Skip to main content

Neurochemistry of Cholinergic Terminals

  • Chapter

Abstract

This chapter is concerned with the metabolism of acetylcholine (ACh) at synapses where it functions as the neurotransmitter. The vertebrate neuromuscular junction has been studied more closely than any other synapse, but most of the studies have made use of biophysical or morphological techniques rather than biochemical ones; relatively few investigators have attempted to measure the ACh content of skeletal muscle, or the rate of its release or its synthesis. For such neurochemical experiments other tissues, especially the brain, sympathetic ganglia and the electric organ, are generally chosen. These tissues are much richer in cholinergic synapses, and therefore in ACh, so the technical difficulties of estimating submicrogram amounts of ACh are less formidable. Each of the three tissues provides advantages for particular types of experiment, and together they have furnished most of the available neurochemical data. There is now, however, both direct and indirect evidence that ACh metabolism in muscle is similar in many respects to ACh metabolism in the tissues in which it has been studied in more detail. With this justification, a great deal of information obtained from tissues other than muscle will be discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif, A. A., Roberts, M.B., Karp, W.B., Smith, J.P.: Metabolism of phosphatidylcholine, phosphatidylinositol and palmityl carnitine in synaptosomes from rat brain. J. Neurochem. 20, 189–202 (1973).

    PubMed  CAS  Google Scholar 

  • Abdel-Latif, A. A., Smith, J.P.: Studies on choline transport and metabolism in rat brain synaptosomes. Biochem. Pharmacol. 21, 3005–3021 (1972).

    PubMed  CAS  Google Scholar 

  • Acara, M., Rennick, B.: Regulation of plasma choline by the renal tubule: bidirectional transport of choline. Amer. J. Physiol. 225, 1123–1128 (1973).

    PubMed  CAS  Google Scholar 

  • Adamič, S.: Accumulation of acetylcholine by the rat diaphragm. Biochem. Pharmacol. 19, 2445–2451 (1970).

    PubMed  Google Scholar 

  • Adlard, B.P.F., Dobbing, J.: Vulnerability of developing brain. 8. Regional acetylcholinesterase activity in early life. Brit. J. Nutr. 28, 139–143 (1972).

    PubMed  CAS  Google Scholar 

  • Akert, K., Moor, H., Pfenninger, K., Sandri, C.: Contribution of new impregnation methods and freeze etching to the problems of synaptic fine structure. Progr. Brain Res. 31, 223–240 (1969).

    CAS  Google Scholar 

  • Albuquerque, E.X., Warnick, J.E., Sansone, F.M.: The pharmacology of batrachotoxin. II. Effect on electrical properties of the mammalian nerve and skeletal muscle membranes. J. Pharmacol. exp. Ther. 176, 511–528 (1971).

    PubMed  CAS  Google Scholar 

  • Albuquerque, E.X., Warnick, J.E., Tasse, J.R., Sansone, F.M.: Effects of vinblastine and colchicine on neural regulation of the fast and slow skeletal muscles of the rat. Exp. Neurol. 37, 607–634 (1972).

    PubMed  CAS  Google Scholar 

  • Aldridge, W.N., Johnson, M.K.: Cholinesterase, succinic dehydrogenase, nucleic acids, esterase, and glutathione reductase in sub-cellular fractions from rat brain. Biochem. J. 73, 270–276 (1959).

    PubMed  CAS  Google Scholar 

  • Alema, S., Calissano, P., Rusca, G., Giuditta, A.: Identification of a calcium-binding, brain-specific protein in the axoplasm of squid giant axons. J. Neurochem. 20, 681–689 (1973).

    PubMed  CAS  Google Scholar 

  • Amano, T., Hamprecht, B., Kemper, W.: High activity of choline acetyltransferase induced in neuroblastoma x glia hybrid cells. Abstr. 4th Internat. Meet. Neurochem. 293 (1973).

    Google Scholar 

  • Ansell, G.B., Spanner, S.: Studies on the origin of choline in the brain of the rat. Biochem. J. 122, 741–750 (1971).

    PubMed  CAS  Google Scholar 

  • Ansell, G.B., Spanner, S.G.: The inhibition of brain choline kinase by hemicholinium-3. J. Neurochem. 22, 1153–1155 (1974).

    PubMed  CAS  Google Scholar 

  • Aquilonius, S.M., Frankenberg, L., Stensiö, K.E., Winblad, B.: In vivo studies of two choline acetyltransferase inhibitors. Acta pharmacol. (Kbh.) 30, 129–140 (1971).

    CAS  Google Scholar 

  • Aquilonius, S.M., Flentge, F., Schuberth, J., Sparf, B., Sundwall, A.: Synthesis of acetylcholine in different compartments of brain nerve terminals in vivo as studied by the incorporation of choline from plasma and the effect of pentobarbital on this process. J. Neurochem. 20, 1509–1521 (1973).

    PubMed  CAS  Google Scholar 

  • Armett, C.J., Ritchie, J.M.: The action of acetylcholine on conduction in mammalian non-myelinated fibres and its prevention by an anticholinesterase. J. Physiol. (Lond.) 152, 141–158 (1960).

    CAS  Google Scholar 

  • Askari, A.: Uptake of some quaternary ammonium ions by human erythrocytes. J. gen. Physiol. 49, 1147–1160 (1966).

    PubMed  CAS  Google Scholar 

  • Auerbach, A., Betz, W.: Does curare affect transmitter release? J. Physiol. (Lond.) 213, 691–705 (1971).

    CAS  Google Scholar 

  • Austin, L., James, K. A. C.: Rates of regeneration of acetylcholinesterase in rat brain subcellular fractions following DFP inhibition. J. Neurochem. 17, 705–707 (1970).

    PubMed  CAS  Google Scholar 

  • Axelrod, J.: Dopamine-β-hydroxylase: regulation of its synthesis and release from nerve terminals. Pharmacol. Rev. 24, 233–243 (1972).

    PubMed  CAS  Google Scholar 

  • Axelrod, J.: Regulation of the neurotransmitter norepinephrine. In: Schmitt, F.O., Worden, F.G. (EDS.): The Neurosciences Third Study Program, pp.863–876. Cambridge, Mass.: MIT Press 1974.

    Google Scholar 

  • Axelsson, J., Thesleff, S.: A study of supersensitivity in denervated mammalian skeletal muscle. J. Physiol. (Lond.) 147, 178–193 (1959).

    CAS  Google Scholar 

  • Babel-Guérin, E.: Métabolisme du calcium et libération de l’acétylcholine dans l’organe électrique de la Torpille. J. Neurochem. 23, 525–532 (1974).

    PubMed  Google Scholar 

  • Babel-Guérin, E., Dunant, Y.: Entrée de calcium et libération d’acétylcholine dans l’organe électrique de la Torpille. C. R. Acad. Sci. (D) (Paris) 275, 2961–2964 (1972).

    Google Scholar 

  • Baker, B.R., Gibson, R.E.: Irreversible enzyme inhibitors. 181. Inhibition of brain choline acetyl-transferase by derivatives of 4-stilbazole. J. Med. Chem. 14, 315–322 (1971).

    PubMed  CAS  Google Scholar 

  • Banister, J., Scrase, M.: Acetylcholine synthesis in normal and denervated sympathetic ganglia of the cat. J. Physiol. (Lond.) 111, 437–444 (1950).

    CAS  Google Scholar 

  • Banister, J., Whittaker, V.P., Wijesundera, S.: The occurence of homologues of acetylcholine in ox spleen. J. Physiol. (Lond.) 121, 55–71 (1953).

    CAS  Google Scholar 

  • Banks, P., Mayor, D.: Intra-axonal transport in noradrenergic neurons in the sympathetic nervous system. Biochem. Soc. Symp. 36, 133–149 (1972).

    PubMed  CAS  Google Scholar 

  • Barker, L. A., Dowdall, M.J., Essman, W.B., Whittaker, V.P.: The compartmentation of acetylcholine in cholinergic nerve terminals. In: Heilbronn, E., Winter, A. (Eds.): Drugs and Cholinergic Mechanisms in the CNS, pp.193–223. Stockholm: Research Institute of National Defence 1970.

    Google Scholar 

  • Barker, L.A., Dowdall, M.J., Whittaker, V.P.: Choline metabolism in the cerebral cortex of guinea-pigs. Biochem. J. 130, 1063–1075 (1972).

    PubMed  CAS  Google Scholar 

  • Barker, L.A., Mittag, T.W.: Inhibition of synaptosomal choline uptake by naphthylvinylpyridiniums. FEBS Letters 35, 141–144 (1973).

    CAS  Google Scholar 

  • Barnard, E.A., Wieckowski, J., Chiu, T.H.: Cholinergic receptor molecules and cholinesterase molecules at mouse skeletal muscle junctions. Nature (Lond.) 234, 207–209 (1971).

    CAS  Google Scholar 

  • Barondes, S. H.: Two sites of synthesis of macromolecules in neurons. Symp. Intern. Soc. Cell Biol. 8, 351–364 (1969).

    CAS  Google Scholar 

  • Barsoum, G.S.: The acetylcholine equivalent of nervous tissues. J. Physiol. (Lond.) 84, 259–262 (1935).

    CAS  Google Scholar 

  • Barzaghi, F., Mantegazza, P., Riva, M.: Effects of some guanidine derivatives on neuromuscular and ganglionic transmission. Brit. J. Pharmacol. 19, 414–426 (1962).

    PubMed  CAS  Google Scholar 

  • Bauer, H.: Die Freisetzung von Acetylcholin an der motorischen Nervenendigung unter dem Einfluß von d-Tubocurarin. Pflügers Arch. ges. Physiol. 326, 162–183 (1971).

    CAS  Google Scholar 

  • Beani, L., Bianchi, C., Ledda, F.: The effect of 2, 4-dinitrophenol on neuromuscular transmission. Brit. J. Pharmacol. 27, 299–312 (1966).

    PubMed  CAS  Google Scholar 

  • Beani, L., Bianchi, C., Megazzini, P., Ballotti, L., Bernardi, G.: Drug induced changes in free, labile and stable acetylcholine of guinea-pig brain. Biochem. Pharmacol. 18, 1315–1324 (1969).

    PubMed  CAS  Google Scholar 

  • Beani, L., Bianchi, C., Santinoceto, L., Marchetti, P.: The cerebral acetylcholine release in conscious rabbits with semi-permanently implanted epidural cups. Int. J. Neuropharmacol. 7, 469–481 (1968).

    PubMed  CAS  Google Scholar 

  • Bellamy, D.: The distribution of bound acetylcholine and choline acetylase in rat and pigeon brain. Biochem. J. 72, 165–168 (1959).

    PubMed  CAS  Google Scholar 

  • Belleau, B., Ditullio, V.: The anionic sites of acetylcholinesterase versus the acetylcholine receptors. In: Heilbronn, E., Winter, A. (Eds.): Drugs and Cholinergic Mechanisms in the CNS, pp.441–453. Stockholm: Research Institute of National Defence 1970.

    Google Scholar 

  • Belleroche, J. S. De., Bradford, H. F.: The stimulus-induced release of acetylcholine from synaptosome beds and its calcium dependence. J. Neurochem. 19, 1817–1819 (1972).

    PubMed  Google Scholar 

  • Bennett, M.R.: Autonomic Neuromuscular Transmission. Cambridge: University Press 1972.

    Google Scholar 

  • Bennett, M.R., McLachlan, E.M.: An electrophysiological analysis of the storage of acetylcholine in preganglionic nerve terminals. J. Physiol. (Lond.) 221, 657–668 (1972a).

    CAS  Google Scholar 

  • Bennett, M.R., McLachlan, E.M: An electrophysiological analysis of the synthesis of acetylcholine in preganglionic nerve terminals. J. Physiol. (Lond.) 221, 669–682 (1972b).

    CAS  Google Scholar 

  • Benz, F.W., Long, J.P.: Investigations on a series of heterocyclic hemicholinium-3 analogs. J. Pharmacol. exp. Ther. 166, 225–236 (1969a).

    PubMed  CAS  Google Scholar 

  • Benz, F.W., Long, J.P.: Structure-activity relationships of N-alkyl and heterocyclic analogs of hemicholinium-3. J. Pharmacol. exp. Ther. 168, 315–321 (1969b).

    PubMed  CAS  Google Scholar 

  • Beranek, R., Vyskočil, F.: The action of tubocurarine and atropine on the normal and denervated rat diaphragm. J. Physiol. (Lond.) 188, 53–66 (1967).

    CAS  Google Scholar 

  • Berl, S., Puszkin, S., Nicklas, W.J.: Actomyosin-like protein in brain. Science 179, 441 (1973).

    PubMed  CAS  Google Scholar 

  • Berman, R., Wilson, I.B., Nachmansohn, D.:Choline acetylase specificity in relation to biological function. Biochim. biophys. Acta (Amst.) 12, 315–324 (1953).

    CAS  Google Scholar 

  • Berry, J.F., Whittaker, V.P.: The acyl-group specificity of choline acetylase. Biochem. J. 73, 447–458 (1959).

    PubMed  CAS  Google Scholar 

  • Bertel-Meeuws, M.M., Polak, R.L.: Influence of antimuscarinic substances on in vitro synthesis of acetylcholine by rat cerebral cortex. Brit. J. Pharmacol. 33, 368–380 (1968).

    Google Scholar 

  • Beswick, F.B., Conroy, R.T.W.L.: Optimal tetanic conditioning of heteronymous monosynaptic reflexes. J. Physiol. (Lond.) 180, 134–146 (1965).

    CAS  Google Scholar 

  • Bhatnagar, S.P., Lam, A., McColl, J.D.: Inhibition of synthesis of acetylcholine by some esters of trimethoxybenzoic acid. Nature (Lond.). 204, 485–486 (1964).

    CAS  Google Scholar 

  • Bhatnagar, S.P., Lam, A., McColl, J.D.: Inhibition of acetylcholine synthesis in nervous tissue by some quaternary compounds. Biochem. Pharmacol. 14, 421–434 (1965).

    PubMed  CAS  Google Scholar 

  • Bhatnagar, S.P., Macintosh, F.C.: Acetylcholine content of striated muscle. Proc. Canad. Fed. Biol. Soc. 3, 12–13 (1960).

    Google Scholar 

  • Bhatnagar, S.P., Macintosh, F.C.: Effects of quaternary bases and inorganic cations on acetylcholine synthesis in nervous tissue. Can. J. Physiol. Pharmacol. 45, 249–268 (1967).

    PubMed  CAS  Google Scholar 

  • Bianchi, C.: The effect of caffeine on radiocalcium movement in frog sartorius. J. gen. Physiol. 44, 845–858 (1961).

    PubMed  CAS  Google Scholar 

  • Birks, R.L.: The role of sodium ions in the metabolism of acetylcholine. Canad. J. Biochem. Physiol. 41, 2573–2597 (1963).

    PubMed  CAS  Google Scholar 

  • Birks, R.L.: Effects of stimulation on synaptic vesicles in sympathetic ganglia, as shown by fixation in the presence of Mg2+. J. Physiol. (Lond.) 216, 26–28P (1971).

    Google Scholar 

  • Birks, R. I.: The relationship of transmitter release and storage to fine structure in a sympathetic ganglion. J. Neurocytol. 3, 133–160 (1974).

    PubMed  CAS  Google Scholar 

  • Birks, R.L., Burstyn, P.G.R., Firth, D.R.: The form of sodium-calcium competition at the frog myoneural junction. J. gen. Physiol. 52, 887–907 (1968).

    PubMed  CAS  Google Scholar 

  • Birks, R.I., Cohen, M.W.: Effects of sodium on transmitter release from frog motor nerve terminals. In: Paul, W.M, Daniel, E.E., Kay, C.M., Monckton, G., (Eds.): Muscle, pp.403–420. Oxford: Pergamon Press 1965.

    Google Scholar 

  • Birks, R.I., Cohen, M.W.: The action of sodium pump inhibitors on neuromuscular transmission. Proc. roy. Soc. B 170, 381–399 (1968a).

    CAS  Google Scholar 

  • Birks, R.I., Cohen, M.W.: The influence of internal sodium on the behaviour of motor nerve endings. Proc. roy. Soc. B 170, 401–421 (1968b).

    CAS  Google Scholar 

  • Birks, R.I., Fitch, S.J.G.: Storage and release of acetylcholine in a sympathetic ganglion. J. Physiol. (Lond.) 240, 125–134 (1974).

    CAS  Google Scholar 

  • Birks, R. I., Huxley, H. E., Katz, B.: The fine structure of the neuromuscular junction of the frog. J. Physiol. (Lond.) 150, 134–144 (1960)

    CAS  Google Scholar 

  • Birks, R.I., Macintosh, F.C.: Acetylcholine metabolism at nerve endings. Brit. med. Bull. 13, 157–161 (1957).

    PubMed  CAS  Google Scholar 

  • Birks, R.I., Macintosh, F.C.: Acetylcholine metabolism of a sympathetic ganglion. Canad. J. Biochem. Physiol. 39, 787–827 (1961).

    CAS  Google Scholar 

  • Bisby, M. A.: Return of axonally transported protein towards the cell body. Physiol. Canada 6, 20 (1975).

    Google Scholar 

  • Blaber, L.C.: The effect of facilitatory concentrations of decamethonium on the storage and release of transmitter at the neuromuscular junctions of the cat. J. Pharmacol. exp. Ther. 175, 664–672 (1970).

    CAS  Google Scholar 

  • Blaber, L.C.: The prejunctional actions of some non-polarizing blocking drugs. Brit. J. Pharmacol. 47, 109–116 (1973).

    CAS  Google Scholar 

  • Black, I.B., Hendry, J.A., Iversen, L.L.: Trans-synaptic regulation of growth and development of adrenergic neurones in a mouse sympathetic ganglion. Brain Res. 34, 229–240 (1971).

    PubMed  CAS  Google Scholar 

  • Black, I.B., Hendry, J.A., Iversen, L.L.: The role of postsynaptic neurons in the biochemical maturation of presynaptic cholinergic nerves. J. Physiol. (Lond.) 221, 149–160 (1972a).

    CAS  Google Scholar 

  • Black, I.B., Hendry, J.A., Iversen, L.L.: Effects of surgical decentralization and nerve growth factor on the maturation of adrenergic neurone in a mouse sympathetic ganglion. J. Neurochem. 19, 1367–1377 (1972b).

    PubMed  CAS  Google Scholar 

  • Blackman, J.G.: Stimulus frequency and neuromuscular block. Brit. J. Pharmacol. 20, 5–16 (1963).

