
  468. Miledi, R., Thies, R.: Tetanic and post-tetanic rise in frequency of miniature end-plate potentials in low-calcium solutions. J. Physiol. (Lond.) 212, 245–257 (1971).Google Scholar
  469. Miledi, R., Trowell, O. A.: Acetylcholine sensitivity of rat diaphragm maintained in organ culture. Nature (Lond.) 194, 981–982 (1962).Google Scholar
  470. Miledi, R., Zelená, J.: Sensitivity to acetylcholine in rat slow muscle. Nature (Lond.) 210, 855–856 (1966).Google Scholar
  471. Miyamoto, M.D., Breckenridge, B. McL.: A cyclic adenosine monophosphate link in the catecholamine enhancement of transmitter release at the neuromuscular junction. J. gen. Physiol. 63, 609–624 (1974).Google Scholar
  472. Miyamoto, M.D., Volle, R.L.: Enhancement by carbachol of transmitter release from motor nerve terminals. Proc. nat. Acad. Sci. (Wash.) 71, 1489–1492 (1974).Google Scholar
  473. Monod, J., Wyman, J., Changeux, J.-P.: On the nature of allosteric transitions: a plausible model. J. molec. Biol. 12, 88–118 (1965).PubMedGoogle Scholar
  474. Moore, R.D.: Effect of insulin upon the sodium pump in frog skeletal muscle. J. Physiol. (Lond.) 232, 23–45 (1973).Google Scholar
  475. Moran, N., Rahamimoff, R.: Some statistical properties of neuromuscular facilitation. Israel J. med. Sci. 6, 201–208 (1970).PubMedGoogle Scholar
  476. Moravec, J., Melichar, I., Janský, L., Vyskočil, F.: Effect of hibernation and noradrenaline on the resting state of neuromuscular junction of Golden Hamster (Mesocricetus auratus). Pflügers Arch. ges. Physiol. 345, 93–106 (1973).Google Scholar
  477. Muchnik, S., Yaryura, A.: The action of chloropromazine on the neuromuscular junction. Acta physiol. lat.-amer. 19, 94–100 (1969).PubMedGoogle Scholar
  478. Nasledov, G. A., Thesleff, S.: Denervation changes in frog skeletal muscle. Acta physiol. scand. 90, 370–380 (1974).PubMedGoogle Scholar
  479. Nastuk, W.L.: Membrane potential changes at a single muscle end-plate produced by transitory application of acetylcholine with an electrically controlled microjet. Fed. Proc. 12, 102 (1953).Google Scholar
  480. Nastuk, W.L.: Some ionic factors that influence the action of acetylcholine at the muscle end-plate membrane. Ann. N. Y. Acad. Sci. 81, 317–327 (1959).PubMedGoogle Scholar
  481. Nastuk, W.L.: Mechanisms of neuromuscular blockade. Ann. N.Y. Acad. Sci. 183, 171–182 (1971).PubMedGoogle Scholar
  482. Nastuk, W.L., Hodgkin, A.L.: The electrical activity of single muscle fibers. J. cell. comp. Physiol. 35, 39–73 (1950).Google Scholar
  483. Nastuk, W.L., Karis, J.H.: The blocking action of hexafluorenium on neuromuscular transmission and its interaction with succinylcholine. J. Pharmacol. exp. Ther. 144, 236–252 (1964).PubMedGoogle Scholar
  484. Nastuk, W.L., Liu, J.H.: Muscle postjunctional membrane: changes in chemosensitivity produced by calcium. Science 154, 266–267 (1966).PubMedGoogle Scholar
  485. Nastuk, W.L., Parsons, R.L.: Factors in the inactivation of postjunctional membrane receptors of frog skeletal muscle. J. gen. Physiol. 56, 218–249 (1970).PubMedGoogle Scholar
  486. Nastuk, W.L., Poppers, P.J.: The effect of a thiamine analog on neuromuscular transmission. J. Pharmacol. exp. Ther. 154, 441–448 (1966).PubMedGoogle Scholar
  487. Nicholls, J.G.: The electrical properties of denervated skeletal muscle. J. Physiol. (Lond.) 131, 1–12 (1956).Google Scholar
  488. Niedergerke, R.: The potassium chloride contracture of the heart and its modification by calcium. J. Physiol. (Lond.) 134, 584–599 (1956).Google Scholar
  489. Niedergerke, R., Orkand, R.K.: The dependence of the action potential of the frog’s heart on the external and intracellular sodium concentration. J. Physiol. (Lond.) 184, 312–334 (1966).Google Scholar
  490. O’brien, R.D., Eldefrawi, M.E., Eldefrawi, A.T.: Isolation of acetylcholine receptors. Ann. Rev. Pharmacol. 12, 19–34 (1972).Google Scholar
  491. Ochs, S.: Action of choline on frog sartorius muscle. J. Physiol. (Lond.) 182, 244–254 (1966).Google Scholar
  492. Ochs, S., Mukherjee, A.K.: Action of acetylcholine, choline and D-tubocurarine on the membrane of frog sartorius muscle. Amer. J. Physiol. 196, 1191–1196 (1959).PubMedGoogle Scholar
  493. Okada, K.: Effects of alcohols and acetone on the neuromuscular junction of frog. Jap. J. Physiol. 17, 245–261 (1967).Google Scholar
  494. Okada, K.: Effects of divalent cations on the spontaneous transmitter release at the amphibian neuromuscular junction in the presence of ethanol. Jap. J. Physiol. 20, 97–111 (1970).Google Scholar
  495. Onodera, K., Yamakawa, K.: The effects of lithium on the neuromuscular junction of the frog. Jap. J. Physiol. 16, 541–550 (1966).Google Scholar
  496. Otsuka, M., Endo, M.: The effect of guanidine on neuromuscular transmission. J. Pharmacol. exp. Ther. 128, 273–282 (1960).PubMedGoogle Scholar
  497. Otsuka, M., Endo, M., Nonomura, Y.: Presynaptic nature of neuromuscular depression. Jap. J. Physiol. 12, 573–584 (1962).Google Scholar
  498. Otsuka, M., Nonomura, Y.: The action of phenolic substances on motor nerve endings. J. Pharmacol. exp. Ther. 140, 41–45 (1963).PubMedGoogle Scholar
  499. Parker, R.B., Goldfine, C.: Stoichiometry of the drug nicotinic receptor interaction. J. Pharmacol. exp. Ther. 185, 649–652 (1973).PubMedGoogle Scholar
  500. Parsons, R.L.: Mechanism of neuromuscular blockade by tetraethylammonium. Amer. J. Physiol. 216, 925–931 (1969).PubMedGoogle Scholar
  501. Parsons, R.L., Hofmann, W. W., Feigen, G. A.: Presynaptic effects of potassium ion on the mammalian neuromuscular junction. Nature (Lond.) 208, 590–591 (1965).Google Scholar
  502. Parsons, R.L., Johnson, E.W., Lambert, D.H.: Effects of lanthanum and calcium on chronically denervated muscle fibres. Amer. J. Physiol. 220, 401–405 (1971).PubMedGoogle Scholar
  503. Parsons, R.L., Nastuk, W.L.: Activation of contractile system in depolarized skeletal muscle fibres. Amer. J. Physiol. 217, 364–369 (1969).PubMedGoogle Scholar
  504. Paton, W.D.M., Waud, D.R.: The margin of safety of neuromuscular transmission. J. Physiol. (Lond.) 191, 59–90 (1967).Google Scholar
  505. Patrick, J., Lindstrom, J.: Autoimmune response to acetylcholine receptor. Science 180, 871–872 (1973).PubMedGoogle Scholar
  506. Patrick, J., Lindstrom, J., Culp, B., McMillan, J.: Studies on purified eel acetylcholine receptor and anti-acetylcholine receptor antibody. Proc. nat. Acad. Sci. (Wash.) 70, 3334–3338 (1973).Google Scholar
  507. Payton, B.W.: Use of the frog neuromuscular junction for assessing the action of drugs affecting synaptic transmission. Brit. J. Pharmacol. 28, 35–43 (1966).PubMedGoogle Scholar
  508. Payton, B.W., Shand, D.G.: Actions of gallamine and tetraethylammonium at the frog neuromuscular junction. Brit. J. Pharmacol. 28, 23–24 (1966).PubMedGoogle Scholar
  509. Pécot-Dechavassine, M.: Effets conjugués du pH et des cations divalents sur la libération spontanée d’acétylcholine au niveau de la plaque motrice de la grenouille. C. R. Acad. Sci. (Paris) 271, 674–677 (1970).Google Scholar