    PubMed  CAS  Google Scholar 

  • Blackman, J.G., Ginsborg, B.L., Ray, C.: Synaptic transmission in the sympathetic ganglion of the frog. J. Physiol. (Lond.) 167, 355–373 (1963a).

    CAS  Google Scholar 

  • Blackman, J. G., Ginsborg, B. A., Ray, C.: Some effects of changes in ionic concentration on the action potential of sympathetic ganglion cells in the frog. J. Physiol. (Lond.) 167, 374–388 (1963b).

    CAS  Google Scholar 

  • Blackman, J.G., Ginsborg, B.L., Ray, C.: Spontaneous synaptic activity in sympathetic ganglion cells of the frog. J. Physiol. (Lond.) 167, 389–401 (1963c).

    CAS  Google Scholar 

  • Blackman, J.G., Ginsborg, B.L., Ray, C.: On the quantal release of the transmitter at a sympathetic synapse. J. Physiol. (Lond.) 167, 402–415 (1963d).

    CAS  Google Scholar 

  • Blackman, J.G., Purves, R. V.: Intracellular recordings from ganglia of the thoracic sympathetic chain of the guinea-pig. J. Physiol. (Lond.) 203, 173–198 (1969).

    CAS  Google Scholar 

  • Blaustein, M.P.: Preganglionic stimulation increases calcium uptake by sympathetic ganglia. Science 172, 391–393 (1971).

    PubMed  CAS  Google Scholar 

  • Bligh, J.: The level of free choline in plasma. J. Physiol. (Lond.) 117, 234–240 (1952).

    CAS  Google Scholar 

  • Bligh, J.: The role of the liver and the kidneys in the maintenance of the level of free choline in plasma. J. Physiol. (Lond.) 120, 53–62 (1953a).

    CAS  Google Scholar 

  • Bligh, J.: The effect of a choline-free diet upon the level of free choline in plasma of the rat. J. Physiol. (Lond.) 120, 440–444 (1953b).

    CAS  Google Scholar 

  • Blioch, Z.L., Glagoleva, J.M., Liberman, E.A., Nenashev, V.A.: A study of the mechanism of quantal transmitter release at a chemical synapse. J. Physiol. (Lond.) 199, 11–35 (1968).

    CAS  Google Scholar 

  • Bliss, T.V.P., Gardner-Medwin, A.R.: Long-lasting increases of synaptic influence in the unanaesthetized hippocampus. J. Physiol. (Lond.) 216, 32–33P (1971).

    Google Scholar 

  • Bliss, T.V.P., Lømo, T.: Plasticity in a monosynaptic cortical pathway. J. Physiol. (Lond.) 207, 61P (1970).

    CAS  Google Scholar 

  • Blume, A., Gilbert, F., Wilson, S., Farber, J., Rosenberg, R., Nirenberg, M.: Regulation of acetylcholinesterase in neuroblastoma cells. Proc. nat. Acad. Sci. USA 67, 786–792 (1970).

    PubMed  CAS  Google Scholar 

  • Bohan, T.P., Boyne, A.F., Guth, P.S., Narayanan, Y., Williams, T.H.: Electron-dense particle in cholinergic synaptic vesicles. Nature (Lond.) 244, 32–34 (1973).

    CAS  Google Scholar 

  • Borle, A.B.: Calcium and phosphate metabolism. Ann. Rev. Physiol. 36, 361–390 (1974).

    CAS  Google Scholar 

  • Bornstein, J.C.: The effects of physostigmine on synaptic transmission in the inferior mesenteric ganglion of guinea-pigs. J. Physiol. (Lond.) 241, 309–325 (1974).

    CAS  Google Scholar 

  • Boroff, D.A., Del Castillo, J., Evoy, J.H., Steinhardt, R.A.: Observations on the action of type A botulinum toxin on frog neuromuscular junctions. J. Physiol. (Lond.) 240, 227–253 (1974).

    CAS  Google Scholar 

  • Bosmann, H.B., Hemsworth, B.A.: Synaptic vesicles — incorporation of choline by isolated synaptosomes and synaptic vesicles. Biochem. Pharmacol. 19, 133–141 (1970).

    PubMed  CAS  Google Scholar 

  • Bourdois, P. S., McCandless, D. L., Macintosh, F. C.: A prolonged after-effect of high frequency stimulation in a cholinergic pathway. Proc. Canad. Fed. Biol. Soc. 13, 148 (1970).

    Google Scholar 

  • Bourdois, P. S., McCandless, D. L., Macintosh, F. C.: A prolonged after-effect of intense synaptic activity on acetylcholine in a sympathetic ganglion. Canad. J. Physiol. Pharmacol. 53, 155–165 (1975).

    CAS  Google Scholar 

  • Bourdois, P.S., Szerb, J.C.: The absence of “surplus” acetylcholine in prisms prepared from rat cerebral cortex. J. Neurochem. 19, 1189–1193 (1972).

    PubMed  CAS  Google Scholar 

  • Bowman, W.C., Hemsworth, B. A.: Effects of triethylcholine on the output of acetylcholine from isolated diaphragm of rat. Brit. J. Pharmacol. 24, 110–118 (1965a).

    PubMed  CAS  Google Scholar 

  • Bowman, W.C., Hemsworth, B.A.: Effects of some polymethylene-bis(hydroxyethyl) dimethyl-ammonium salts on neuromuscular transmission. Brit. J. Pharmacol. 25, 392–404 (1965b).

    PubMed  CAS  Google Scholar 

  • Bowman, W.C., Hemsworth, B.A., Rand, M.J.: Triethylcholine compared with other substances affecting ganglionic transmission. Brit. J. Pharmacol. 19, 198–218 (1962).

    PubMed  CAS  Google Scholar 

  • Bowman, W.C., Hemsworth, B.A., Rand, M.J.: Effects of analogues of choline on neuromuscular transmission. Ann. N.Y. Acad. Sci. 144, 471–481 (1967).

    CAS  Google Scholar 

  • Bowman, W.C., Marshall, I.G.: Inhibitors of acetylcholine synthesis. In: Cheymol, J., (Ed.): Neuromuscular Blocking and Stimulating Agents. International Encyclopaedia of Pharmacology and Therapeutics, Section 14, Vol.1, pp.357–390. Oxford: Pergamon Press 1972.

    Google Scholar 

  • Bowman, W.C., Nott, M.W.: Actions of sympathomimetic amines and their antagonists on skeletal muscle. Pharmacol. Rev. 21, 27–72 (1969).

    PubMed  CAS  Google Scholar 

  • Bowman, W.C., Rand, J.J.: Actions of triethylcholine on neuromuscular transmission. Brit. J. Pharmacol. 17, 176–195 (1961).

    PubMed  CAS  Google Scholar 

  • Bowman, W.C., Rand, M.J.: The neuromuscular blocking action of substances related to choline. Int. J. Neuropharmacol. 1, 129–132 (1962).

    CAS  Google Scholar 

  • Bowman, W.C., Webb, S.N.: Acetylcholine and anticholinesterase drugs. In: Cheymol, J. (Ed.): Neuromuscular Blocking and Stimulating Agents. International Encyclopaedia of Pharmacology and Therapeutics, Section 14, Vol. II, pp.427–502. Oxford: Pergamon Press 1972.

    Google Scholar 

  • Boyd, J.A., Forrester, T.: The release of adenosine triphosphate from frog skeletal muscle in vitro. J. Physiol. (Lond.) 199, 115–135 (1968).

    CAS  Google Scholar 

  • Boyd, J.A., Martin, A.R.: The end-plate potential in mammalian muscle. J. Physiol. (Lond.) 132, 74–91 (1956).

    CAS  Google Scholar 

  • Bradford, H.F.: An in vitro approach to the biochemistry of transmission. In: Heilbronn, E., Winter, A., (Eds.): Drugs and Cholinergic Mechanisms in the CNS, pp. 309–319. Stockholm: Research Institute of National Defence 1970.

    Google Scholar 

  • Bragança, B.M., Quastel, J.H.: Action of snake venom on acetylcholine synthesis in brain. Nature (Lond.) 169, 695–697 (1952).

    Google Scholar 

  • Breckenridge, B.M.L., Burn, J.H., Matshinsky, F.M.: Theophylline, epinephrine and neostigmine facilitation of neuromuscular transmission. Proc. nat. Acad. Sci. (Wash.) 57, 1893–1897 (1967).

    CAS  Google Scholar 

  • Breemen, V.L. Van., Andersson, E., Reger, J.F.: An attempt to determine the origin of synaptic vesicles. Exp. Cell Res., Suppl. 5, 153–167 (1958).

    Google Scholar 

  • Bremer, J., Greenberg, D.M.: Methyl transferring enzyme system of microsomes in the biosynthesis of lecithin (phosphatidylcholine). Biochim. biophys. Acta (Amst.) 46, 205–216 (1961).

    CAS  Google Scholar 

  • Brindley, G.S.: The classification of modifiable synapses and their use in models for conditioning. Proc. roy. Soc. B 168, 361–376 (1967).

    Google Scholar 

  • Brodkin, E., Elliott, K.A.C.: Binding of acetylcholine. Amer. J. Physiol. 173, 437–442 (1953).

    PubMed  CAS  Google Scholar 

  • Bronk, D.W.: Synaptic mechanisms in sympathetic ganglia. J. Neurophysiol. 2, 280–401 (1939).

    Google Scholar 

  • Bronk, D.W., Larrabee, M.G., Gaylor, J.B., Brink, F. Jr.: The influence of altered chemical environment on the activity of ganglion cells. Amer. J. Physiol. 123, 24–25 (1938).

    Google Scholar 

  • Brooks, V.B.: An intracellular study of the action of repetitive nerve volleys and of botulinum toxin on miniature end-plate potentials. J. Physiol. (Lond.) 134, 264–277 (1956).

    CAS  Google Scholar 

  • Brooks, V.B., Thies, R.E.: Reduction of quantum content during neuromuscular transmission. J. Physiol. (Lond.) 162, 298–310 (1962).

    CAS  Google Scholar 

  • Brown, D. A., Jones, K.B., Halliwell, J.B., Quilliam, J.P.: Evidence against a presynaptic action of acetylcholine during ganglionic transmission. Nature (Lond.) 226, 958–959 (1970).

    CAS  Google Scholar 

  • Brown, G.L.: The actions of acetylcholine on denervated mammalian and frog’s muscle. J. Physiol. (Lond.) 89, 438–461 (1937).

    CAS  Google Scholar 

  • Brown, G.L., Von Euler, U.S.: The after-effects of a tetanus on mammalian muscle. J. Physiol. (Lond.) 93, 39–60 (1938).

    CAS  Google Scholar 

  • Brown, G.L., Feldberg, W.: Differential paralysis of the superior cervical ganglion. J. Physiol. (Lond.) 86, 10–11P (1935).

    Google Scholar 

  • Brown, G.L., Feldberg, W.: The action of potassium on the superior cervical ganglion of the cat. J. Physiol. (Lond.) 86, 290–305 (1936a).

    CAS  Google Scholar 

  • Brown, G.L., Feldberg, W.: The acetylcholine metabolism of a sympathetic ganglion. J. Physiol. (Lond.) 88, 265–283 (1936b).

    CAS  Google Scholar 

  • Brown, G.L., Gray, J. A.B.: Some effects of nicotine-like substances and their relation to sensory nerve endings. J. Physiol. (Lond.) 107, 306–317 (1948).

    CAS  Google Scholar 

  • Brown, G.L., Harvey, A.M.: Effects of changes in dietary calcium on neuromuscular transmission. J. Physiol. (Lond.) 97, 330–337 (1940).

    CAS  Google Scholar 

  • Browning, E.T.: Free choline formation by cerebral cortical slices from rat brain. Biochem. biophys. Res. Commun. 45, 1986–1990 (1971).

    Google Scholar 

  • Browning, E.T.: Fluorometric enzyme assay for choline and acetylcholine. Analyt. Biochem. 46, 624–638 (1972).

    PubMed  CAS  Google Scholar 

  • Browning, E.T., Schulman, M.P.: 14C-acetylcholine synthesis by cortex slices of rat brain. J. Neurochem. 15, 1391–1405 (1968).

    PubMed  CAS  Google Scholar 

  • Brücke, F.T. Von: The cholinesterase in sympathetic ganglia. J.Physiol. (Lond.) 89, 429–437 (1937).

    Google Scholar 

  • Buller, A.J., Lewis, D.M.: Further observations on mammalian cross-innervated skeletal muscle. J. Physiol. (Lond.) 178, 343–358 (1965).

    CAS  Google Scholar 

  • Buller, A.J., Eccles, J.C., Eccles, R.M.: Differentiation of fast and slow muscles in the cat hind limb. J. Physiol. (Lond.) 150, 399–416 (1960).

    CAS  Google Scholar 

  • Burgen, A. S.V., Burke, G., Desbarats-Schönbaum, M.L.: The specificity of brain choline acetylase. Brit. J. Pharmacol. 11, 308–312 (1956).

    PubMed  CAS  Google Scholar 

  • Burgen, A.S.V., Chipman, L.M.: The location of cholinesterase in the central nervous system. Quart. J. exp. Physiol. 37, 61–74 (1952).

    PubMed  CAS  Google Scholar 

  • Burgen, A.S.V., Macintosh, F.C.: The physiological significance of acetylcholine. In: Elliott, K. A. C., Page, J.H., Quastel, J.H., (Eds.): Neurochemistry, 1st Ed., pp. 311–389. Springfield, Ill.: Thomas 1955.

    Google Scholar 

  • Burkhalter, A., Featherstone, R.M., Schueler, F.W., Jones, M.: The effects of some acetylcholine derivatives on the cholinesterases of chick embryo intestine cultured in vitro. J. Pharmacol. exp. Ther. 120, 285–290 (1958).

    Google Scholar 

  • Burt, A.M.: The histochemical demonstration of choline acetyltransferase activity in the spinal cord of the rat. Anat. Rec. 163, 162 (1969).

    Google Scholar 

  • Burt, A.M.: A histochemical procedure for the localization of choline acetyltransferase activity. J. Histochem. Cytochem. 18, 408–415 (1970).

    PubMed  CAS  Google Scholar 

  • Burt, A.M., Dettbarn, W.-D.: A histochemical study of the distribution of choline acetyltransferase and acetylcholinesterase activity in sensory ganglia and nerve roots of the bullfrog. Histochem. J. 4, 401–411 (1972).

    PubMed  CAS  Google Scholar 

  • Burt, A.M., Silver, A.: Non-enzymatic imidazole catalysed acyl transfer reaction and acetylcholine synthesis. Nature (Lond.) New Biol. 243, 157–159 (1973).

    CAS  Google Scholar 

  • Burton, R.M.: Gangliosides and acetylcholine of the central nervous system — the binding of radioactive acetylcholine by subcellular particles of the brain. Int. J. Neuropharmacol. 3, 13–21 (1964).

    PubMed  CAS  Google Scholar 

  • Burton, R. M., Howard, R.E.: Gangliosides and acetylcholine in the central nervous system. VIII. Role of lipids in the binding and release of neurohormones by synaptic vesicles. Ann. N.Y. Acad. Sci. 144, 411–430 (1967).

    CAS  Google Scholar 

  • Burton, R.M., Howard, R.E., Baer, S., Balfour, Y.M.: Gangliosides and acetylcholine of the central nervous system. Biochim. biophys. Acta (Amst.) 84, 441–447 (1964).

    CAS  Google Scholar 

  • Canepa, F.G.: Acetylcholine quanta. Nature (Lond.) 201, 184–185 (1964).

    CAS  Google Scholar 

  • Cangiano, A.: Acetylcholine supersensitivity: the role of neurotrophic factors. Brain Res. 58, 255–259 (1973).

    PubMed  CAS  Google Scholar 

  • Capek, R., Esplin, D. W., Salehmoghaddam, S.: Rates of transmitter turnover at the frog neuromuscular junction estimated by electrophysiological techniques. J. Neurophysiol. 34, 831–841 (1971).

    PubMed  CAS  Google Scholar 

  • Carlini, E.A., Green, J.P.: Acetylcholine activity in the sciatic nerve. Biochem. Pharmacol. 12, 1367–1376 (1963).

    PubMed  CAS  Google Scholar 

  • Carlyle, R.F.: The mode of action of neostigmine and physostigmine on the guinea-pig trachealis muscle. Brit. J. Pharmacol. 21, 137–149 (1963).

    PubMed  CAS  Google Scholar 

  • Carmody, J.J., Gage, P.W.: Lithium stimulates secretion of acetylcholine in the absence of extracellular calcium. Brain Res. 50, 476–479 (1973).

    PubMed  CAS  Google Scholar 

  • Carter, S.B.: Effects of cytochalasins on mammalian cells. Nature (Lond.) 213, 261–264 (1967).

    CAS  Google Scholar 

  • Casati, C., Michalek, H., Paggi, P., Toschi, G.: Effects of triperidol on transmission and on release of acetylcholine in the rat sympathetic ganglion in vitro. Biochem. Pharmacol. 22, 1165–1169 (1973).

    PubMed  CAS  Google Scholar 

  • Castillo, J. Del., Engbaek, L.: Nature of the neuromuscular block produced by magnesium. J. Physiol. (Lond.) 124, 370–384 (1954).

    Google Scholar 

  • Castillo, J. Del., Katz, B.: The effect of magnesium on motor nerve endings. J. Physiol. (Lond.) 124, 553–559 (1954a).

    Google Scholar 

  • Castillo, J. Del, Katz, B.: Changes in end-plate activity produced by presynaptic polarization. J. Physiol. (Lond.) 124, 586–604 (1954b).

    Google Scholar 

  • Castillo, J. Del., Stark, L.: The effect of calcium ions on the motor end-plate potentials. J. Physiol. (Lond.) 116, 507–515 (1952).

    Google Scholar 

  • Cavallito, G.J., Yun, H.S., Kaplan, T., Smith, J.C., Foldes, F.F.: Choline acetyltransferase inhibitors. Dimensional and substituent effects among styrylpyridine analogs. J. Med. Chem. 13, 221–224 (1970).

    PubMed  CAS  Google Scholar 

  • Cavallito, C.J., Yun, H.S., Smith, J.C., Foldes, F.F.: Choline acetyltransferase inhibitors. Configuration and electronic features of styrylpyridine analogs. J. Med. Chem. 12, 134–138 (1969).

    PubMed  CAS  Google Scholar 

  • Ceccarelli, B., Hurlbut, W.P., Mauro, A.: Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J. Cell Biol. 57, 499–524 (1973).

    PubMed  CAS  Google Scholar 

  • Celesia, G.G., Jasper, H.H.: Acetylcholine released from cerebral cortex in relation to state of activation. Neurology (Minneap.) 16, 1053–1063 (1966).

    CAS  Google Scholar 

  • Chakrin, L.W., Marchbanks, R.M., Mitchell, J.F., Whittaker, V.P.: Origin of acetylcholine released from the surface of the cortex. J. Neurochem. 19, 2727–2736 (1972).

    PubMed  CAS  Google Scholar 

  • Chakrin, L.W., Shideman, F.E.: Synthesis of acetylcholine from labelled choline by brain. Int. J. Neuropharmacol. 7, 337–349 (1968).

    PubMed  CAS  Google Scholar 

  • Chakrin, L.W., Whittaker, V.P.: The subcellular distribution of N-Me-3H acetylcholine synthesized by brain in vivo. Biochem. J. 113, 97–107 (1969).

    PubMed  CAS  Google Scholar 

  • Chan, S.L., Shirachi, D.Y., Trevor, A.J.: Purification and properties of brain acetylcholinesterase (EC 3.1.1.7). J. Neurochem. 19, 437–447 (1972).

    PubMed  CAS  Google Scholar 

  • Chang, C.C., Chen, T.F., Lee, C.Y.: Studies of the presynaptic effect of β-bungarotoxin on neuromuscular transmission. J. Pharmacol. exp. Ther. 184, 339–345 (1973a).

    PubMed  CAS  Google Scholar 

  • Chang, C.C., Cheng, H.C., Chen, T.F.: Does d-Tubocurarine inhibit the release of ACh from motor nerve endings? Jap. J. Physiol. 17, 505–515 (1967).

    CAS  Google Scholar 

  • Chang, C.C., Huang, M.C.: Comparison of the presynaptic actions of botulinum toxin and β-bungarotoxin in neuromuscular transmission. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 282, 129–142 (1974).

    CAS  Google Scholar 

  • Chang, C.C., Huang, M.C., Lee, C.Y.: Mutual antagonism between botulinum toxin and β-bungarotoxin. Nature (Lond.) 243, 166–167 (1973b).

    CAS  Google Scholar 

  • Chang, C.C., Lee, C.Y.: Isolation of neurotoxins from the venom of Bungarus multicinctus and their modes of neuromuscular blocking action. Arch. int. Pharmacodyn. 144, 241–257 (1963).

    PubMed  CAS  Google Scholar 

  • Chang, C.C., Lee, C.: Studies on the [3H]choline uptake in rat phrenic nerve-diaphragm preparations. Neuropharmacology 9, 223–233 (1970).

    PubMed  CAS  Google Scholar 

  • Chang, H.C., Gaddum, J.H.: Choline esters in tissue extracts. J. Physiol. (Lond.) 79, 255–285 (1933).

    CAS  Google Scholar 

  • Chao, L.P., Wolfgram, F.: Purification and some properties of choline acetyltransferase. J. Neurochem. 20, 1075–1082 (1973).

    PubMed  CAS  Google Scholar 

  • Chen, I. L., Lee, C. Y.: Ultrastructural changes in the motor nerve. Virchows Arch. Abt.B 6, 318–325 (1970).

    CAS  Google Scholar 

  • Cheney, D.L., Hanin, L., Massarelli, R., Trabucchi, M., Costa, E.: Vinblastine and vincristine: a study of their action on tissue concentration of epinephrine, norepinephrine and acetylcholine. Neuropharmacology 12, 233–238 (1973).

    PubMed  CAS  Google Scholar 

  • Cheng, S.C., Nakamura, R.: A study on the tricarboxylic acid cycle and the synthesis of acetylcholine in the lobster nerve. Biochem. J. 118, 451–455 (1970).

    PubMed  CAS  Google Scholar 

  • Cheng, S.C., Nakamura, R., Waelsch, H.: Krebs cycle and acetylcholine synthesis in nervous tissue. Biochem. J. 104, 52P–53P (1967).

    PubMed  CAS  Google Scholar 

  • Cheymol, J., Bourillet, F., Ogura, Y.: Actions de quelques paralysants neuromusculaires sur la libération de l’acétylcholine au niveau des terminaisons nerveuses motrices. Arch. int. Pharmacodyn. 139, 187–197 (1962).

    PubMed  CAS  Google Scholar 

  • Chiou, C.Y.: Effects of ganglionic blocking agents on the neuromuscular junction. Europ. J. Pharmacol. 12, 342–347 (1970).

    CAS  Google Scholar 

  • Chiou, C.Y.: Mechanism of acetylcholine release by drugs and its blockade. Arch. int. Pharmacodyn. 201, 170–181 (1973).

    PubMed  CAS  Google Scholar 

  • Chiou, C.Y., Long, J.P.: Acetylcholine-releasing effects of some nicotinic agents on chick biventer cervicis nerve muscle preparation. Proc. Soc. exp. Biol. (N.Y.) 132, 732–737 (1969).

    CAS  Google Scholar 

  • Chmouliovsky, M., Dunant, Y., Graf, J., Straub, R.W., Rufener, C.: Inhibition of creatine phosphokinase activity and synaptic transmission by black widow spider venom. Brain Res. 44, 289–293 (1972).

    PubMed  CAS  Google Scholar 

  • Ciani, S., Edwards, C.: The effect of acetylcholine on neuromuscular transmission in the frog. J. Pharmacol. exp. Ther. 142, 21–23 (1963).

    PubMed  CAS  Google Scholar 

  • Clark, A.W., Hurlbut, W.F., Mauro, A.: Changes in the fine structure of the neuromuscular junction caused by black widow spider venom. J. Cell Biol. 52, 1–14 (1972).

    PubMed  CAS  Google Scholar 

  • Cleland, W.W.: The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim. biophys. Acta (Amst.) 67, 104–137 (1963).

    CAS  Google Scholar 

  • Close, R.: Effect of cross-union of motor nerves to fast and slow skeletal muscles. Nature (Lond.) 206, 831–832 (1965).

    CAS  Google Scholar 

  • Cohen, J.A., Oosterbaan, R.A.: The active site of acetylcholinesterase and related esterases and its reactivity towards substrates and inhibitors. In: Koelle, G.B. (Ed.): Handbuch der experimentellen Pharmakologie, Ergänzungswerk XV. Cholinesterases and anticholinesterase agents, pp.299–373. Berlin-Heidelberg-New York: Springer 1963.

    Google Scholar 

  • Cohen, M.W.: The development of neuromuscular activity in amphibian embryonic tissue cultured in vitro. Proc. Intern. Union Physiol. Sci. 9, 117 (1971).

    Google Scholar 

  • Collier, B.: The preferential release of newly synthesized transmitter by a sympathetic ganglion. J. Physiol. (Lond.) 205, 341–352 (1969).

    CAS  Google Scholar 

  • Collier, B.: Preferential release of newly-synthesized acetylcholine. In: Fardeau, M., Israël, M., Manaranche, R. (Eds.): La Transmission Cholinergique de l’Excitation, 199–207. Paris: Inserm 1972.

    Google Scholar 

  • Collier, B.: The accumulation of hemicholinium by tissues that transport choline. Canad. J. Physiol. Pharmacol. 51, 491–495 (1973).

    CAS  Google Scholar 

  • Collier, B., Exley, K.A.: Mechanism of the antagonism by tetraethylammonium of neuromuscular block due to d-tubocurarine or calcium deficiency. Nature (Lond.) 199, 702–703 (1963).

    CAS  Google Scholar 

  • Collier, B., Katz, H.S.: The release of acetylcholine by acetylcholine in the cat’s superior cervical ganglion. Brit. J. Pharmacol. 39, 428–438 (1970).

    CAS  Google Scholar 

  • Collier, B., Katz, H. S.: The synthesis, turnover and release of surplus acetylcholine in a sympathetic ganglion. J. Physiol. (Lond.) 214, 537–552 (1971).

    CAS  Google Scholar 

  • Collier, B., Katz, H.S.: Acetylcholine synthesis from recaptured choline by a sympathetic ganglion. J. Physiol. (Lond.) 238, 639–655 (1974).

    CAS  Google Scholar 

  • Collier, B., Lang, C.: The metabolism of choline by a sympathetic ganglion. Canad. J. Physiol. Pharmacol. 47, 119–126 (1969).

    CAS  Google Scholar 

  • Collier, B., Macintosh, F.C.: The source of choline for acetylcholine synthesis in a sympathetic ganglion. Canad. J. Physiol. Pharmacol. 47, 127–135 (1969).

    CAS  Google Scholar 

  • Collier, B., Mitchell, J.F.: The central release of acetylcholine during stimulation of the visual pathway. J. Physiol. (Lond.) 184, 239–254 (1966).

    CAS  Google Scholar 

  • Collier, B., Mitchell, J.F.: The central release of acetylcholine during consciousness and after brain lesions. J. Physiol. (Lond.) 188, 83–89 (1967).

    CAS  Google Scholar 

  • Collier, B., Poon, P., Salehmoghaddam, S.: The formation of choline and of acetylcholine by brain in vitro. J. Neurochem. 19, 51–60 (1972).

    PubMed  CAS  Google Scholar 

  • Colomo, F., Rahamimoff, R.: Interaction between sodium and calcium ions in the process of transmitter release at the neuromuscular junction. J. Physiol. (Lond.) 198, 203–218 (1968).

    CAS  Google Scholar 

  • Comline, R.S.: Synthesis of acetylcholine by non-nervous tissue. J. Physiol. (Lond.) 105, 6–7P (1946).

    CAS  Google Scholar 

  • Cooke, J.D., Quastel, D.M.J.: Cumulative and persistent effects of nerve terminal depolarization on transmitter release. J. Physiol. (Lond.) 228, 407–434 (1973).

    CAS  Google Scholar 

  • Cooke, W.J., Robinson, J.D.: Factors influencing choline movement in rat brain slices. Biochem. Pharmacol. 20, 2355–2366 (1971).

    PubMed  CAS  Google Scholar 

  • Cooper, P.D., Smith, R.S.: The movement of optically detectable organelles in myelinated axons of Xenopus laevis. J. Physiol. (Lond.) 242, 77–97 (1974).

    CAS  Google Scholar 

  • Corteggiani, E., Gautrelet, J., Kaswin, A., Mentzer, C.: Sur l’existence d’un complexe libérant l’acétylcholine dans les centres nerveux sous l’influence de la chaleur. C. r. Soc. Biol. (Paris) 123, 667–668 (1936).

    CAS  Google Scholar 

  • Cotman, C., Herschman, H., Taylor, D.: Subcellular fractionation of cultured glial cells. J. Neurobiology 2, 169–180 (1971).

    CAS  Google Scholar 

  • Couteaux, R., Nachmansohn, D.: Changes of choline esterase at end-plates of voluntary muscle following section of sciatic nerve. Proc. Soc. exp. Biol. (N. Y.) 43, 177–181 (1940).

    CAS  Google Scholar 

  • Couteaux, R., Taxi, J.: Recherches histochimiques sur la distribution des activités cholinestérasiques au niveau de la synapse myoneurale. Arch. Anat. micr. Morph. exp. 41, 352–392 (1952).

    Google Scholar 

  • Cowan, S. L.: The action of eserine-like compounds upon frog’s nerve-muscle preparations, and conditions in which a single shock can evoke a repetitive response. Proc. roy. Soc. B 129, 356–391 (1940).

    CAS  Google Scholar 

  • Cowie, A.L., Kosterlitz, H.W., Watt, A.J.: Mode of action of morphine-like drugs on autonomic neuro-effectors. Nature (Lond.) 220, 1040–1042 (1968).

    CAS  Google Scholar 

  • Cragg, B.G.: What is the signal for chromatolysis? Brain Res. 23, 1–21 (1970).

    PubMed  CAS  Google Scholar 

  • Creese, R., Maclagan, J.: Autoradiography of decamethonium in rat muscle. Nature (Lond.) 215, 988–989 (1967).

    CAS  Google Scholar 

  • Crone, H.D., Freeman, S.E.: The acetylcholinesterase activity of the denervated rat diaphragm. J. Neurochem. 19, 1207–1208 (1972).

    PubMed  CAS  Google Scholar 

  • Crossland, J., Slater, P.: The effect of some drugs on the “free” and “bound” acetylcholine content of rat brain. Brit. J. Pharmacol. 33, 42–47 (1968).

    PubMed  CAS  Google Scholar 

  • Crow, T. J., Grove-White, I.G.: An analysis of the learning deficit following hyoscine administration to man. Brit. J. Pharmacol. 49, 322–327 (1973).

    CAS  Google Scholar 

  • Csillik, B., Haarstad, V.B., Knyihar, E.: Autoradiographic localization of 14C-hemicholinium — an approach to locate sites of acetylcholine synthesis. J. Histochem. Cytochem. 18, 58–60 (1970).

    PubMed  CAS  Google Scholar 

  • Cull-Candy, C., Neal, H., Usherwood, P.N.R.: Action of black widow spider venom on an aminergic synapse. Nature (Lond.) 241, 353–354 (1973).

    CAS  Google Scholar 

  • Currier, S.F., Mautner, H.G.: On the mechanism of action of choline acetyltransferase. Proc. nat. Acad. Sci. (Wash.) 71, 3355–3358 (1974).

    CAS  Google Scholar 

  • Dahlström, A.: Observations on the accumulation of noradrenaline in the proximal and distal parts of peripheral adrenergic nerves after compression. J. Anat. (Lond.) 99, 677–689 (1965).

    Google Scholar 

  • Dahlström, A.: Effect of colchicine on transport of amine storage granules in sympathetic nerves of rat. Europ. J. Pharmacol. 5, 111–113 (1968).

    Google Scholar 

  • Dahlström, A.: Axoplasmic transport (with particular respect to adrenergic neurons). Phil. Trans. B 261, 325–358 (1971).

    Google Scholar 

  • Dahlström, A.B., Evans, C.A.N., Häggendal, C.J., Heiwall, P.O., Saunders, N.R.: Rapid transport of acetylcholine in rat sciatic nerve proximal and distal to a lesion. J. neural Transmission 35, 1–11 (1974).

    Google Scholar 

  • Dahlström, A., Häggendal, J.: Studies on the transport and life-span of amine storage granules in a peripheral adrenergic neuron system. Acta physiol. scand. 67, 278–288 (1966).

    PubMed  Google Scholar 

  • Dale, H.H.: Adventures in Physiology, p. 637. London: Pergamon Press 1953.

    Google Scholar 

  • Dale, H.H., Feldberg, W., Vogt, M.: Release of acetylcholine at voluntary motor nerve endings. J. Physiol. (Lond.) 86, 353–380 (1936).

    CAS  Google Scholar 

  • Dauterman, W.C., Mehrotra, K.N.: The N-alkyl group specificity of choline acetylase from brain. J. Neurochem. 10, 113–123 (1963).

    PubMed  CAS  Google Scholar 

  • Davis, H.A., Horton, E.W., Jones, K.B., Quilliam, J.P.: Identification of prostaglandins in prevertebral venous blood after preganglionic stimulation of the cat superior cervical ganglion. Brit. J. Pharmacol. 42, 569–583 (1971).

    CAS  Google Scholar 

  • Davis, R., Koelle, G.B.: Electron microscopic localization of acetylcholinesterase and nonspecific cholinesterase at the neuromuscular junction by the gold-thiocholine and gold-thiolacetic acid methods. J. Cell Biol. 34, 157–171 (1967).

    PubMed  CAS  Google Scholar 

  • Dawes, P. M., Vizi, E. S.: Acetylcholine release from the rabbit isolated superior cervical ganglion preparation. Brit. J. Pharmacol. 48, 225–232 (1973).

    CAS  Google Scholar 

  • Debassio, W.S., Schnitzler, R.M., Parsons, R.M.: Influence of lanthanum on transmitter release at the neuromuscular junction. Fed. Proc. 30, 617 (1971).

    Google Scholar 

  • Debecker, J.: Activation of neuromuscular transmission: calcium, potassium, veratrum, guanidine. In: Cheymol, J. (Ed.): Neuromuscular Blocking and Stimulating Agents, International Encyclopedia of Pharmacology and Therapeutics, Section 14, Vol. 11, pp. 503–513. Oxford: Pergamon Press 1972.

    Google Scholar 

  • Degroat, W.C., Volle, R.L.: The actions of the catecholamines on transmission in the superior cervical ganglion of the cat. J. Pharmacol. exp. Ther. 154, 1–13 (1966).

    CAS  Google Scholar 

  • Dennis, M.J., Harris, A.J., Kuffler, S.W.: Synaptic transmission and its duplication by focally applied acetylcholine in parasympathetic neurons in the heart of the frog. Proc. roy. Soc. B 177, 509–539 (1971).

    CAS  Google Scholar 

  • De Robertis, E., Pellegrino De Iraldi, A., Rodriguez De Lores Arnaiz, G., Gomez, C.J.: On the isolation of nerve endings and synaptic vesicles. J. biophys. biochem. Cytol. 9, 229–235 (1961).

    Google Scholar 

  • De Robertis, E., Rodriguez De Lores Arnaiz, G., Pellegrino De Iraldi, A., Salganicoff, L.: Cholinergic and non-cholinergic nerve endings in rat brain. J. Neurochem. 9, 24–35 (1962).

    Google Scholar 

  • De Robertis, E., Rodriguez De Lores Arnaiz, G., Salganicoff, L., Pellegrino De Iraldi, A., Ziehler, L.M.: Isolation of synaptic vesicles and structural organization of the acetylcholine system within brain nerve endings. J. Neurochem. 10, 225–235 (1963).

    Google Scholar 

  • Desiraju, T.: Role of potassium and calcium in the turnover of acetylcholine. Quart. J. exp. Physiol. 51, 177–183 (1966).

    PubMed  CAS  Google Scholar 

  • Desmedt, J.E.: Guanidine et myasthénie grave. Rev. neurol. 94, 154–158 (1956).

    PubMed  CAS  Google Scholar 

  • Detwiler, P.B.: The effects of germine-3-acetate on neuromuscular transmission. J. Pharmacol. exp. Ther. 180, 244–254 (1972).

    PubMed  CAS  Google Scholar 

  • Deutsch, J.A.: The cholinergic synapse and the site of memory. Science 174, 788–794 (1971).

    PubMed  CAS  Google Scholar 

  • Diamond, I.: Choline metabolism in brain: the role of choline transport and the effects of phenobarbital. Arch. Neurol. (Chic.) 24, 333–339 (1971).

    CAS  Google Scholar 

  • Diamond, I., Franklin, G.M., Milfay, D.: The relationship of choline acetyltransferase activity at the neuromuscular junction to changes in muscle mass and function. J. Physiol. (Lond.) 236, 247–257 (1974).