  510. Peper, K., McMahan, U.J.: Distribution of acetylcholine receptors in the vicinity of nerve terminals on skeletal muscle of the frog. Proc. roy. Soc. B 181, 431–440 (1972).Google Scholar
  511. Pilar, G., Vaughan, P.C.: Electrophysiological investigations of the pigeon iris neuromuscular junctions. Comp. Biochem. Physiol. 29, 51–72 (1969).PubMedGoogle Scholar
  512. Portela, A., Perez, R.J., Vaccari, J., Perez, J.C., Stewart, P.: Muscle membrane depolarization by acetylcholine, choline and carbamylcholine, near and remote from motor end-plates. J. Pharmacol. exp. Ther. 175, 476–482 (1970).PubMedGoogle Scholar
  513. Porter, C.W., Barnard, E.A.: The density of cholinergic receptors at the endplate post-synaptic membrane: ultrastructural studies in two mammalian species. J. membrane Biol. 20, 31–49 (1975).Google Scholar
  514. Porter, C.W., Barnard, E. A., Chiu, T.H.: The ultrastructural localization and quantitation of cholinergic receptors at the mouse motor end-plate. J. Membrane Biol. 14, 383–402 (1973 a).Google Scholar
  515. Porter, C.W., Chiu, T.H., Wieckowski, J., Barnard, E.A.: Types and locations of cholinergic receptor-like molecules in muscle fibres. Nature (Lond.) New Biology 241, 3–7 (1973b).Google Scholar
  516. Porter, R., O’connor, M.: The molecular properties of drug receptors. London: Churchill 1970.Google Scholar
  517. Potter, L.T.: Synthesis, storage and release of [14C]acetylcholine in isolated rat diaphragm muscles. J. Physiol. (Lond.) 206, 145–166 (1970).Google Scholar
  518. Purves, D., Sakmann, B.: The effect of contractile activity on fibrillation and extrajunctional acetylcholine-sensitivity in rat muscle maintained in organ culture. J. Physiol. (Lond.) 237, 157–182 (1974).Google Scholar
  519. Quastel, D.M.J., Hackett, J.T., Cooke, J.D.: Calcium: is it required for transmitter secretion? Science 172, 1034–1036 (1971).PubMedGoogle Scholar
  520. Rahamimoff, R.: A dual effect of calcium ions on neuromuscular facilitation. J. Physiol. (Lond.) 195, 471–480 (1968).Google Scholar
  521. Rahamimoff, R., Alnaes, E.: Inhibitory action of ruthenium red on neuromuscular transmission. Proc. nat. Acad. Sci. (Wash.) 70, 3613–3616 (1973).Google Scholar
  522. Rahamimoff, R., Yaari, Y.: Delayed release of transmitter at the frog neuromuscular junction. J. Physiol. (Lond.) 228, 241–257 (1973).Google Scholar
  523. Randić, M., Straughan, D.W.: Antidromic activity in the rat phrenic nerve-diaphragm preparation. J. Physiol. (Lond.) 173, 130–148 (1964).Google Scholar
  524. Rang, H.P.: The kinetics of action of acetylcholine antagonists in smooth muscle. Proc. Roy. Soc. B 164, 488–510 (1966).Google Scholar
  525. Rang, H. P.: Drug receptors and their function. Nature (Lond.) 231, 91–96 (1971).Google Scholar
  526. Rang, H.P.: Drug receptors. London: Macmillan 1973 a.Google Scholar
  527. Rang, H.P.: Receptor mechanisms (Fourth Gaddum Memorial Lecture). Brit. J. Pharmacol. 48, 475–495 (1973 b).Google Scholar
  528. Rang, H.P.: In: Receptor Biochemistry and Biophysics. Neurosci. Res. Program Bull. 11, 220–224 (1973c).PubMedGoogle Scholar
  529. Rang, H. P.: Acetylcholine receptors. Quart. Rev. Biophys. 7, 283–399 (1975).Google Scholar
  530. Rang, H.P., Ritter, J.M.: A new kind of drug antagonism: evidence that agonists cause a molecular change in acetylcholine receptors. Molec. Pharmacol. 5, 394–411 (1969).Google Scholar
  531. Rang, H.P., Ritter, J.M.: On the mechanism of desensitization at cholinergic receptors. Molec. Pharmacol. 6, 357–382 (1970a).Google Scholar