    CAS  Google Scholar 

  • Diamond, I., Kennedy, E.P.: Carrier-mediated transport of choline into synaptic nerve endings. J. biol. Chem. 244, 3258–3263 (1969).

    PubMed  CAS  Google Scholar 

  • Diamond, I., Milfay, D.: Uptake of 3H-methyl choline by microsomal, synaptosomal, mitochondrial and synaptic vesicle fractions of rat brain. The effects of hemicholinium. J. Neurochem. 19, 1899–1909 (1972).

    PubMed  CAS  Google Scholar 

  • Diamond, J., Evans, C.A.N.: Acetylcholine in regenerating motor nerves. J. Physiol. (Lond.) 154, 69P (1960).

    Google Scholar 

  • Di Augustine, R.P., Haarstad, V.B.: The active structure of hemicholinium inhibiting the bio-synthesis of acetylcholine. Biochem. Pharmacol. 19, 559–580 (1970).

    Google Scholar 

  • Dobson, J.G. Jr., Rubio, R., Berne, R.M.: Role of adenine nucleotides, adenosine, and inorganic phosphate in the regulation of skeletal muscle blood flow. Circulat. Res. 29, 375–384 (1971).

    PubMed  CAS  Google Scholar 

  • Dodge, F.A. Jr., Miledi, R., Rahamimoff, R.: Strontium and quantal release of transmitter at the neuromuscular junction. J. Physiol. (Lond.) 200, 267–283 (1969).

    CAS  Google Scholar 

  • Domino, E.F., Morhman, M.E., Wilson, A. E., Haarstadt, V.B.: Acetylsecohemicholinium-3, a new choline acetyltransferase inhibitor, useful in neuropharmacological studies. Neuropharmacology 12, 549–561 (1973).

    PubMed  CAS  Google Scholar 

  • Domino, E.F., Shellenberger, M.K., Frappin, J.: Inhibition of acetylcholinesterase in vitro by hemicholinium. Arch. int. Pharmacodyn. 176, 42–49 (1968).

    PubMed  CAS  Google Scholar 

  • Douglas, W.W.: Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Brit. J. Pharmacol. 34, 451–474 (1968).

    CAS  Google Scholar 

  • Douglas, W.W., Gray, J.A.B.: The excitant action of acetylcholine and other substances on cutaneous sensory pathways and its prevention by hexamethonium and D-tubocurarine. J. Physiol. (Lond.) 119, 118–128 (1953).

    CAS  Google Scholar 

  • Douglas, W.W., Lywood, D.W.: The stimulant effect of tetraethylammonium on acetylcholine output from the superior cervical ganglion: comparison with barium. Fed. Proc. 20, 324 (1961).

    Google Scholar 

  • Douglas, W.W., Lywood, D.W., Straub, R.W.: The stimulant effect of barium on the release of acetylcholine from the superior cervical ganglion. J. Physiol. (Lond.) 156, 515–522 (1961).

    CAS  Google Scholar 

  • Douglas, W.W., Poisner, A.M.: Evidence that the secreting adrenal chromaffin cell releases catecholamines directly from ATP-rich granules. J. Physiol. (Lond.) 183, 236–248 (1966).

    CAS  Google Scholar 

  • Douglas, W.W., Ritchie, J.M.: The excitatory action of acetylcholine on cutaneous non-myelinated fibres. J. Physiol. (Lond.) 150, 501–514 (1960).

    CAS  Google Scholar 

  • Douglas, W.W., Sorimachi, M.: Effects of cytochalasin B and colchicine on posterior pituitary and adrenal medullary hormones. Brit. J. Pharmacol. 45, 143–144P (1972a).

    Google Scholar 

  • Douglas, W.W., Sorimachi, M.: Colchicine inhibits adrenal medullary secretion evoked by acetylcholine without affecting that evoked by potassium. Brit. J. Pharmacol. 45, 129–132 (1972b).

    CAS  Google Scholar 

  • Dowdall, M.J., Boyne, A.F., Whittaker, V.P.: Adenosine triphosphate. A constituent of cholinergic synaptic vesicles. Biochem. J. 140, 1–12 (1974).

    PubMed  CAS  Google Scholar 

  • Dowdall, M. J., Simon, E.J.: Comparative studies on synaptosomes: uptake of [N-methyl-3H]choline by synaptosomes from squid optic lobes. J. Neurochem. 21, 969–982 (1973).

    PubMed  CAS  Google Scholar 

  • Drachman, D. A., Leavitt, J.: Human memory and the cholinergic system. A relationship to aging. Arch. Neurol. (Chic.) 30, 113–121 (1974).

    CAS  Google Scholar 

  • Dropp, J.J., Sodetz, F.J.: Changes in neuroglia and neurons of behaviourally stressed rats. Brain Res. 33, 419–430 (1971).

    PubMed  CAS  Google Scholar 

  • Dross, K., Kewitz, H.: Concentration and origin of choline in the rat brain. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 274, 91–106 (1972).

    CAS  Google Scholar 

  • Droz, B.: Renewal of synaptic proteins. Brain Res. 62, 383–394 (1973).

    PubMed  CAS  Google Scholar 

  • Droz, B., Koenig, H.L.: Dynamic condition of protein in axons and axon terminals. Acta neuropath. (Berl), Suppl. 5, 109–118 (1971).

    Google Scholar 

  • Duchen, L. W., Tonge, D. A.: The effects of tetanus toxin on neuromuscular transmission and on the morphology of motor end-plates in slow and fast skeletal muscle of the mouse. J. Physiol. (Lond.) 228, 157–172 (1973).

    CAS  Google Scholar 

  • Dunant, Y.: Mechanisms of synaptic transmission. Presynaptic spike and excitatory postsynaptic potential in sympathetic ganglion. Their modification by pharmacological agents. Progress in Brain Res. 31, 131–139 (1969).

    CAS  Google Scholar 

  • Dunant, Y.: Some properties of the presynaptic nerve terminals of a mammalian sympathetic ganglion. J. Physiol. (Lond.) 221, 577–588 (1972).

    CAS  Google Scholar 

  • Dunant, Y., Dolivo, M.: Presynaptic recording in excised sympathetic ganglion of the rat. Brain Res. 10, 268–270 (1968).

    PubMed  CAS  Google Scholar 

  • Dunant, Y., Gautron, J., Israël, M., Lesbats, B., Manaranche, R.: Effet de la stimulation de l’organe électrique de la Torpille sur les “compartiments libre et lié” d’acétylcholine. C. r. Acad. Sci. (Paris) 273, 233–236 (1971).

    CAS  Google Scholar 

  • Dunant, Y., Gautron, J., Israël, M., Lesbats, B., Manaranche, R.: Les compartiments d’acétylcholine de l’organe électrique de la Torpille et leurs modifications par la stimulation. J. Neurochem. 19, 1987–2002 (1972).

    PubMed  CAS  Google Scholar 

  • Dunant, Y., Gautron, J., Israël, M., Lesbats, B., Manaranche, R.: Evolution de la décharge de l’organe électrique de la Torpille et variations simultanées de l’acétylcholine au cours de la stimulation. J. Neurochem. 23, 635–644 (1974).

    PubMed  CAS  Google Scholar 

  • Ebel, A., Hermetet, J.C., Mandel, P.: Comparative study of acetylcholinesterase and choline acetyltransferase enzyme activity in brain of DBA and C57 mice. Nature (Lond.) New Biol. 242, 56–57 (1973).

    CAS  Google Scholar 

  • Eccles, J.C.: The nature of synaptic transmission in a sympathetic ganglion. J. Physiol. (Lond.) 103, 27–54 (1944).

    CAS  Google Scholar 

  • Eccles, J.C., Katz, B., Kuffler, S.W.: Nature of the “endplate potential” in curarized muscle. J. Neurophysiol. 4, 362–387 (1941).

    Google Scholar 

  • Eccles, J.C., Katz, B., Kuffler, S.W.: Effect of eserine on neuromuscular transmission. J. Neurophysiol. 5, 211–230 (1942).

    CAS  Google Scholar 

  • Eccles, J.C., McIntyre, A.K.: Plasticity of mammalian monosynaptic reflexes. Nature (Lond.) 167, 466–468 (1951).

    Google Scholar 

  • Eccles, J.C., McIntyre, A. K.: The effects of disuse and of activity on mammalian spinal reflexes. J. Physiol. (Lond.) 121, 492–516 (1953).

    CAS  Google Scholar 

  • Edström, A., Mattson, H.: Fast axonal transport in the sciatic system of the frog. J. Neurochem. 19, 205–221 (1972).

    PubMed  Google Scholar 

  • Eichberg, J., Whittaker, V.P., Dawson, R.M.C.: Distribution of lipids in subcellular particles of guinea-pig brain. Biochem. J. 92, 91–100 (1964).

    PubMed  CAS  Google Scholar 

  • Eisenstadt, M.L., Treistman, S.N., Schwartz, J.H.: Metabolism of acetylcholine in the nervous system of Aplysia californica. II. Regional localization and characterization of choline uptake. J. gen. Physiol. 65, 275–291 (1975).

    PubMed  CAS  Google Scholar 

  • Eksborg, S., Persson, B. A.: Photometric determination of acetylcholine and choline after selective isolation by ion-pair chromatography. In: Hanin, I. (Ed.): Choline and Acetylcholine: Handbook of Chemical Assay Methods, pp. 181–193. New York: Raven Press 1974.

    Google Scholar 

  • Ekström, J.: Choline acetyltransferase and secretory responses of the rat’s salivary glands after liquid diet. Quart. J. exp. Physiol. 58, 171–179 (1973).

    PubMed  Google Scholar 

  • Ekström, J.: Choline acetyltransferase in the heart and salivary glands of the rat after physical training. Quart. J. exp. Physiol. 59, 73–80 (1974a).

    PubMed  Google Scholar 

  • Ekström, J.: Choline acetyltransferase activity in rat salivary glands after cellulose-rich diet or treatment with an atropine-like drug. Quart. J. exp. Physiol. 59, 191–199 (1974b).

    PubMed  Google Scholar 

  • Ekström, J., Holmberg, J.: Effect of decentralization on the choline acetyltransferase of the canine parotid gland. J. Physiol. (Lond.) 222, 93–94P (1972).

    Google Scholar 

  • Elliott, K.A.C., Henderson, N.: Factors affecting acetylcholine found in excised rat brain. Amer. J. Physiol. 165, 365–374 (1951).

    PubMed  CAS  Google Scholar 

  • Elliott, K.A.C., Swank, R.L., Henderson, N.: Effects of anaesthetics and convulsants on acetylcholine content of brain. Amer. J. Physiol. 162, 469–474 (1950).

    PubMed  CAS  Google Scholar 

  • Elmqvist, D., Feldman, D.S.: Calcium dependence of spontaneous acetylcholine release at mammalian motor nerve terminals. J. Physiol. (Lond.) 181, 487–497 (1965a).

    CAS  Google Scholar 

  • Elmqvist, D., Feldman, D.S.: Effects of sodium pump inhibitors on spontaneous acetylcholine release at the neuromuscular junction. J. Physiol. (Lond.) 181, 498–505 (1965b).

    CAS  Google Scholar 

  • Elmqvist, D., Josefsson J. O.: The nature of the neuromuscular block produced by neomycine. Acta physiol. scand. 54, 105–110 (1962).

    PubMed  CAS  Google Scholar 

  • Elmqvist, D., Quastel, D.M.J.: Presynaptic action of hemicholinium at the neuromuscular junction. J. Physiol. (Lond.) 177, 463–482 (1965a).

    CAS  Google Scholar 

  • Elmqvist, D., Quastel, D.M. J.: A quantitative study of end-plate potentials in human muscle. J. Physiol. (Lond.) 178, 505–529 (1965b).

    CAS  Google Scholar 

  • Emmelin, N.: Action of transmitters on the responsiveness of cells. Experientia (Basel) 21, 57–65 (1965).

    CAS  Google Scholar 

  • Emmelin, N., Macintosh, F.C.: The release of acetylcholine from perfused sympathetic ganglia and skeletal muscles. J. Physiol. (Lond.) 131, 477–496 (1956).

    CAS  Google Scholar 

  • Emmelin, N., Muren, A.: Acetylcholine release at parasympathetic synapses. Acta physiol. scand. 20, 13–32 (1950).

    PubMed  CAS  Google Scholar 

  • Eng, L.F., Uyeda, C.T., Chao, L.P., Wolfgram, F.: Antibody to bovine choline acetyltransferase and immunofluorescent localization of the enzyme in neurones. Nature (Lond.) 250, 243–245 (1974).

    CAS  Google Scholar 

  • Eränkö, O., Teräväinen, H.: Cholinesterase and eserine-resistant carboxylic esterases in degenerating and regenerating motor end plates of the rat. J. Neurochem. 14, 947–954 (1967).

    PubMed  Google Scholar 

  • Evans, C.A.N., Saunders, N.R.: The distribution of acetylcholine in normal and in regenerating nerves. J. Physiol. (Lond.) 192, 79–92 (1967).

    CAS  Google Scholar 

  • Evans, C.A.N., Saunders, N.R.: An outflow of acetylcholine from normal and regenerating ventral roots of the cat. J. Physiol. (Lond.) 240, 15–32 (1974).

    CAS  Google Scholar 

  • Evans, R.H.: Some characteristics of calcium accumulation at motor end-plates of mouse diaphragm. Brit. J. Pharmacol. 49, 168–169P (1973).

    Google Scholar 

  • Farel, P.B.: Persistent increase in synaptic efficacy following a brief tetanus in isolated frog spinal cord. Brain Res. 66, 113–120 (1974).

    Google Scholar 

  • Fatt, P.: Biophysics of junctional transmission. Physiol. Rev. 34, 674–710 (1954).

    PubMed  CAS  Google Scholar 

  • Fatt, P., Katz, B.: An analysis of the end-plate potential recorded with an intracellular electrode. J. Physiol. (Lond.) 115, 320–370 (1951).

    CAS  Google Scholar 

  • Fatt, P., Katz, B.: Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).

    CAS  Google Scholar 

  • Feigenson, M.E., Saelens, J.K.: An enzyme assay for acetylcholine. Biochem. Pharmacol. 18, 1479–1486 (1969).

    PubMed  CAS  Google Scholar 

  • Feldberg, W.: Present views on the mode of action of acetylcholine in the central nervous system. Physiol. Rev. 25, 596–642 (1945).

    PubMed  CAS  Google Scholar 

  • Feldberg, W., Fessard, A.: The cholinergic nature of the nerves to the electric organ of the Torpedo (Torpedo marmorata). J. Physiol. (Lond.) 101, 200–216 (1942).

    CAS  Google Scholar 

  • Feldberg, W., Lin, R. C. Y.: Synthesis of acetylcholine in the wall of the digestive tract. J. Physiol. (Lond.) 111, 96–118 (1950).

    CAS  Google Scholar 

  • Fellman, J.H.: A chemical method for the determination of acetylcholine: its application in a study of presynaptic release and choline acetyltransferase assay. J. Neurochem. 16, 135–143 (1969).

    PubMed  CAS  Google Scholar 

  • Feng, T.P.: Studies on neuromuscular function: local potentials around neuromuscular junctions induced by single and multiple volleys. Chin. J. Physiol. 15, 367–404 (1940).

    Google Scholar 

  • Feng, T.P.: Studies on the neuromuscular junction. V. The succession of inhibitory and facilitatory effects of prolonged high frequency stimulation on neuromuscular transmission. Chin. J. Physiol. 11, 451–470 (1937).

    Google Scholar 

  • Feng, T.P., Lee, L. Y., Meng, C. W., Wang, S.C.: Studies on the neuromuscular junction. IX. The after-effects of tetanization on neuromuscular transmission in cat. Chin. J. Physiol. 13, 79–108 (1938).

    Google Scholar 

  • Ferguson, F.C., Jr.: Colchicine. I. General pharmacology. J. Pharmacol. exp. Ther. 106, 261–270 (1952).

    PubMed  CAS  Google Scholar 

  • Filogamo, G., Gabella, G.: Cholinesterase behavior in the denervated and reinnervated muscles. Acta anat. (Basel) 63, 199–214 (1966).

    CAS  Google Scholar 

  • Filogamo, G., Gabella, G.: The development of neuromuscular correlations in vertebrates. Arch. Biol. (Liège) 78, 9–60 (1967).

    CAS  Google Scholar 

  • Filogamo, G., Marchisio, P.C.: Acetylcholine system and neural development. Neurosci. Res. 4, 29–64 (1971).

    PubMed  CAS  Google Scholar 

  • Fischbach, G.D., Robbins, N.: Changes in contractile properties of disused soleus muscles. J. Physiol. (Lond.) 201, 305–320 (1969).

    CAS  Google Scholar 

  • Fitzgerald, G.G., Cooper, J.R.: Studies on ACh in the corneal epithelium. Fed. Proc. 26, 651 (1967).

    Google Scholar 

  • Flacke, W.E., Blume, R.B., Scott, W.R., Foldes, F.F., Osserman, K.E.: Germine mono-and diacetate in myasthenia gravis. Ann. N. Y. Acad. Sci. 183, 316–333 (1971).

    PubMed  CAS  Google Scholar 

  • Folkow, B., Häggendal, J., Lisander, B.: Extent of release and elimination of noradrenaline at peripheral adrenergic nerve terminals. Acta physiol. scand., Suppl. 307, 5–38 (1967).

    Google Scholar 

  • Fonnum, F.: The compartmentation of choline acetyltransferase within the synaptosome. Biochem. J. 103, 262–270 (1967).

    PubMed  CAS  Google Scholar 

  • Fonnum, F.: Choline acetyltransferase: Binding to and release from membranes. Biochem. J. 109, 389–398 (1968a).

    PubMed  CAS  Google Scholar 

  • Fonnum, F.: The distribution of glutamate decarboxylase and aspartate transaminase in subcellular fractions of rat and guinea-pig brain. Biochem. J. 106, 401–412 (1968b).

    PubMed  CAS  Google Scholar 

  • Fonnum, F.: Isolation of choline esters from aqueous solutions by extraction with Na tetraphenylboron in organic solvents. Biochem. J. 113, 291–298 (1969).

    PubMed  CAS  Google Scholar 

  • Fonnum, F.: Surface charge of choline acetyltransferases from different species. J. Neurochem. 17, 1095–1100 (1970).

    PubMed  CAS  Google Scholar 

  • Fonnum, F., Frizell, M., Sjöstrand, J.: Transport, turnover and distribution of choline acetyl-transferase and acetylcholinesterase in the vagal and hypoglossal nuclei of the rabbit. J. Neurochem. 21, 1107–1120 (1974).

    Google Scholar 

  • Fonnum, F., Malthe-Sørenssen, D.: Molecular properties of choline acetyltransferase and their importance for the compartmentation of acetylcholine synthesis. Progr. Brain Res. 36, 13–27 (1972).

    CAS  Google Scholar 

  • Fonnum, F., Malthe-Sørenssen, D.: Membrane affinities and subcellular distribution of the different molecular forms of choline acetyltransferase from rat. J. Neurochem. 20, 1351–1359 (1973).

    PubMed  CAS  Google Scholar 

  • Forrester, T., Lind, A.R.: Identification of adenosine triphosphate in human plasma and the concentration in the venous effluent of forearm muscles before, during and after sustained contractions. J. Physiol. (Lond.) 204, 347–364 (1969).

    CAS  Google Scholar 

  • Frankenberg, L., Heimburger, G., Nilsson, C., Sörbo, B.: Biochemical and pharmacological studies on the sulfonium analogues of choline and acetylcholine. Europ. J. Pharmacol. 23, 37–46 (1973).

    CAS  Google Scholar 

  • Frazier, D.T., Narahashi, T., Moore, J.W.: Hemicholinium-3: non-cholinergic effects on squid axons. Science 163, 820–821 (1969).

    PubMed  CAS  Google Scholar 

  • Frederickson, R.C.A., Pinsky, C.: Morphine impairs acetylcholine release but facilitates acetylcholine action at a skeletal neuromuscular junction. Nature (Lond.) New Biol. 231, 93–94 (1971).

    CAS  Google Scholar 

  • Friedenberg, M., Seligman, A.M.: Acetylcholinesterase at the myoneural junction: cytochemical ultrastructure and some biochemical considerations. J. Histochem. Cytochem. 20, 771–792 (1972).

    PubMed  CAS  Google Scholar 

  • Friesen, A.J.D., Khatter, J.C.: The effect of preganglionic stimulation on the acetylcholine and choline content of a sympathetic ganglion. Can. J. Physiol. Pharmacol. 49, 375–381 (1971a).

    PubMed  CAS  Google Scholar 

  • Friesen, A.J.D., Khatter, J.C.: Effect of stimulation on synaptic vesicles in the superior cervical ganglion of the cat. Experientia (Basel) 27, 285–287 (1971b).

    CAS  Google Scholar 

  • Friesen, A.J.D., Macconaill, M.: Choline and acetylcholine metabolism in a sympathetic ganglion. Proc. Canad. Fed. Biol. Soc. 10, 30 (1967).

    Google Scholar 

  • Friesen, A.J.D., Ling, G.M., Nagai, M.: Choline and phospholipidcholine in a sympathetic ganglion and their relationship to acetylcholine synthesis. Nature (Lond.) 214, 722–724 (1967).

    CAS  Google Scholar 

  • Frizell, M., Hasselgren, P.O., Sjöstrand, J.: Axoplasmic transport of acetylcholinesterase and choline acetyltransferase in the vagus and hypoglossal nerve of the rabbit. Exp. Brain Res. 10, 526–531 (1970).

    PubMed  CAS  Google Scholar 

  • Frontali, N.: Catecholamine-depleting effect of black widow spider venom on iris nerve terminals. Brain Res. 37, 146–148 (1972).

    PubMed  CAS  Google Scholar 

  • Frontali, N., Grasso, A.: Separation of three toxicologically different protein components from the venom of the spider Latrodectus tredecimgultatus. Arch. Biochem. 106, 213–218 (1964).

    PubMed  CAS  Google Scholar 

  • Frontali, N., Granata, F., Parisi, P.: Effects of black widow spider venom on acetylcholine release from rat cerebral cortex slices in vitro. Biochem. Pharmacol. 21, 969–974 (1972).

    PubMed  CAS  Google Scholar 

  • Fukuda, T., Koelle, G.B.: The cytological localization of intracellular neuronal acetylcholinesterase. J. biophys. biochem. Cytol. 5, 433–440 (1959).

    PubMed  CAS  Google Scholar 

  • Fuxe, K., Grobecker, H., Hökfelt, T., Jonsson, G.: Identification of dopamine, noradrenaline and 5-hydroxytryptamine varicosities in a fraction containing nerve ending particles. Brain Res. 6, 475–480 (1967).

    PubMed  CAS  Google Scholar 

  • Gage, P.W., Hubbard, J.L.: An investigation of the post-tetanic potentiation of end-plate potentials at a mammalian neuromuscular junction. J. Physiol. (Lond.) 184, 353–375 (1966).

    CAS  Google Scholar 

  • Gage, P.W., Quastel, D.M.: Competition between sodium and calcium ions in transmitter release at a mammalian neuromuscular junction. J. Physiol. (Lond.) 185, 95–123 (1966).

    CAS  Google Scholar 

  • Galindo, A.: Prejunctional effect of curare: its relative importance. J. Neurophysiol. 34, 289–301 (1971).

    PubMed  CAS  Google Scholar 

  • Gallagher, J.P., Blaber, L.C.: Catechol, a facilitatory drug that demonstrates only a prejunctional site of action. J. Pharmacol. exp. Ther. 184, 129–135 (1973).

    PubMed  CAS  Google Scholar 

  • Gallup, B., Dubowitz, V.: Failure of “dystrophic” neurones to support functional regeneration of normal or dystrophic muscle in culture. Nature (Lond.) 243, 287–289 (1973).

    CAS  Google Scholar 

  • Gardiner, J. E., Domer, F.R.: Movement of choline between the blood and cerebrospinal fluid in the cat. Arch. int. Pharmacodyn. 175, 482–496 (1968).

    PubMed  CAS  Google Scholar 

  • Gardiner, J.E., Gwee, M.C.E.: The distribution in the rabbit of choline administered by injection or infusion. J. Physiol. (Lond.) 239, 459–476 (1974).

    CAS  Google Scholar 

  • Gardiner, J.E., Paton, W.D.M.: The control of the plasma choline concentration in the cat. J. Physiol. (Lond.) 227, 71–86 (1972).

    CAS  Google Scholar 

  • Gardiner, J.E., Sung, L.H.: A p-terphenyl hemicholinium compound. Brit. J. Pharmacol. 36, 171–172P (1969).

    Google Scholar 

  • Geffen, L.B., Rush, R.A.: Transport of noradrenaline in sympathetic nerves and the effect of nerve impulses on its contribution to transmitter stores. J. Neurochem. 15, 925–931 (1968).

    PubMed  CAS  Google Scholar 

  • George, G., Mellanby, J.: A further study on the effect of physostigmine on memory in rats. Brain Res. 81, 133–144 (1974).

    PubMed  CAS  Google Scholar 

  • Gerhards, K.P., Röttcher, M., Straub, R. W.: Wirkungen von Ca und Mg auf Freisetzung und Synthese von Acetylcholin am spontan aktiven Darm. Pflügers Arch. ges. Physiol. 279, 239–250 (1964a).

    CAS  Google Scholar 

  • Gerhards, K.P., Röttcher, M., Straub, R. W.: Wirkungen von Ca und Mg auf Freisetzung und Synthese von Acetylcholin am ruhiggestellten Darm. Pflügers Arch. ges. Physiol. 279, 251–264 (1964b).

    CAS  Google Scholar 

  • Gesler, R.M., Hoppe, J.O.: Pharmacology of 3, 6(3-diethylaminopropoxy) pyridazine bis-methiodide, a hemicholinium-like agent. Fed. Proc. 20, 587–593 (1961).

    PubMed  CAS  Google Scholar 

  • Gesler, R.M., Lasker, A.B., Hoppe, J.O., Steck, E.A.: Further studies on the site of action of the neuromuscular blocking agent 3, 6-bis (diethylaminopropoxy)pyridazine bis-methiodide. J. Pharmacol. exp. Ther. 125, 323–329 (1959).

    PubMed  CAS  Google Scholar 

  • Gfeller, E.M., Kuhar, M.J., Snyder, S.H.: Neurotransmitter-specific synaptosomes in rat corpus striatum: morphological variations. Proc. nat. Acad. Sci. (Wash.) 68, 155–159 (1971).

    CAS  Google Scholar 

  • Giacobini, E.: The distribution and localization of cholinesterases in nerve cells. Acta physiol. scand. 45 (Suppl. 156), 1–45 (1959).

    CAS  Google Scholar 

  • Giacobini, G., Filogamo, G., Weber, M., Boquet, P., Changeux, J.-P.: Effects of a snake a-neurotoxin on the development of innervated skeletal muscle in chick embryo. Proc. nat. Acad. Sci. (Wash.) 70, 1708–1712 (1973).

    CAS  Google Scholar 

  • Giarman, N. J., Pepeu, G. Drug-induced changes in brain acetylcholine. Brit. J. Pharmacol. 19, 226–234 (1962).

    PubMed  CAS  Google Scholar 

  • Gilbert, J.C., Hutchinson, M., Kosterlitz, H.W.: The effect of electrical stimulation of the myenteric plexus-longitudinal muscle preparation of the guinea-pig ileum on its acetylcholine content. Brit. J. Pharmacol. 49, 166–167P (1973).

    Google Scholar 

  • Giller, E.L. Jr., Schrier, B.K., Shainberg, A., Fisk, H.R., Nelson, P.G.: Choline acetyltransferase activity is increased in combined cultures of spinal cord and muscle cells in mice. Science 182, 588–589 (1973).

    PubMed  CAS  Google Scholar 

  • Giller, E.L., Jr., Schwartz, J.H.: Acetylcholinesterase in identified neurons of abdominal ganglion of Aplysia californica. J. Neurophysiol. 34, 108–115 (1971).

    PubMed  CAS  Google Scholar 

  • Ginsborg, B.L.: The vesicle hypothesis for the release of acetylcholine. In: Andersen, P., Jensen, J.K.S., (EDS.): Excitatory Synaptic Mechanisms, pp.77–82. Oslo: Universitetsforlaget 1970.

    Google Scholar 

  • Ginsborg, B.L., Hamilton, J.T.: The effect of caesium ions on neuromuscular transmission in the frog. Quart. J. exp. Physiol. 53, 162–169 (1968).

    PubMed  CAS  Google Scholar 

  • Ginsborg, B.L., Hirst, G.D.S.: Prostaglandin E1 and noradrenaline at the neuromuscular junction. Brit. J. Pharmacol. 42, 153–154 (1971).

    CAS  Google Scholar 

  • Ginsborg, B.L., Hirst, G.D.S.: The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J. Physiol. (Lond.) 224, 629–645 (1972).

    CAS  Google Scholar 

  • Glick, D.: Choline esterase and the theory of chemical mediation of nerve impulses. J. gen. Physiol. 21, 431–438 (1938).

    PubMed  CAS  Google Scholar 

  • Glick, S.D., Mittag, T.W., Green, J.P.: Central cholinergic correlates of impaired learning. Neuropharmacology 12, 291–296 (1973).

    PubMed  CAS  Google Scholar 

  • Glover, V.A.S., Potter, L.T.: Purification and properties of choline acetyltransferase from ox brain striate nuclei. J. Neurochem. 18, 571–580 (1971).

    PubMed  CAS  Google Scholar 

  • Glow, P.H., Rose, S.: Activity of cholinesterase in the retina with different levels of physiological stimulation. Aust. J. exp. Biol. med. Sci. 44, 65–72 (1966).

    PubMed  CAS  Google Scholar 

  • Goldberg, A.L., Singer, J. J.: Evidence for a role of cyclic AMP in neuromuscular transmission. Proc. nat. Acad. Sci. (Wash.) 64, 134–141 (1969).

    CAS  Google Scholar 

  • Goldberg, A.M., McCaman, R.E.: Determination of picomole amounts of acetylcholine in brain. J. Neurochem. 20, 1–8 (1973).

    PubMed  CAS  Google Scholar 

  • Goldberg, A.M., Welch, B.L.: Adaptation of the adrenal medulla: sustained increase in choline acetyltransferase by psychosocial stimulation. Science 178, 319–320 (1972).

    PubMed  CAS  Google Scholar 

  • Goldberg, M.E., Salama, A.I., Blum, S.W.: Inhibition of choline acetyltransferase and hexobarbitone-metabolizing enzymes by naphthylvinyl pyridine analogues. J. Pharm. Pharmacol. 23, 384–385 (1971).

    PubMed  CAS  Google Scholar 

  • Goldberg, M.E., Sledge, K., Robichaud, R.C., Dubinsky, B.: A comparative study of the behavioral effects of scopolamine and 4-(1-naphthylvinyl) pyridine hydrochloride (NVP), an inhibitor of choline acetyltransferase. Psychopharmacologia 23, 34–47 (1972).

    PubMed  CAS  Google Scholar 

  • Gomez, M. V., Dai, M.E.M., Diniz, C.R.: Effects of scorpion venom, tityustoxin, on the release of acetylcholine from incubated slices of rat brain. J. Neurochem. 20, 1051–1061 (1973).

    PubMed  CAS  Google Scholar 

  • Goodwin, B.C., Sizer, I.W.: Effects of spinal cord and substrate on acetylcholinesterase in chick embryonic skeletal muscle. Develop. Biol. 11, 136–153 (1965).

    PubMed  CAS  Google Scholar 

  • Grafstein, B.: Transneuronal transfer of radioactivity in the central nervous system. Science 172, 177–179 (1971).

    PubMed  CAS  Google Scholar 

  • Grafstein, B., Forman, D.S., McEwen, B.S.: Effects of temperature on axonal transport and turnover of protein in goldfish optic system. Exp. Neurol. 34, 158–170 (1972).

    PubMed  CAS  Google Scholar 

  • Gray, E. G., Whittaker, V. P.: The isolation of synaptic vesicles from the central nervous system. J. Physiol. (Lond.) 153, 35–37P (1960).

    Google Scholar 

  • Gray, E.G., Whittaker, V.P.: The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. (Lond.) 96, 79–87 (1962).

    CAS  Google Scholar 

  • Grewaal, D.S., Quastel, J.H.: Control of synthesis and release of radioactive acetylcholine in brain slices from the rat. Biochem. J. 132, 1–14 (1973).

    PubMed  CAS  Google Scholar 

  • Griffith, J.S.: A theory of the nature of memory. Nature (Lond.) 211, 1160–1163 (1966).

    CAS  Google Scholar 

  • Gromadzki, C. G., Koelle, G.B.: The effect of axotomy on the acetylcholinesterase of the superior cervical ganglion of the cat. Biochem. Pharmacol. 14, 1745–1754 (1965).

    PubMed  CAS  Google Scholar 

  • Guth, L.: Trophic influences of nerve on muscle. Physiol. Rev. 48, 645–687 (1968).

    PubMed  CAS  Google Scholar 

  • Guth, L., Albers, R.W., Brown, W.C.: Quantitative changes in cholinesterase activity of denervated muscle fibres and sole plates. Exp. Neurol. 10, 236–250 (1964).

    PubMed  CAS  Google Scholar 

  • Guth, P.S.: Acetylcholine binding by isolated synaptic vesicles in vitro. Nature (Lond.) 224, 384–385 (1969).

    CAS  Google Scholar 

  • Gutmann, E., Tuček, S., Hanslikova, V.: Changes in the choline acetyltransferase and cholinesterase activities in levator ani muscle of rats following castration. Physiol. bohemoslov. 18, 195–203 (1969).

    PubMed  CAS  Google Scholar 

  • Guyenet, P., Lefresne, P., Rossier, J., Beaujouin, J.C., Glowinski, J.: Inhibition by hemicholinium-3 of [14C]acetylcholine synthesis and [3H]choline high-affinity uptake in rat striatal synaptosomes. Molec. Pharmacol. 9, 630–639 (1973).

    CAS  Google Scholar 

  • Gwee, M.C.E., Lim, H.S.: Hydrocortisone and the concentration of choline in the plasma of rodents. Brit. J. Pharmacol. 45, 133–134 (1972).

    CAS  Google Scholar 

  • Habermann, E.: Gewinnung und Eigenschaften von Crotactin, Phospholipase A, Crotamin und »Toxin III« aus dem Gift der brasilianischen Klapperschlange. Biochem. Z. 329, 405–415 (1957).

    PubMed  CAS  Google Scholar 

  • Haga, T.: Synthesis and release of 14C-acetylcholine in synaptosomes. J. Neurochem. 18, 781–789 (1971).

    PubMed  CAS  Google Scholar 

  • Haga, T., Abe, T., Kurokawa, M.: Formation and breakdown of microtubules in vitro as studied by flow birefringence. Abstr. 4th internat. Meet. Neurochem. 280 (1973).

    Google Scholar 

  • Haga, T., Noda, H.: Choline uptake systems of rat brain synaptosomes. Biochim. biophys. Acta (Amst.) 291, 564–575 (1973).

    CAS  Google Scholar 

  • Häggendäl, C.J., Saunders, N.R., Dahlström, A.B.: Rapid accumulation of acetylcholine in nerve above a crush. J. Pharm. Pharmacol. 23, 552–555 (1971).

    PubMed  Google Scholar 

  • Häggendäl, C.J., Dahlström A.B., Saunders, N.R.: Axonal transport and acetylcholine in rat preganglionic neurones. Brain Res. 58, 494–499 (1973).

    PubMed  Google Scholar 

  • Hall, Z.W., Kelly, R.B.: Enzymatic detachment of endplate acetylcholinesterase from muscle. Nature (Lond.) New Biol. 232, 62–63 (1971).

    CAS  Google Scholar 

  • Hanin, I.: Ed., Choline and Acetylcholine: Handbook of Chemical Assay Methods. New York: Raven Press 1974.

    Google Scholar 

  • Hanin, I., Jenden, D.J.: Estimation of choline esters in brain by a new gas chromatographic procedure. Biochem. Pharmacol. 18, 837–845 (1969).

    PubMed  CAS  Google Scholar 

  • Hanin, I., Massarelli, R., Costa, E.: Environmental and technical preconditions influencing choline and acetylcholine concentrations in rat brain. In: Heilbronn, E., Winter, A. (EDS.): Drugs and Cholinergic Mechanisms in the CNS, pp.33–54. Stockholm: Research Institute of National Defence 1970.

    Google Scholar 

  • Hanin, I., Massarelli, R., Costa, E.: An approach to the in vivo study of acetylcholine turnover in rat salivary glands by radio gas chromatography. J. Pharmacol. exp. Ther. 181, 10–18 (1972a).

    PubMed  CAS  Google Scholar 

  • Hanin, I., Massarelli, R., Costa, E.: An approach to the study of biochemical pharmacology of cholinergic function. Advanc. biochem. Psychopharmacol. 6, 181–202 (1972b).