  532. Rang, H.P., Ritter, J.M.: The relationship between desensitization and the metaphilic effect of cholinergic receptors. Molec. Pharmacol. 6, 383–390 (1970b).Google Scholar
  533. Rang, H.P., Ritter, J.M.: The effect of disulfide bond reduction on the properties of cholinergic receptors in chick muscle. Molec. Pharmacol. 7, 620–631 (1971).Google Scholar
  534. Ras, R., Den Hertog, A., Lammers, W.: The effect of suxamethonium on the striated muscle fibre outside the end-plate region. Pflügers Arch. ges. Physiol. 333, 187–196 (1972).Google Scholar
  535. Ras, R., Mooij, J.J.A.: The depolarizing effect of suxamethonium on the membrane potential of striated muscle fibres at endplate-free regions. Europ. J. Pharmacol. 23, 217–222 (1973).Google Scholar
  536. Redfern, P., Thesleff, S.: Action potential generation in denervated rat skeletal muscle. Acta physiol. scand. 82, 70–78 (1971).PubMedGoogle Scholar
  537. Reid, J.: Quantum content in guinea-pig serratus anterior. Quart. J. exp. Physiol. 57, 120–130 (1972).PubMedGoogle Scholar
  538. Ribeiro, J. A., Walker, J.: The effects of ATP and ADP on transmission at the rat and frog neuromuscular junctions. Brit. J. Pharmacol. 54, 213–218 (1975).Google Scholar
  539. Robert, E.D., Oester, Y.T.: Absence of supersensitivity to acetylcholine in innervated muscle subjected to a prolonged pharmacoligic nerve block. J. Pharmacol. exp. Ther. 174, 133–140 (1970).PubMedGoogle Scholar
  540. Rosenblueth, A., Luco, J. V.: A study of denervated skeletal muscle. Amer. J. Physiol. 120, 781–797 (1937).Google Scholar
  541. Rosenthal, J.: Post-tetanic potentiation at the neuromuscular junction of the frog. J. Physiol. (Lond.) 203, 121–133 (1969).Google Scholar
  542. Rotshenker, S., Rahamimoff, R.: Neuromuscular synapse: stochastic properties of spontaneous release of transmitter. Science 170, 648–649 (1970).PubMedGoogle Scholar
  543. Rüdel, R., Senges, J.: Mammalian skeletal muscle: reduced chloride conductance in drug-induced myotonia and induction of myotonia by low-chloride solution. Arch. exp. Path. Pharmak. 274, 337–347 (1972).Google Scholar
  544. Salafsky, B., Bell, J., Prewitt, M.A.: Development of fibrillation potentials in denervated fast and slow skeletal muscle. Amer. J. Physiol. 215, 637–643 (1968).PubMedGoogle Scholar
  545. Salpeter, M.M., Eldefrawi, M.E.: Sizes of end-plate compartments, densities of acetylcholine receptor and other quantitative aspects of neuromuscular transmission. J. Histochem. Cytochem. 21, 769–778 (1973).PubMedGoogle Scholar
  546. Schild, H.O.: pAx and competitive drug antagonism. Brit. J. Pharmacol. 4, 277–280 (1949).PubMedGoogle Scholar
  547. Schmidt, H., Tong, E. Y.: Inhibition by actinomycin D of the denervation-induced action potential in frog slow muscle fibres. Proc. roy. Soc. B 184, 91–95 (1973).Google Scholar
  548. Schneider, M.F.: Linear electrical properties of the transverse tubules and surface membrane of skeletal muscle fibres. J. gen. Physiol. 56, 640–671 (1970).PubMedGoogle Scholar
  549. Schwan, H.P.: Electrical properties of tissue and cell suspensions. Advanc. biol. med. Phys. 5, 147–209 (1957).Google Scholar
  550. Scuka, M.: Analysis of the effects of histamine on the end-plate potential. Neuropharmacology 12, 441–450 (1973).PubMedGoogle Scholar
  551. Sevcik, C., Narahashi, T.: Electrical properties and excitation contraction coupling in skeletal muscle treated with ethylene glycol. J. gen. Physiol. 60, 221–236 (1972).PubMedGoogle Scholar