    CAS  Google Scholar 

  • Harris, A.J., Miledi, R.: The effect of type D botulinum toxin on frog neuromuscular junctions. J. Physiol. (Lond.) 217, 497–515 (1971).

    CAS  Google Scholar 

  • Harry, J.: The action of drugs on the circular muscle strip from the guinea-pig isolated ileum. Brit. J. Pharmacol. 20, 397–417 (1963).

    Google Scholar 

  • Hart, L.G., Dixon, R.L., Long, J.P., Mackay, B.: Studies using Clostridium botulinum toxin — type A. Toxicol. appl. Pharmacol. 7, 84–89 (1965).

    PubMed  CAS  Google Scholar 

  • Harvey, A.M., Macintosh, F.C.: Calcium and synaptic transmission in a sympathetic ganglion. J. Physiol. (Lond.) 97, 408–416 (1940).

    CAS  Google Scholar 

  • Hazra, J.: Effect of hemicholinium-3 on slow wave and paradoxical sleep of cat. Europ. J. Pharmacol. 11, 395–397 (1970).

    CAS  Google Scholar 

  • Hebb, C.: Cholinergic neurons in vertebrates. Nature (Lond.) 192, 527–529 (1961).

    CAS  Google Scholar 

  • Hebb, C.: Biosynthesis of acetylcholine in nervous tissue. Physiol. Rev. 52, 918–957 (1972).

    PubMed  CAS  Google Scholar 

  • Hebb, C.: Formation, storage and liberation of acetylcholine. In: Koelle, G.B. (Ed.): Handbuch der experimentellen Pharmakologie, Ergänzungswerk XV. Cholinesterases and Anticholinesterase Agents, pp. 55–88. Berlin-Heidelberg-New York: Springer 1963.

    Google Scholar 

  • Hebb, C.O., Krnjević, K., Silver, A.: Acetylcholine and choline acetyltransferase in the diaphragm of the rat. J. Physiol. (Lond.) 171, 504–513 (1964).

    CAS  Google Scholar 

  • Hebb, C., Morris, D.: Identification of acetylcholine and its metabolism in nervous tissue. In: Bourne, G.H. (Ed.): The Structure and Function of Nervous Tissue, Vol.3, Biochemistry and Disease, pp.25–60. New York: Academic Press 1969.

    Google Scholar 

  • Hebb, C.O., Silver, A.: Gradient of choline acetylase activity. Nature (Lond.) 189, 123–125 (1961).

    CAS  Google Scholar 

  • Hebb, C.O., Silver, A.: The effect of transection on the level of choline acetylase in the goat’s sciatic nerve. J. Physiol. (Lond.) 169, 41–42P (1963).

    Google Scholar 

  • Hebb, C.O., Waites, G.M.H.: Choline acetylase in antero-and retrograde degeneration of a cholinergic nerve. J. Physiol. (Lond.) 132, 667–671 (1956).

    CAS  Google Scholar 

  • Hebb, C.O., Whittaker, V.P.: Intracellular distributions of acetylcholine and choline acetylase. J. Physiol. (Lond.) 142, 187–196 (1958).

    CAS  Google Scholar 

  • Hebb, D. O.: The Organization of Behavior, p. 62–66. New York: Wiley 1949.

    Google Scholar 

  • Hedqvist, P., Von Euler, U.S.: Prostaglandin controls neuromuscular transmission in guinea-pig vas deferens. Nature (Lond.) New Biol. 236, 113–115 (1972).

    CAS  Google Scholar 

  • Heilbronn, E.: The effect of phospholipases on the uptake of atropine and acetylcholine by slices of mouse brain cortex. J. Neurochem. 16, 627–635 (1969).

    PubMed  CAS  Google Scholar 

  • Heilbronn, E.: Further experiments on the uptake of acetylcholine and atropine and the release of acetylcholine from mouse brain cortex slices after treatment with phospholipases. J. Neurochem. 17, 381–389 (1970).

    PubMed  CAS  Google Scholar 

  • Heilbronn, E., Cedergren, E.: Chemically induced changes in the acetylcholine uptake and storage capacity of brain tissue. In: Heilbronn, E., Winter, A. (EDS.): Drugs and Cholinergic Mechanisms in the CNS, pp.245–265. Stockholm: Research Institute of National Defence 1970.

    Google Scholar 

  • Hemsworth, B.A., Darmer, K.I., Jr., Bosmann, H.B.: The incorporation of choline into isolated synaptosomal and synaptic vesicle fractions in the presence of quaternary ammonium compounds. Neuropharmacology 10, 109–120 (1971).

    PubMed  CAS  Google Scholar 

  • Hemsworth, B. A., Foldes, F.F.: Preliminary pharmacological screening of styrylpyridine choline acetyltransferase inhibitors. Europ. J. Pharmacol. 11, 187–194 (1970).

    CAS  Google Scholar 

  • Hemsworth, B.A., Morris, D.: A comparison of the N-alkyl group specificity of choline acetyl-transferase from different species. J. Neurochem. 11, 793–803 (1964).

    PubMed  CAS  Google Scholar 

  • Hemsworth, B. A., Smith, J.C.: The enzymic acetylation of choline analogues. J. Neurochem. 17, 171–177 (1970a).

    PubMed  CAS  Google Scholar 

  • Hemsworth, B.A., Smith, J.C.: Enzymic acetylation of the stereoisomers of alpha-and beta-methyl choline. Biochem. Pharmacol. 19, 2925–2927 (1970b).

    PubMed  CAS  Google Scholar 

  • Henderson, G. I., Sastry, B. V. R.: Kinetic studies of the reaction mechanism of human placental choline acetyltransferase. Fed. Proc. 30, 621 (1971).

    Google Scholar 

  • Hendry, I.A., Iversen, L.L., Black, I.B.: A comparison of the neural regulation of tyrosine hydroxylase activity in sympathetic ganglia of adult mice and rats. J. Neurochem. 20, 1683–1689 (1973).

    PubMed  CAS  Google Scholar 

  • Hestrin, S.: The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine and its analytical application. J. biol. Chem. 180, 249–261 (1949).

    PubMed  CAS  Google Scholar 

  • Heuser, J., Miledi, R.: Effect of lanthanum ions on function and structure of frog neuromuscular junction. Proc. roy. Soc. B 179, 247–260 (1971).

    CAS  Google Scholar 

  • Heuser, J., Reese, T.S.: Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344 (1973).

    PubMed  CAS  Google Scholar 

  • Hodgkin, A.L., Keynes, R.D.: Movements of labelled calcium in squid giant axons. J. Physiol. (Lond.) 138, 253–281 (1957).

    CAS  Google Scholar 

  • Hodgkin, A.L., Martin, K.: Choline uptake by giant axons of Loligo. J. Physiol. (Lond.) 179, 26–27P (1965).

    Google Scholar 

  • Hoezl, J., Franck, H.P.: Proceedings of the Second International Meeting of the International Society of Neurochemistry, 219. Tamburini Editore (1969).

    Google Scholar 

  • Hofmann, W.W.: Caffeine effects on transmitter depletion and mobilization at motor nerve terminals. Amer. J. Physiol. 216, 621–629 (1969).

    PubMed  CAS  Google Scholar 

  • Hofmann, W.W., Parsons, R.L., Feigen, G. A.: Effects of temperature and drugs on mammalian motor nerve terminals. Amer. J. Physiol. 211, 135–140 (1966).

    PubMed  CAS  Google Scholar 

  • Hofmann, W.W., Struppler, A., Weindl, A., Velho, F.: Neuromuscular transmission with colchicine-treated nerves. Brain Res. 49, 208–213 (1973).

    PubMed  CAS  Google Scholar 

  • Hofmann, W.W., Thesleff, S.: Studies on the trophic influence of nerve on skeletal muscle. Europ. J. Pharmacol. 20, 256–260 (1972).

    CAS  Google Scholar 

  • Hollunger, G., Niklasson, B.: The occurence of soluble acetylcholinesterases in mammalian brain. Acta pharmacol. (Kbh.) 25, Suppl.4, 78 (1967).

    Google Scholar 

  • Hollunger, E.G., Niklasson, B.H.: The release and molecular state of mammalian brain acetylcholinesterase. J. Neurochem. 20, 821–836 (1973).

    PubMed  CAS  Google Scholar 

  • Holtzman, E., Freeman, A.R., Kashner, L.A.: Stimulation-dependent alterations in peroxidase uptake at lobster neuromuscular junctions. Science 173, 733–736 (1971).

    PubMed  CAS  Google Scholar 

  • Hosie, R.J.A.: The localization of adenosine triphosphatases in morphologically characterized subcellular fractions of guinea-pig brain. Biochem. J. 96, 404–412 (1965).

    PubMed  CAS  Google Scholar 

  • Hrdina, P.D., Maneckjee, A.: “Free” and “bound” acetylcholine concentrations in rat brain: variability in determination of “free” acetylcholine fraction. J. Pharm. Pharmacol. 23, 540–541 (1971).

    PubMed  CAS  Google Scholar 

  • Hubbard, J. I.: Mechanism of transmitter release. Progr. Biophys. 21, 33–124 (1970).

    PubMed  CAS  Google Scholar 

  • Hubbard, J.I.: Neuromuscular transmission — presynaptic factors. In: Hubbard, J.I. (Ed.): The Peripheral Nervous System, pp. 151–180. New York: Plenum Press 1974.

    Google Scholar 

  • Hubbard, J.I., Jones, S.F., Landau, E.M.: An examination of the effects of osmotic pressure changes upon transmitter release from mammalian motor nerve terminals. J. Physiol. (Lond.) 197, 639–657 (1968).

    CAS  Google Scholar 

  • Hubbard, J.I., Kwanbunbumpen, S.: Evidence for the vesicle hypothesis. J. Physiol. (Lond.) 194, 407–420 (1968).

    CAS  Google Scholar 

  • Hubbard, J.I., Quastel, D.M.J.: Micropharmacology of vertebrate neuromuscular transmission. Ann. Rev. Pharmacol. 13, 199–216 (1973).

    PubMed  CAS  Google Scholar 

  • Hubbard, J.I., Schmidt, R.F., Yokota, T.: The effect of acetylcholine upon mammalian motor nerve terminals. J. Physiol. (Lond.) 181, 810–829 (1965).

    CAS  Google Scholar 

  • Hubbard, J.I., Wilson, D.F.: Neuromuscular transmission in a mammalian preparation in the absence of blocking drugs and the effect of D-tubocurarine. J. Physiol. (Lond.) 228, 307–325 (1973).

    CAS  Google Scholar 

  • Hubbard, J.I., Wilson, D.F., Miyamoto, M.: Reduction of transmitter release by tubocurarine. Nature (Lond.) 223, 531–533 (1969).

    CAS  Google Scholar 

  • Hughes, J.R.: Post-tetanic potentiation. Physiol. Rev. 38, 91–113 (1958).

    PubMed  CAS  Google Scholar 

  • Hughes, R., Whaler, B.C.: Influence of nerve ending activity and of drugs on the rate of paralysis of rat diaphragm preparations by Cl. botulinum type A toxin. J. Physiol. (Lond.) 160, 221–233 (1962).

    CAS  Google Scholar 

  • Hunt, R.: A physiological test for choline and some of its applications. J. Pharmacol. exp. Ther. 7, 301–337 (1915).

    CAS  Google Scholar 

  • Hurlbut, W.P., Longenecker, H.E., Jr., Mauro, A.: Effects of calcium and magnesium on the frequency of miniature end-plate potentials during prolonged tetanization. J. Physiol. (Lond.) 219, 17–38 (1971).

    CAS  Google Scholar 

  • Hutter, O. F.: Post-tetanic restoration of neuromuscular transmission blocked by D-tubocurarine. J. Physiol. (Lond.) 118, 216–222 (1952).

    CAS  Google Scholar 

  • Hutter, O.P., Kostial, K.: Effect of magnesium and calcium ions on the release of acetylcholine. J. Physiol. (Lond.) 124, 234–241 (1954).

    CAS  Google Scholar 

  • Hutter, O.F., Kostial, K.: Relationship of sodium ions to release of acetylcholine. J. Physiol. (Lond.) 129, 159–166 (1955).

    CAS  Google Scholar 

  • Iggo, A., Vogt, M.: Preganglionic activity in normal and in reserpine-treated cats. J. Physiol. (Lond.) 150, 114–133 (1960).

    CAS  Google Scholar 

  • Imai, S., Riley, A.L., Berne, R.M.: Effect of ischemia on adenine nucleotides in cardiac and skeletal muscle. Circulat. Res. 15, 443–450 (1964).

    PubMed  CAS  Google Scholar 

  • Israël, M., Gautron, J., Lesbats, B.: Fractionnement de l’organe électrique de la torpille: localisation subcellulaire de l’acétylcholine. J. Neurochem. 17, 1441–1450 (1970).

    PubMed  Google Scholar 

  • Israël, M., Lesbats, B., Manaranche, R.: Variations d’acétylcholine en relation avec l’évolution de la décharge, pendant la stimulation de l’organe électrique de la Torpille. C. r. Acad. Sci. (Paris) 275, 2957–2960 (1972).

    Google Scholar 

  • Israël, M., TuČek, S.: Utilization of acetate and pyruvate for the synthesis of “total”, “bound” and “free” acetylcholine in the electric organ of Torpedo. J. Neurochem. 22, 487–491 (1974).

    PubMed  Google Scholar 

  • Iversen, L.L.: Catecholamine uptake processes. Brit. med. Bull. 29, 130–135 (1973).

    PubMed  CAS  Google Scholar 

  • Izquierdo, J.A.: Cholinergic mechanism-monoamines relation in certain brain structures. Progr. Drug Res. 16, 334–363 (1972).

    CAS  Google Scholar 

  • Jeffrey, P.L., Austin, L.: Axoplasmic transport. Progr. Neurobiol. 2, 207–255 (1973).

    CAS  Google Scholar 

  • Jenden, D.J., Choi, L., Silverman, R. W., Steinborn, J. A., Roch, M., Booth, R. A.: Acetylcholine turnover estimation in brain by gas chromatography / mass spectrometry. Life Sci. 14, 55–63 (1974).

    PubMed  CAS  Google Scholar 

  • Johnson, G.A., Boukma, S.J., Lahti, R.A., Mathews, J.: Cyclic AMP and phosphodiesterase in synaptic vesicles from mouse brain. J. Neurochem. 20, 1387–1392 (1973).

    PubMed  CAS  Google Scholar 

  • Jones, J.J., Laity, J.L.H.: A note on an unusual effect of gallamine and tubocurarine. Brit. J. Pharmacol. 24, 360–364 (1965).

    PubMed  CAS  Google Scholar 

  • Jones, M., Featherstone, R.M., Bonting, S. L.: The effect of acetylcholine on the cholinesterases of chick embryo intestine cultured in vitro. J. Pharmacol. exp. Ther. 116, 114–118 (1956).

    PubMed  CAS  Google Scholar 

  • Jones, R., Vrbová, G.: Effect of muscle activity on denervation hypersensitivity. J. Physiol. (Lond.) 210, 144–145P (1970).

    Google Scholar 

  • Jones, S.F., Kwanbunbumpen, S.: The effects of nerve stimulation and hemicholinium on synaptic vesicles at the mammalian neuromuscular junction. J. Physiol. (Lond.) 207, 31–50 (1970a).

    CAS  Google Scholar 

  • Jones, S.F., Kwanbunbumpen, S.: Some effects of nerve stimulation and hemicholinium on quantal transmitter release at the mammalian neuromuscular junction. J. Physiol. (Lond.) 207, 51–61 (1970b).

    CAS  Google Scholar 

  • Jordan, L.M., Phillis, J.W.: Acetylcholine inhibition in the intact and chronically isolated cerebral cortex. Brit. J. Pharmacol. 45, 584–595 (1972).

    CAS  Google Scholar 

  • Kahane, E., Lévy, J.: Sort de la choline. Administration au rat et à la souris. Arch. Sci. physiol. 4, 173–183 (1950).

    CAS  Google Scholar 

  • Kahlson, G., Macintosh, F. C.: Acetylcholine synthesis in a sympathetic ganglion. J. Physiol. (Lond.) 96, 277–292 (1939).

    CAS  Google Scholar 

  • Kaita, A.A., Goldberg, A.M.: Control of acetylcholine synthesis — the inhibition of choline acetyltransferase by acetylcholine. J. Neurochem. 16, 1185–1191 (1969).

    PubMed  CAS  Google Scholar 

  • Kajimoto, N., Kirpekar, S.M.: Effect of manganese and lanthanum on spontaneous release of acetylcholine at frog motor nerve terminals. Nature (Lond.) New Biology 235, 29–30 (1972).

    CAS  Google Scholar 

  • Kapeller, H., Mayor, D.: The accumulation of noradrenaline in constricted sympathetic nerves as studied by fluorescence and electron microscopy. Proc. roy. Soc. B 167, 282–292 (1967).

    CAS  Google Scholar 

  • Karczmar, A.G., Srinavasan, R., Bernsohn, J.: Cholinergic function in the developing fetus. In: Boreus, L.O. (Ed.): Fetal Pharmacology, pp.127–176. New York: Raven Press 1972.

    Google Scholar 

  • Karlsson, J.O., Sjöstrand, J.: The effect of colchicine on the axonal transport of protein in the optic nerve and tract of the rabbit. Brain Res. 13, 612–616 (1969).

    Google Scholar 

  • Karlsson, J.O., Sjöstrand, J.: Transport of microtubular proteins in axons of retinal ganglion cells. J. Neurochem. 18, 975–982 (1971).

    PubMed  CAS  Google Scholar 

  • Kasa, P.: Identification of cholinergic neurones in the spinal cord: an electron histochemical study of choline acetyltransferase. J. Physiol. (Lond.) 210, 89–90P (1970).

    Google Scholar 

  • Kása, P., Mann, S.P., Hebb, C.: Localization of choline acetylase: histochemistry at the light microscope level. Nature (Lond.) 226, 812–814 (1970a).

    Google Scholar 

  • Kása, P., Mann, S.P., Hebb, C.: Localization of choline acetylase: ultrastructural localization in spinal neurons. Nature (Lond.) 226, 814–816 (1970b).

    Google Scholar 

  • Kása, P., Mann, S.P., Karcsu, S., Toth, L., Jordan, S.: Transport of choline acetyltransferase and acetylcholinesterase in the rat sciatic nerve: a biochemical and histochemical study. J. Neurochem. 21, 431–436 (1973).

    PubMed  Google Scholar 

  • Kato, A.C., Katz, H.S., Collier, B.: Absence of adenine nucleotide release from autonomic ganglion. Nature (Lond.) 249, 576–577 (1974).

    CAS  Google Scholar 

  • Katz, B., Miledi, R.: The effect of calcium on acetylcholine release from motor nerve terminals. Proc. roy. Soc. B 161, 496–503 (1965).

    CAS  Google Scholar 

  • Katz, B., Miledi, R.: The release of acetylcholine from nerve endings by graded electrical pulses. Proc. roy. Soc. B 167, 23–38 (1967).

    CAS  Google Scholar 

  • Katz, B., Miledi, R.: The binding of acetylcholine to receptors and its removal from the synaptic cleft. J. Physiol. (Lond.) 231, 549–574 (1973).

    CAS  Google Scholar 

  • Katz, H.S., Salehmoghaddam, S., Collier, B.: The accumulation of radioactive acetylcholine by a sympathetic ganglion and by brain: failure to label endogenous stores. J. Neurochem. 20, 569–579 (1973).

    PubMed  CAS  Google Scholar 

  • Katz, N.L.: The effects on frog neuromuscular transmission of agents which act upon microtubules and microfilaments. Europ. J. Pharmacol. 19, 88–93 (1972).

    CAS  Google Scholar 

  • Katz, N. L., Edwards, C.: Effects of metabolic inhibitors in spontaneous and neurally evoked transmitter release from frog motor nerve terminals. J. gen. Physiol. 61, 259–260 (1973).

    Google Scholar 

  • Kayaalp, S.O., McIsaac, R.J.: Absence of effects of prostaglandins E1 and E2 on ganglionic transmission. Europ. J. Pharmacol. 4, 283–288 (1968).

    CAS  Google Scholar 

  • Kelly, J.S.: The antagonism of Ca++ by Na+ and other monovalent ions at the frog neuromuscular junction. Quart. J. exp. Physiol. 53, 239–249 (1968).

    PubMed  CAS  Google Scholar 

  • Kerkut, G.A., Shapira, A., Walker, R.J.: The transport of 14C-labelled material from CNS to and from muscle along a nerve trunk. Comp. Biochem. Physiol. 23, 729–748 (1967).

    PubMed  CAS  Google Scholar 

  • Keston, A.S., Wortis, S.B.: The antagonistic action of choline and its triethyl analogue. Proc. Soc. exp. Biol. (N. Y.) 61, 439–440 (1946).

    CAS  Google Scholar 

  • Kirshner, N., Kirshner, A.G.: Chromogranin A, dopamine β-hydroxylase and secretion from the adrenal medulla. Phil. Trans. B 261, 279–288 (1971).

    CAS  Google Scholar 

  • Kita, H., Van Der Kloot, W.: Calcium ionophore X-537A increases spontaneous and phasic quantal release of acetylcholine at frog neuromuscular junction. Nature (Lond.) 250, 658–660 (1974).

    CAS  Google Scholar 

  • Kletzien, R.F., Perdue, J.F., Springer, A.: Cytochalasin A and B. Inhibition of sugar uptake in cultured cells. J. biol. Chem. 247, 2964–2966 (1972).

    PubMed  CAS  Google Scholar 

  • Knoll, J., Somogyi, G.T., Illes, P., Vizi, E.S.: Acetylcholine release from isolated vas deferens of the rat. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 274, 198–202 (1972).

    CAS  Google Scholar 

  • Knoll, J., Vizi, E.S.: Effect of frequency of stimulation on the inhibition by noradrenaline of the acetylcholine output from parasympathetic nerve terminals. Brit. J. Pharmacol. 42, 263–272 (1971).

    CAS  Google Scholar 

  • Knyihár, E., Csillik, B.: Localizations of inhibitors of the acetylcholine-and GABA-synthesizing systems in the rat brain. Exp. Brain Res. 11, 1–16 (1970).

    PubMed  Google Scholar 

  • Koelle, G.B.: The elimination of enzymatic diffusion artefacts in the histochemical localization of cholinesterases and a survey of their cellular distributions. J. Pharmacol. exp. Ther. 103, 153–171 (1951).

    PubMed  CAS  Google Scholar 

  • Koelle, G.B.: The histochemical identification of acetylcholinesterase in cholinergic, adrenergic and sensory neurons. J. Pharmacol. exp. Ther. 114, 167–184 (1955).

    PubMed  CAS  Google Scholar 

  • Koelle, G.B.: Histochemical demonstration of reversible anticholinesterase action at selective cellular sites in vivo. J. Pharmacol. exp. Ther. 120, 488–503 (1957).

    PubMed  CAS  Google Scholar 

  • Koelle, G.B.: A proposed dual neurohumoral role of acetylcholine: its function at the pre-and post-synaptic sites. Nature (Lond.) 190, 208–211 (1961).

    CAS  Google Scholar 

  • Koelle, G.B.: A new general concept of the neurohumoral function of acetylcholine and acetylcholinesterase. J. Pharm. Pharmacol. 14, 65–90 (1962).

    PubMed  CAS  Google Scholar 

  • Koelle, G.B.: Cytological distributions and physiological functions of cholinesterases. In: Koelle, G.B. (Ed.): Handbuch der experimentellen Pharmakologie. Ergänzungswerk XV, Cholinesterases and Anticholinesterase Agents, pp. 187–298. Berlin-Heidelberg-New York: Springer 1963.

    Google Scholar 

  • Koelle, G.B.: Improvement in the accuracy of histochemical localization of acetylcholinesterase: facts and artifacts. In: Heilbronn, E., Winter, A. (EDS.): Drugs and Cholinergic Mechanisms in the CNS. Stockholm: Research Institute of National Defence (1970).

    Google Scholar 

  • Koelle, G.B.: Current concepts of synaptic structure and function. Ann. N.Y. Acad. Sci. 183, 5–20 (1971).

    PubMed  CAS  Google Scholar 

  • Koelle, G.B., Davis, R., Smyrl, E.G.: New findings concerning the localization by electronmicroscopy of acetylcholinesterase in autonomie ganglia. Progr. Brain Res. 34, 371–375 (1971).

    CAS  Google Scholar 

  • Koelle, G.B., Friedenwald, J.S.: A histochemical method for localizing cholinesterase activity. Proc. Soc. exp. Biol. (N.Y.) 70, 617–622 (1949).

    CAS  Google Scholar 

  • Koelle, G.B., Steiner, E.C.: The cerebral distributions of a tertiary and a quaternary anticholinesterase agent following intravenous and intraventricular injection. J. Pharmacol. exp. Ther. 118, 420–434 (1956).

    PubMed  CAS  Google Scholar 

  • Koelle, W.A., Koelle, G.B.: The localization of external or functional acetylcholinesterase at the synapses of autonomie ganglia. J. Pharmacol. exp. Ther. 126, 1–8 (1959).

    PubMed  CAS  Google Scholar 

  • Koenig, E.: Synthetic mechanisms in the axon. I. Local axonal synthesis of acetylcholinesterase. J. Neurochem. 12, 343–355 (1965).

    PubMed  CAS  Google Scholar 

  • Koenig, E.: Synthetic mechanisms in the axon. III. Stimulation of acetylcholinesterase synthesis by actinomycin-D in the hypoglossal nerve. J. Neurochem. 14, 429–435 (1967).

    PubMed  CAS  Google Scholar 

  • Koenig, E., Koelle, G.B.: Acetylcholinesterase regeneration in peripheral nerve after irreversible inactivation. Science 132, 1249–1250 (1960).

    PubMed  CAS  Google Scholar 

  • Koike, H., Eisenstadt, M., Schwartz, J.H.: Axonal transport of newly synthesized acetylcholine in an identified neuron of Aplysia. Brain Res. 37, 152–159 (1972).

    PubMed  CAS  Google Scholar 

  • Koketsu, K.: Action of tetraethylammonium chloride on neuromuscular transmission. Amer. J. Physiol. 193, 213–218 (1958).

    PubMed  CAS  Google Scholar 

  • Koketsu, K., Nishi, S.: Cholinergic receptors at sympathetic preganglionic nerve terminals. J. Physiol. (Lond.) 196, 293–310 (1968).

    CAS  Google Scholar 

  • Kopin, I.J., Breese, G.R., Krauss, K.R., Weisse, V.K.: Selective release of newly synthesized noradrenaline from cat spleen during sympathetic nerve stimulation. J. Pharmacol. exp. Ther. 161, 271–278 (1968).

    PubMed  CAS  Google Scholar 

  • Korey, A., Hamilton, J.T.: The effect of replacement of potassium by cesium ions on neuromuscular blockade of the rat phrenic nerve-diaphragm preparation in vitro. Canad. J. Physiol. Pharmacol. 52, 61–69 (1974).

    CAS  Google Scholar 

  • Kosterlitz, H.W., Wallis, D.I.: The effects of hexamethonium and morphine on transmission in the superior cervical ganglion of the rabbit. Brit. J. Pharmacol. 26, 334–344 (1966).

    PubMed  CAS  Google Scholar 

  • Kosterlitz, H.W., Waterfield, A. A.: The effect of the interval between electrical stimuli on the acetylcholine output of the myenteric plexus-longitudinal muscle preparation of the guinea-pig ileum. Brit. J. Pharmacol. 40, 162–163P (1970).

    Google Scholar 

  • Kosterlitz, H.W., Waterfield, A.A.: Effect of calcium and manganese on acetylcholine release from the myenteric plexus of guinea-pig and rabbit ileum. Brit. J. Pharmacol. 45, 157–158P (1972).

    Google Scholar 

  • Kosterlitz, H.W., Waterfield, A. A.: Characteristics of the morphine receptor in the myenteric plexus of the guinea-pig ileum. Abstr. 4th int. Meet. Neurochem. 34, (1973).

    Google Scholar 

  • Kostial, D., Landeka, M., Šlat, B.: Manganese ions and synaptic transmission in the superior cervical ganglion of the rat. Brit. J. Pharmacol. 51, 231–236 (1974).

    CAS  Google Scholar 

  • Kostial, K., Vouk, V.B.: Lead ions and synaptic transmission in the superior cervical ganglion of the cat. Brit. J. Pharmacol. 12, 219–222 (1957).

    PubMed  CAS  Google Scholar 

  • Kraatz, H.G., Trautwein, W.: Die Wirkung von 2, 4-Dinitrophenol auf die neuromuskulare Erregungsübertragung. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 231, 419–439 (1957).

    CAS  Google Scholar 

  • Krech, D., Rosenzweig, M.R., Bennett, E. L.: Environmental impoverishment, social isolation and changes in brain chemistry and anatomy. Physiol. Behav. 1, 99–104 (1966).

    CAS  Google Scholar 

  • Kreutzberg, G. W.: Neuronal dynamics and axonal flow. IV. Blockage of intra-axonal enzyme transport by colchicine. Proc. nat. Acad. Sci. (Wash.) 62, 722–728 (1969).

    CAS  Google Scholar 

  • Krishnan, N., Singer, M.: Penetration of peroxidase into peripheral nerve fibres. Amer. J. Anat. 136, 1–13 (1973).

    PubMed  CAS  Google Scholar 

  • Kristensson, K., Olsson, Y.: Uptake and retrograde axonal transport of peroxidase in hypoglossal neurons. Electron microscopical localization in the neuronal perikaryon. Acta Neuropath. (Bed.) 19, 1–9 (1971).

    CAS  Google Scholar 

  • Krnjević, K., Miledi, R.: Acetylcholine in mammalian neuromuscular transmission. Nature (Lond.) 182, 805–806 (1958).

    Google Scholar 

  • Krnjević, K., Mitchell, J.F.: The release of acetylcholine in the isolated diaphragm. J. Physiol. (Lond.) 155, 246–262 (1961).

    Google Scholar 

  • Krnjević, K., Phillis, J.W.: Acetylcholine-sensitive cells in the cerebral cortex. J. Physiol. (Lond.) 166, 296–326 (1963).

    Google Scholar 

  • Krnjević, K., Straughan, D.W.: The release of acetylcholine from the denervated rat diaphragm. J. Physiol. (Lond.) 170, 371–378 (1964).

    Google Scholar 

  • Kuffler, S.W.: Physiology of neuromuscular junctions: electrical aspects. Fed. Proc. 7, 437–446 (1948).

    PubMed  CAS  Google Scholar 

  • Kuhar, M.J., Sethy, V.H., Roth, R.H., Aghajanian, G. K.: Choline: selective accumulation by central cholinergic neurons. J. Neurochem. 20, 581–593 (1973).

    PubMed  CAS  Google Scholar 

  • Kuhar, M.J., Simon, J.R.: Acetylcholine uptake: lack of association with cholinergic neurons. J. Neurochem. 22, 1135–1137 (1974).

    PubMed  CAS  Google Scholar 

  • Kuno, M.: Quantum aspects of central and ganglionic synaptic transmission in vertebrates. Physiol. Rev. 51, 647–678 (1971).

    PubMed  CAS  Google Scholar 

  • Kuperman, A.S., Okamoto, M.: A comparison of the effects of some ethonium ions and their structural analogues on neuromuscular transmission in the cat. Brit. J. Pharmacol. 24, 223–239 (1965).

    PubMed  CAS  Google Scholar 

  • Kupfer, C.: Histochemistry of muscle cholinesterase after motor nerve section. J. cell. comp. Physiol. 38, 469–473 (1951).

    CAS  Google Scholar 

  • Kuriyama, K., Roberts, E., Vos, J.: Some characteristics of binding of γ-amino butyric acid and acetylcholine to a synaptic vesicle fraction from mouse brain. Brain Res. 9, 231–252 (1968).

    PubMed  CAS  Google Scholar 

  • Laity, J. L. H.: The release of prostaglandin E1 from the rat phrenic nerve-diaphragm preparation. Brit. J. Pharmacol. 37, 698–704 (1969).

    CAS  Google Scholar 

  • Lam, D.M.K.: Biosynthesis of acetylcholine in turtle photoreceptors. Proc. nat. Acad. Sci. (Wash.) 69, 1987–1991 (1972).

    CAS  Google Scholar 

  • Lampert, P., Cressman, M.: Axonal regeneration in the dorsal columns of the spinal cord of adult rats. Lab. Invest. 13, 825–839 (1964).

    PubMed  CAS  Google Scholar 

  • Lanari, A., Rosenblueth, A.: The fifth stage of transmission in autonomie ganglia. Amer. J. Physiol. 127, 347–355 (1939).

    Google Scholar 

  • Landmesser, L., Pilar, G.: The outset and development of transmission in the chick ciliary ganglion. J. Physiol. (Lond.) 222, 691–713 (1972).

    CAS  Google Scholar 

  • Lapetina, E.G., Lunt, G.G., De Robertis, E.: The turnover of phosphatidyl choline in rat cerebral cortex membranes in vivo. J. Neurobiol. 1, 295–302 (1969).

    PubMed  CAS  Google Scholar 

  • Larrabee, M.G., Bronk, D.W.: Prolonged facilitation of synaptic excitation in sympathetic ganglia. J. Neurophysiol. 10, 139–154 (1947).

    PubMed  CAS  Google Scholar 

  • Laskowski, M.B., Thies, R.: Interaction between calcium and barium on the spontaneous release of transmitter from mammalian motor nerve terminals. Inter. J. Neurosci. 4, 11–16 (1972).

    CAS  Google Scholar 

  • Law, P.K., Atwood, H.L.: Cross-reinnervation of dystrophic mouse muscle. Nature (Lond.) 238, 287–288 (1972).

    CAS  Google Scholar 

  • Lees, G.M., Kosterlitz, H.W., Waterfield, A.A.: Characteristics of morphine-sensitive release of neuro-transmitter substances. In: Kosterlitz, H.W., Collier, H.O.J., Villareal, J.E. (Eds.): Agonist and Antagonist Actions of Narcotic Analgesic Drugs, pp. 142–152. Baltimore: University Park Press 1973.

    Google Scholar 

  • Lefresne, P., Guyenet, P., Glowinski, J.: Acetylcholine synthesis from [2-14C]pyruvate in rat striatal slices. J. Neurochem. 20, 1083–1098 (1973).

    PubMed  CAS  Google Scholar 

  • Leheux, J.W.: Cholin als Hormon der Darmbewegung. Pflügers Arch. ges. Physiol. 173, 8–27 (1918).

    Google Scholar 

  • Leheux, J.W.: Cholin als Hormon der Darmbewegung. III. Die Beteiligung des Cholins an der Wirkung verschiedener organischer Säuren auf den Darm. Pflügers Arch. ges. Physiol. 190, 280–300 (1921).

    CAS  Google Scholar 

  • Leheux, J.W.: Cholin als Hormon der Darmbewegung. IV. Über den Einfluß des Cholins auf die normale Darmbewegung. Pflügers Arch. ges. Physiol. 190, 301–310 (1921b).

    CAS  Google Scholar 

  • Lehmann, K., Oelszner, W.: Die Beteiligungen zentral-cholinergischer Mechanismen an Ausbildung und Hemmung bedingter Reaktionen bei Ratten. Acta biol. med. germ. 26, 559–566 (1971).

    PubMed  CAS  Google Scholar 

  • Lewartowski, B., Bielecki, K.: The influence of hemicholinium no. 3 and vagal stimulation on acetylcholine content of rabbit atria. J. Pharmacol. exp. Ther. 142, 24–30 (1963).

    PubMed  CAS  Google Scholar 

  • Lewis, P.R., Shute, C.C.D.: The distribution of cholinesterase in cholinergic neurones demonstrated with the electron microscope. J. Cell. Sci. 1, 381–390 (1966).

    PubMed  CAS  Google Scholar 

  • Lewis, P.R., Shute, C.C.D., Silver, A.: Confirmation from choline acetylase analyses of massive cholinergic innervation to the rat hippocampus. J. Physiol. (Lond.) 191, 215–224 (1967).

    CAS  Google Scholar 

  • Li, T.H.: Study of neuromuscular junction; N-M transmission in rats on choline-deficient diets. Chin. J. Physiol. 16, 9–12 (1941).

    Google Scholar 

  • Liang, C.C., Quastel, J.H.: Uptake of acetylcholine in rat brain cortex slices. Biochem. Pharmacol. 18, 1169–1185 (1969a).

    PubMed  CAS  Google Scholar 

  • Liang, C.C., Quastel, J.H.: Effect of drugs on the uptake of acetylcholine in rat brain cortex slices. Biochem. Pharmacol. 18, 1187–1194 (1969b).

    CAS  Google Scholar 

  • Liberman, R.: Retinal cholinesterase in rats raised in darkness. Science 135, 372–373 (1962).