  552. Seyama, J., Narahashi, T.: Mechanism of blockade of neuromuscular transmission by pentobarbital. J. Pharmacol. exp. Ther. 192, 95–104 (1975).PubMedGoogle Scholar
  553. Simpson, L.L.: The use of neuropoisons in the study of cholinergic transmission. Ann. Rev. Pharmacol. 14, 305–317 (1974).Google Scholar
  554. Souček, B.: Complete model for the statistical composition of the end-plate potential. J. theor. Biol. 30, 631–645 (1971).PubMedGoogle Scholar
  555. Spitzer, N.: Miniature end-plate potentials at mammalian neuromuscular junctions poisoned by botulinum toxin. Nature (Lond.) New Biol. 237, 26–27 (1972).Google Scholar
  556. Sréter, F.A., Woo, G.: Cell water, sodium and potassium in red and white mammalian muscles. Amer. J. Physiol. 205, 1290–1294 (1963).PubMedGoogle Scholar
  557. Stalč, A., župančič, A.O.: Effect of α-bungarotoxin on acetylcholinesterase bound to mouse diaphragm endplates. Nature (Lond.) New Biology 239, 91–92 (1972).Google Scholar
  558. Stamenović, B.A.: The influence of adrenaline on the maintenance of the acetylcholine effect on the subsynaptic membrane of the isolated frog skeletal muscle. Jugoslav. Physiol. Pharmacol. Acta 1, Suppl. 1, 101–106 (1968).Google Scholar
  559. Stanfield, P.R.: The differential effects of tetraethylammonium and zinc ions on the resting conductance of frog skeletal muscle. J. Physiol. (Lond.) 209, 231–256 (1970).Google Scholar
  560. Stefani, E., Steinbach, A.B.: Resting potential and electrical properties of frog slow muscle fibres. Effect of different external solutions. J. Physiol. (Lond.) 203, 383–401 (1969).Google Scholar
  561. Steinbach, A.B.: Unusual endplate potentials which reflect the complexity of muscle structure. Nature (Lond.) 216, 1331–1333 (1967).Google Scholar
  562. Steinbach, A.B.: Alteration by xylocaine (lidocaine) and its derivatives of the time course of the end-plate potential. J. gen. Physiol. 52, 144–161 (1968 a).PubMedGoogle Scholar
  563. Steinbach, A. B.: A kinetic model for the action of xylocaine on the receptors for acetylcholine. J. gen. Physiol. 52, 162–180 (1968 b).PubMedGoogle Scholar
  564. Steinberg, M. I., Volle, R. L.: A comparison of lobeline and nicotine at the frog neuromuscular junction. Arch. Pharmacol. 272, 16–31 (1972).Google Scholar
  565. Stephenson, R.P.: A modification of receptor theory. Brit. J. Pharmacol. 11, 379–393 (1956).PubMedGoogle Scholar
  566. Stephenson, R.P., Ginsborg, B.L.: Potentiation by an agonist. Nature (Lond.) 222, 790–791 (1969).Google Scholar
  567. Stevens, C.F.: Inferences about membrane properties from electrical noise measurements. Biophys. J. 12, 1028–1047 (1972).PubMedGoogle Scholar
  568. Stinnakre, J., Tauc, L.: Calcium influx in active Aplysia neurones detected by injected aequorin. Nature (Lond.) New Biology 242, 113–115 (1973).Google Scholar
  569. Suarez-Kurtz, G., Paulo, L.G., Fonteles, M.C.: Further studies on the neuromuscular effects of β-diethylaminoethyl-diphenyl propylacetate hydrochloride (SKF-525-A). Arch. int. Pharmacodyn. 177, 185–195 (1969).PubMedGoogle Scholar
  570. Sugiyama, H., Benda, P., Meunier, J.-C., Changeux, J.-P.: Immunological characterisation of the cholinergic receptor protein from Electrophorus electricus. FEBS Letters 35, 124–128 (1973).PubMedGoogle Scholar
  571. Takeuchi, A.: The long-lasting depression in neuromuscular transmission of the frog. Jap. J. Physiol. 8, 102–113 (1958).Google Scholar
  572. Takeuchi, A., Takeuchi, N.: Active-phase of frog’s end-plate potential. J. Neurophysiol. 22, 395–411 (1959).PubMedGoogle Scholar
  573. Takeuchi, A., Takeuchi, N.: On the permeability of end-plate membrane during the action of transmitter. J. Physiol. (Lond.) 154, 52–67 (1960).Google Scholar
  574. Takeuchi, A., Takeuchi, N.: Changes in potassium concentration around motor nerve terminals, produced by current flow, and their effects on neuromuscular transmission. J. Physiol. (Lond.) 155, 46–58 (1961).Google Scholar
  575. Takeuchi, N.: Some properties of conductance changes at the end-plate membrane during the action of acetylcholine. J. Physiol. (Lond.) 167, 128–140 (1963 a).Google Scholar
  576. Takeuchi, N.: Effects of calcium on the conductance change of the end-plate membrane during the action of transmitter. J. Physiol. (Lond.) 167, 141–155 (1963b).Google Scholar
  577. Taylor, D.B.: The role of inorganic ions in ion exchange processes at the cholinergic receptor of voluntary muscle. J. Pharmacol. exp. Ther. 186, 537–551 (1973).PubMedGoogle Scholar
  578. Taylor, D.B., Creese, R., Nedergaard, O.A., Case, R.: Labelled depolarizing drugs in normal and denervated muscle. Nature (Lond.) 208, 901–902 (1965).Google Scholar
  579. Taylor, D.B., Dixon, W.J., Creese, R., Case, R.: Diffusion of decamethonium in the rat. Nature (Lond.) 215, 989 (1967).Google Scholar
  580. Taylor, D.B., Nedergaard, O. A.: Relation between structure and action of quaternary ammonium neuromuscular blocking agents. Physiol. Rev. 45, 523–554 (1965).PubMedGoogle Scholar
  581. Taylor, D.B., Steinborn, J., Lu, T.-C.: Ion exchange processes at the neuromuscular junction of voluntary muscle. J. Pharmacol. exp. Ther. 175, 213–227 (1970).PubMedGoogle Scholar
  582. Terrar, D.A.: Influence of SKF-525A congeners, strophanthidin and tissue-culture media on desensitization in frog skeletal muscle. Brit. J. Pharmacol. 51, 259–268 (1974).Google Scholar
  583. Thesleff, S.: The mode of neuromuscular block caused by acetylcholine, nicotine, decamethonium and succinylcholine. Acta physiol. scand. 34, 218–231 (1955 a).Google Scholar
  584. Thesleff, S.: The effects of acetylcholine, decamethonium and succinylcholine on neuromuscular transmission in the rat. Acta physiol. scand. 34, 386–392 (1955 b).PubMedGoogle Scholar
  585. Thesleff, S.: Supersensitivity of skeletal muscle produced by botulinum toxin. J. Physiol. (Lond.) 151, 598–607 (1960).Google Scholar
  586. Thesleff, S.: Functional properties of receptors in striated muscle. In: Rang, H.P. (Ed.): Drug Receptors, pp. 121–133. London: Macmillan 1973.Google Scholar
  587. Thies, R.E.: Neuromuscular depression and apparent depletion of transmitter in mammalian muscle. J. Neurophysiol. 28, 427–442 (1965).Google Scholar
  588. Thomas, R.C.: Electrogenic sodium pump in nerve and muscle cells. Physiol. Rev. 52, 563–594 (1972).PubMedGoogle Scholar
  589. Thomson, T.D., Turkanis, S.A.: Barbiturate-induced transmitter release at a frog neuromuscular junction. Brit. J. Pharmacol. 48, 48–58 (1973).Google Scholar
  590. Thron, C.D.: On the analysis of pharmacological experiments in terms of an allosteric receptor model. Molec. Pharmacol. 9, 1–9 (1973).Google Scholar
  591. Truog, P., Waser, P.G.: Einflüsse der Denervation von Muskelendplatten auf die Lokalisation der Acetylcholinesterase und die Bindung von Decamethonium. Arch. exp. Path. Pharmak. 266, 101–112 (1970).Google Scholar
  592. Turkanis, S. A.: Effects of muscle stretch on transmitter release at end-plates of rat diaphragm and frog sartorius muscle. J. Physiol. (Lond.) 230, 391–403 (1973 a).Google Scholar
  593. Turkanis, S. A.: Some effects of vinblastine and colchicine on neuromuscular transmission. Brain Res. 54, 324–329 (1973 b).PubMedGoogle Scholar
  594. Van Maanen, E.F.: The antagonism between acetylcholine and the curare alkaloids D-tubocurarine, c-curarine-I, c-toxiferine-II and β-erythroidine in the rectus abdominis of the frog. J. Pharmacol. exp. Ther. 99, 255–264 (1950).Google Scholar
  595. Vere-Jones, D.: Simple stochastic models for the release of quanta of transmitter from a nerve terminal. Aust. J. Stat. 8, 53–63 (1966).Google Scholar
  596. Verveen, A.A., De Felice, L.J.: Membrane noise. In: Butler, J. A. V., Noble, D. (Eds.): Progr. Biophys. Mol. Biol., Vol.28. Oxford: Pergamon 1974.Google Scholar
  597. Vincent, A.: Turnover of motor end-plate. Nature (Lond.) 254, 182–184 (1975).Google Scholar
  598. Vladimirova, A.T.: Effect of electric polarization of motor nerve terminals on the transmission of single impulses. Bull. Biol. Méd. Exp. URSS 11, 11–14 (1963).Google Scholar
  599. Vogel, Z., Sytkowski, A.J., Nirenberg, M.W.: Acetylcholine receptors of muscle grown in vitro. Proc. nat. Acad. Sci. (Wash.) 69, 3180–3184 (1972).Google Scholar
  600. Vrbová, G.: Induction of an extrajunctional chemosensitive area in intact innervated muscle fibres. J. Physiol. (Lond.) 191, 20–21P (1967).Google Scholar
  601. Vyskočil, F., Magazanik, L.G.: The desensitization of post-junctional muscle membrane after intracellular application of membrane stabilizers and snake venom polypeptides. Brain Res. 48, 417–419 (1972).PubMedGoogle Scholar
  602. Waser, P.G.: On receptors in the post-synaptic membrane of the motor end-plate. In: Porter, R., O’connor, M. (Eds.): Molecular Properties of Drug Receptors. London: Churchill 1970.Google Scholar
  603. Waser, P.G.: Localization of 14C-pancuronium by histo-and wholebody-autoradiography in normal and pregnant mice. Arch. Pharmacol. 279, 399–412 (1973).Google Scholar
  604. Waser, P.G., Lüthi, U.: Autoradiographische Lokalisation von 14C-Calebassen-curarin I und 14C-Decamethonium in der Motorischen Endplatte. Arch. int. Pharmacodyn. 112, 272–296 (1957).PubMedGoogle Scholar
  605. Waud, B.E., Waud, D.R.: The relation between the response to “train of four” stimulation and receptor occlusion during competitive neuromuscular block. Anesthesiology 37, 413–416 (1972).PubMedGoogle Scholar
  606. Waud, B.E., Cheng, M.C., Waud, D.R.: Comparison of drug-receptor dissociation constants at the mammalian neuromuscular junction in the presence and absence of halothane. J. Pharmacol. exp. Ther. 187, 40–46 (1973).PubMedGoogle Scholar
  607. Waud, D.R.: The rate of action of competitive neuromuscular blocking agents. J. Pharmacol. exp. Ther. 158, 99–114 (1967).PubMedGoogle Scholar
  608. Waud, D.R.: On the measurement of the affinity of partial agonists for receptors. J. Pharmacol. exp. Ther. 170, 117–122 (1969).PubMedGoogle Scholar
  609. Waud, D.R.: A review of pharmacological approaches to the acetylcholine receptors at the neuromuscular junction. Ann. N.Y. Acad. Sci. 183, 147–157 (1971).PubMedGoogle Scholar
  610. Waud, D.R.: Adsorption isotherm vs. ion exchange models for the drug-receptor relation. J. Pharmacol. exp. Ther. 188, 520–528 (1974).PubMedGoogle Scholar
  611. Waud, D.R., Waud, B.E.: The relationship between tetanic fade and receptor occlusion in the presence of competitive neuromuscular block. Anesthesiology 35, 456–464 (1971).PubMedGoogle Scholar
  612. Weakly, J.N.: The action of cobalt ions on neuromuscular transmission in the frog. J. Physiol. (Lond.) 234, 597–612 (1973).Google Scholar
  613. Weber, A., Murray, J.M.: Molecular control mechanisms in muscle contraction. Physiol. Rev. 53, 612–673 (1973).PubMedGoogle Scholar
  614. Weinreich, D.: Ionic mechanism of post-tetanic potentiation at the neuromuscular junction of the frog. J. Physiol. (Lond.) 212, 431–446 (1971).Google Scholar
  615. Werman, R.: An electrophysiological approach to drug-receptor mechanisms. Comp. Biochem. Physiol. 30, 997–1017 (1969).PubMedGoogle Scholar
  616. Werman, R., Carlen, P.L., Kushnir, M., Kosower, E. M.: Effect of thiol-oxidizing agent, diamide, on acetylcholine release at the frog end-plate. Nature (Lond.) 233, 120–121 (1971).Google Scholar
  617. Werman, R., Manalis, R.S.: Reversal potential measurements for strong and weak agonists of acetylcholine at the frog neuromuscular junction. Israel J. med. Sci. 6, 320–321 (1970).Google Scholar
  618. Werman, R., Wislicki, L.: Propranolol, a curariform and cholinomimetic agent at the frog neuromuscular junction. Comp. Gen. Pharmacol. 2, 69–81 (1971).PubMedGoogle Scholar
  619. Wernig, A.: Changes in statistical parameters during facilitation at the crayfish neuromuscular junction. J. Physiol. (Lond.) 226, 751–759 (1972 a).Google Scholar
  620. Wernig, A.: The effects of calcium and magnesium on statistical release parameters at the crayfish neuromuscular junction. J. Physiol. (Lond.) 226, 761–768 (1972 b).Google Scholar
  621. Wernig, A.: Estimates of statistical release parameters from crayfish and frog neuromuscular junctions. J. Physiol. (Lond.) 244, 207–221 (1975).Google Scholar
  622. Westmoreland, B.F., Ward, D., Johns, T.R.: The effect of methohexital at the neuromuscular junction. Brain Res. 26, 465–468 (1971).PubMedGoogle Scholar
  623. Wilson, D.F.: The effects of dibutryl cyclic adenosine 3’, 5’-monophosphate, theophylline and aminophylline on neuromuscular transmission in the rat. J. Pharmacol. exp. Ther. 188, 447–452 (1974).PubMedGoogle Scholar
  624. Woodbury, J.W., Miles, P.R.: Anion conductance of frog muscle membranes: one channel, two kinds of pH dependence. J. gen. Physiol. 62, 324–353 (1973).PubMedGoogle Scholar
  625. Younkin, S. G.: An analysis of the role of calcium in facilitation at the frog neuromuscular junction. J. Physiol. (Lond.) 237, 1–14 (1974).Google Scholar
  626. Zachar, J.: Electrogenesis and contractility in skeletal muscle cells. Baltimore: University Park Press 1971.Google Scholar
  627. Zaimis, E.: Transmission and block at the motor end-plate and in autonomie ganglia. The interruption of neuromuscular transmission and some of its problems. Pharmacol. Rev. 6, 53–57 (1954).PubMedGoogle Scholar
  628. Zaimis, E.: Experimental hazards and artefacts in the study of neuromuscular blocking drugs. In: DeReuck, A.V.S. (Ed.): Curare and Curare-like Agents, pp.75–82. London: Churchill 1962.Google Scholar
  629. Zierler, K. L., Rogus, E., Hazelwood, C. F.: Effect of insulin on potassium flux and water and electrolyte content of muscles from normal and from hypophysectomised rats. J. gen. Physiol. 49, 433–456 (1966).PubMedGoogle Scholar
  630. Zucker, R.S.: Changes in the statistics of transmitter release during facilitation. J. Physiol. (Lond.) 229, 787–810 (1973).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • B. L. Ginsborg
  • D. H. Jenkinson

There are no affiliations available

Personalised recommendations