    PubMed  CAS  Google Scholar 

  • Libertun, C., Timiras, P.S., Kragt, C.L.: Sexual differences in the hypothalamic cholinergic system before and after puberty: inductory effect of testosterone. Neuroendocrinology 12, 73–85 (1973).

    PubMed  CAS  Google Scholar 

  • Libet, B., Owman, C.H.: Concomitant changes in formaldehyde-induced fluorescence of dopamine interneurones and in slow inhibitory postsynaptic potentials of the rabbit superior cervical ganglion, induced by stimulation of the preganglionic nerve or by a muscarinic agent. J. Physiol. (Lond.) 237, 635–662 (1974).

    CAS  Google Scholar 

  • Lièvremont, M., Czajka, M., Tazieff-Depierre, F.: Cycle du calcium à la jonction neuromusculaire, C. r. Acad. Sci. (Paris) 268, 379–382 (1969).

    Google Scholar 

  • Liley, A. W.: An investigation of spontaneous activity at the neuromuscular junction of the rat. J. Physiol. (Lond.) 132, 650–666 (1956a).

    CAS  Google Scholar 

  • Liley, A.W.: The effects of presynaptic polarization on the spontaneous activity at the mammalian neuromuscular junction. J. Physiol. (Lond.) 134, 427–443 (1956b).

    CAS  Google Scholar 

  • Liley, A.W., North, K.A.K.: An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. J. Neurophysiol. 16, 509–527 (1953).

    PubMed  CAS  Google Scholar 

  • Lilleheil, G., Naess, K.: A presynaptic effect of d-tubocurarine in the neuromuscular junction. Acta physiol. scand. 52, 120–136 (1961).

    PubMed  CAS  Google Scholar 

  • Lipicky, R.J., Hertz, L., Shanes, A.M.: Ca45 transfer and acetylcholine release in the rabbit superior cervical ganglion. J. cell. comp. Physiol. 62, 233–241 (1963).

    CAS  Google Scholar 

  • Lissák, K.: Effect of extracts of adrenergic fibers on the frog heart. Amer. J. Physiol. 125, 778–785 (1939).

    Google Scholar 

  • Livett, B.G., Geffen, L.B., Austin, L.: Proximo-distal transport of [14C]noradrenaline and protein in sympathetic nerves. J. Neurochem. 15, 931–939 (1968).

    PubMed  CAS  Google Scholar 

  • Lloyd, D. P. C.: Post-tetanic potentiation of response in monosynaptic reflex pathways of the spinal cord. J. gen. Physiol. 33, 147–170 (1949).

    PubMed  CAS  Google Scholar 

  • Loewi, O., Hellauer, H.: Über das Acetylcholin in peripheren Nerven. Pflügers Arch. ges. Physiol. 240, 769–775 (1939).

    Google Scholar 

  • Lømo, T.: Neurotrophic control of colchicine effects on muscle? Nature (Lond.) 249, 473–474 (1974).

    Google Scholar 

  • Lømo, T., Rosenthal, J.: Control of acetylcholine sensivity by muscle activity in the rat. J. Physiol. (Lond.) 221, 493–513 (1972).

    Google Scholar 

  • Long, J.P., Evans, C.T., Wong, S.: A pharmacological evaluation of hemicholinium analogs. J. Pharmacol. exp. Ther. 155, 223–230 (1967).

    PubMed  CAS  Google Scholar 

  • Long, J.P., Schueler, F.W.: A new series of cholinesterase inhibitors. J. Amer. pharm. Ass. 43, 79–86 (1954).

    CAS  Google Scholar 

  • Longenecker, H.E. Jr., Hurlbut, W.P., Mauro, A., Clark, A.W.: Effects of black widow spider venom on the frog neuromuscular junction. Nature (Lond.) 225, 701–703 (1970).

    Google Scholar 

  • Lorente De Nó, R.: On the effect of certain quaternary ions upon frog nerve. J. cell. comp. Physiol. 33, Suppl. 1–291 (1949).

    Google Scholar 

  • Lubińska, L., Niemierko, S.: Velocity and intensity of bidirectional migration of acetylcholinesterase in transected nerves. Brain Res. 27, 329–342 (1971).

    PubMed  Google Scholar 

  • Lubińska, L., Niemierko, S., Oberfeld, B.: Gradient of cholinesterase activity. Nature (Lond.) 189, 122–123 (1961).

    Google Scholar 

  • Lubinska, L., Niemierko, S., Oderfeld-Nowak, B., Szwarc, L.: Behaviour of acetylcholinesterase in isolated nerve segments. J. Neurochem. 11, 493–503 (1964).

    PubMed  CAS  Google Scholar 

  • Lüllmann, H., Holland, W.: Influence of ouabain on an exchangeable calcium fraction, contractile force, and resting tension of guinea-pig atria. J. Pharmacol. exp. Ther. 137, 186–192 (1962).

    PubMed  Google Scholar 

  • Lunt, G.G., Lapetina, E. G.: Incorporation of [Me14C]choline into phosphatidyl choline of rat cerebral cortex membranes in vitro. Brain Res. 18, 451–459 (1970).

    PubMed  CAS  Google Scholar 

  • Macintosh, F.C.: The distribution of acetylcholine in the peripheral and the central nervous system. J. Physiol. (Lond.) 99, 436–442 (1941).

    CAS  Google Scholar 

  • Macintosh, F. C.: Formation, storage and release of acetylcholine at nerve endings. Canad. J. Biochem. Physiol. 37, 343–356 (1959).

    PubMed  CAS  Google Scholar 

  • Macintosh, F.C.: Effect of HC-3 on acetylcholine turnover. Fed. Proc. 20, 562–568 (1961).

    PubMed  CAS  Google Scholar 

  • Macintosh, F. C.: Synthesis and storage of acetylcholine in nervous tissue. Canad. J. Biochem. Physiol. 41, 2555–2571 (1963).

    CAS  Google Scholar 

  • Macintosh, F.C., Birks, R.L., Sastry, P.B.: Pharmacological inhibition of acetylcholine synthesis. Nature (Lond.) 178, 1181 (1956).

    CAS  Google Scholar 

  • Macintosh, F.C., Birks, R.L, Sastry, P.B.: Mode of action of an inhibitor of acetylcholine synthesis. Neurology (Minneap.) 8 (Suppl. 1), 90–91 (1958).

    CAS  Google Scholar 

  • Macintosh, F.C., Perry, W.L.M.: Biological estimation of acetylcholine. Meth. med. Res. 3, 78–92 (1950).

    Google Scholar 

  • Maeno, T., Nobe, S.: Analysis of presynaptic effect of d-tubocurarine on the neuromuscular transmission. Proc. Japan Acad. 46, 750–754 (1970).

    CAS  Google Scholar 

  • Magleby, K. L., Stevens, C. F.: The effect of voltage on the time course of end-plate currents. J. Physiol. (Lond.) 223, 151–171 (1972a).

    CAS  Google Scholar 

  • Magleby, K.L., Stevens, C.F.: A quantitative description of end-plate currents. J. Physiol. (Lond.) 223, 173–197 (1972b).

    CAS  Google Scholar 

  • Magnan, J.L., Whittaker, V.P.: Distribution of free amino acids in subcellular fractions of guinea-pig brain. Biochem. J. 98, 128–137 (1966).

    Google Scholar 

  • Mandel, P., Ebel, E.: Correlations between alterations in cholinergic system and behavior. In: Derobertis, E., Schacht, J. (Eds.): Neurochemistry of Cholinergic Receptors, pp.131–139. New York: Raven Press 1974.

    Google Scholar 

  • Mandell, A.J., Krapp, S.: The effects of chronic administration of some cholinergic and adrenergic drugs on the activity of choline acetyltransferase in the optic lobes of the chick brain. Neuropharmacology 10, 513–516 (1971).

    PubMed  CAS  Google Scholar 

  • Mann, P.J.G., Tennenbaum, M., Quastel, J.H.: On the mechanism of acetylcholine formation in brain in vitro. Biochem. J. 32, 243–261 (1938).

    PubMed  CAS  Google Scholar 

  • Mannervik, B., Sörbo, B.: Inhibition of choline acetyltransferase from bovine caudate nucleus by sulfhydryl reagents and reactivation of the inhibited enzyme. Biochem. Pharmacol. 19, 2509–2516 (1970).

    PubMed  CAS  Google Scholar 

  • Marchbanks, R.M.: Exchangeability of radioactive acetylcholine with the bound acetylcholine of synaptosomes and synaptic vesicles. Biochem. J. 106, 87–95 (1968a).

    PubMed  CAS  Google Scholar 

  • Marchbanks, R.M.:The uptake of [14C]choline into synaptosomes in vitro. Biochem. J. 110, 533–541 (1968b).

    Google Scholar 

  • Marchbanks, R.M.: The conversion of 14C-choline to 14C-acetylcholine in synaptosomes in vitro. Biochem. Pharmacol. 18, 1763–1766 (1969).

    PubMed  CAS  Google Scholar 

  • Marchbanks, R.M.: Problems concerning the compartmentation of acetylcholine in the synaptic region. In: Balazs, R., Cremer, J.E. (Eds.): Molecular Compartmentation in the Brain, pp.21–33. New York: Wiley 1973.

    Google Scholar 

  • Marchbanks, R.M., Israël, M.: Aspects of acetylcholine metabolism in the electric organ of Torpedo marmorata. J. Neurochem. 18, 439–448 (1971).

    PubMed  CAS  Google Scholar 

  • Marchbanks, R.M., Israël, M.: The heterogeneity of bound acetylcholine and synaptic vesicles. Biochem. J. 129, 1049–1061 (1972).

    PubMed  CAS  Google Scholar 

  • Marnay, A., Nachmansohn, D.: Choline esterase in voluntary muscle. J. Physiol. (Lond.) 92, 37–47 (1938).

    CAS  Google Scholar 

  • Marshall, F.N., Long, J.P.: Pharmacologic studies on some compounds structurally related to the hemicholinium HC-3. J. Pharmacol. exp. Ther. 127, 236–240 (1959).

    PubMed  CAS  Google Scholar 

  • Martin, A.R.: Quantal nature of synaptic transmission. Physiol. Rev. 46, 51 (1966).

    CAS  Google Scholar 

  • Martin, A.R., Orkand, R.K.: Postsynaptic effects of HC-3 on the neuromuscular junction of the frog. Canad. J. Biochem. 39, 343–349 (1961).

    PubMed  CAS  Google Scholar 

  • Martin, A.R., Pilar, G.: Dual mode of synaptic transmission in the avian ciliary ganglion. J. Physiol. (Lond.) 168, 443–463 (1963a).

    CAS  Google Scholar 

  • Martin, A.R., Pilar, G.: Transmission through the ciliary ganglion of the chick. J. Physiol. (Lond.) 68, 464–475 (1963b).

    Google Scholar 

  • Martin, A.R., Pilar, G.: Quantal components of the synaptic potential in the ciliary ganglion of the chick. J. Physiol. (Lond.) 175, 1–16 (1964).

    CAS  Google Scholar 

  • Martin, K.: Concentrative accumulation of choline by human erythrocytes. J. gen. Physiol. 51, 497–516 (1968).

    PubMed  CAS  Google Scholar 

  • Martin, K.: Effects of quaternary ammonium compounds on choline transport in red cells. Brit. J. Pharmacol. 36, 458–469 (1969).

    CAS  Google Scholar 

  • Martin, K.: Extracellular cations and the movement of choline across the erythrocyte membrane. J. Physiol. (Lond.) 224, 207–230 (1972).

    CAS  Google Scholar 

  • Masland, R.L., Wigton, R.S.: Nerve activity accompanying fasciculation produced by prostigmin. J. Neurophysiol. 3, 269–275 (1940).

    CAS  Google Scholar 

  • Masuoka, D.: Monoamines in isolated nerve ending particles. Biochem. Pharmacol. 14, 1688–1689 (1968).

    Google Scholar 

  • Matthews, E. K.: The effects of choline and other factors on the release of acetylcholine from the stimulated perfused superior cervical ganglion of the cat. Brit. J. Pharmacol. 21, 244–249 (1963).

    PubMed  CAS  Google Scholar 

  • Matthews, E.K.: The presynaptic effects of quaternary ammonium compounds on the acetylcholine metabolism of a sympathetic ganglion. Brit. J. Pharmacol. 26, 552–566 (1966).

    PubMed  CAS  Google Scholar 

  • Matthews, E.L., Quilliam, J.P.: Effect of central depressant drugs on acetylcholine release. Brit. J. Pharmacol. 22, 415–440 (1964).

    PubMed  CAS  Google Scholar 

  • Max, S.R., Snyder, S.H., Rifenberick, D.H.: Effect of neuromuscular activity on choline acetyltransferase and acetylcholinesterase. Abstr. 4th int. Meet. Neurochem. 409 (1973).

    Google Scholar 

  • McCaman, R.E., Hunt, J.M.: Microdetermination of choline acetylase in nervous tissue. J. Neurochem. 12, 253–260 (1965).

    PubMed  CAS  Google Scholar 

  • McCaman, R.E., Weinreich, D., Borys, H.: Endogenous levels of acetylcholine and choline in individual neurons of Aplysia. J. Neurochem. 21, 473–476 (1973).

    PubMed  CAS  Google Scholar 

  • McCandless, D.L., Zablocka-Esplin, B., Esplin, D.W.: Rates of transmitter turnover in the cat superior cervical ganglion estimated by electrophysiological techniques. J. Neurophysiol. 34, 817–830 (1971).

    PubMed  CAS  Google Scholar 

  • McCarty, L.P., Knight, A.S., Chenoweth, M.B.: Incorporation of 14C-choline into phospholipids in the isolated phrenic nerve-diaphragm of the rat. J. Neurochem. 20, 487–494 (1973).

    PubMed  CAS  Google Scholar 

  • McComas, A.J., Sica, R.E.P.: Muscular dystrophy: myopathy or neuropathy? Lancet 1970 I 1119.

    Google Scholar 

  • McComas, A.J., Sica, R.E.P., Currie, S.: Muscular dystrophy: evidence for a neural factor. Nature (Lond.) 226, 1263–1264 (1970).

    CAS  Google Scholar 

  • McComas, A.J., Sica, R.E.P., Currie, S.: An electrophysiological study of Duchenne dystrophy. J. Neurol. Neurosurg. Psychiat. 34, 461–468 (1971).

    PubMed  CAS  Google Scholar 

  • McGeer, P.L., McGeer, E.G., Singh, J.K., Chase, W.H.: Choline acetyltransferase localization in the control nervous system by immunohistochemistry. Brain Res. 81, 373–379 (1974).

    PubMed  CAS  Google Scholar 

  • McGovern, S., Maguire, M.E., Gurd, R.S., Mahler, H.R., Moore, W.J.: Separation of adrenergic and cholinergic synaptosomes from immature rat brain. FEBS Letters 31, 193–198 (1973).

    PubMed  CAS  Google Scholar 

  • McIsaac, R.J., Koelle, G.B.: Comparison of the effects of inhibition of external, internal and total acetylcholinesterase upon ganglionic transmission. J. Pharmacol. exp. Ther. 126, 9–20 (1959).

    PubMed  CAS  Google Scholar 

  • McKinney, T.D.: Brain cholinesterase in grouped and singly caged adrenal-demedullated rats. Amer. J. Physiol. 219, 331–334 (1970).

    PubMed  CAS  Google Scholar 

  • McKinstry, D.N., Koelle, G.B.: Acetylcholine release from the cat superior cervical ganglion by carbachol. J. Pharmacol. exp. Ther. 157, 319–327 (1967a).

    PubMed  CAS  Google Scholar 

  • McKinstry, D.N., Koelle, G.B.: Effects of drugs on acetylcholine release from the cat superior cervical ganglion by carbachol. J. Pharmacol. exp. Ther. 157, 328–336 (1967b).

    PubMed  CAS  Google Scholar 

  • McLennan, H., Elliott, K. A. C.: Factors affecting the synthesis of acetylcholine by brain slices. Amer. J. Physiol. 163, 605–613 (1950).

    PubMed  CAS  Google Scholar 

  • Meiri, V., Rahamimoff, R.: Activation of transmitter release by strontium and calcium ions at the neuromuscular junction. J. Physiol. (Lond.) 215, 709–726 (1971).

    CAS  Google Scholar 

  • Meiri, V., Rahamimoff, R.: Neuromuscular transmission: inhibition by manganese ions. Science 154, 266–267 (1972).

    Google Scholar 

  • Mellanby, J., Thompson, P.A.: The effect of tetanus toxin at the neuromuscular junction in the goldfish. J. Physiol. (Lond.) 224, 407–419 (1972).

    CAS  Google Scholar 

  • Michaelson, I.A., Whittaker, V.P.: The subcellular localization of 5-hydroxytryptamine in guinea pig brain. Biochem. Pharmacol. 12, 203–211 (1963).

    PubMed  CAS  Google Scholar 

  • Miledi, R.: The acetylcholine sensitivity of frog muscle fibres before and after complete or partial denervation. J. Physiol. (Lond.) 151, 1–23 (1960).

    CAS  Google Scholar 

  • Miledi, R.: Transmitter release induced by the injection of calcium ions into nerve terminals. Proc. roy. Soc. B 183, 421–425 (1973).

    CAS  Google Scholar 

  • Miledi, R., Slater, C.R.: Electrophysiology and electron microscopy of rat neuromuscular junctions after denervation. Proc. roy. Soc. B 169, 289–306 (1968).

    CAS  Google Scholar 

  • Miledi, R., Thies, R.E.: Post-tetanic increase in frequency of miniature end-plate potentials in calcium-free solutions. J. Physiol. (Lond.) 192, 54–55P (1967).

    Google Scholar 

  • Miledi, R., Thies, R.: Tetanic and post-tetanic rise in frequency of miniature end-plate potentials in low-calcium solutions. J. Physiol. (Lond.) 212, 245–257 (1971).

    CAS  Google Scholar 

  • Miller, E.K., Dawson, R.M.C.: Can mitochondria and synaptosomes of guinea-pig brain synthesize phospholipids? Biochem. J. 126, 805–821 (1972).

    PubMed  CAS  Google Scholar 

  • Minz, B.: Pharmakologische Untersuchungen am Blutegelpräparat, zugleich eine Methode zum biologischen Nachweis von Azetylcholin bei Anwesenheit anderer pharmakologisch wirksamer körpereigener Stoffe. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 168, 292–304 (1932).

    CAS  Google Scholar 

  • Mitchell, J.F., Silver, A.: The spontaneous release of acetylcholine from the denervated hemidiaphragm of the rat. J. Physiol. (Lond.) 165, 117–129 (1963).

    CAS  Google Scholar 

  • Mizel, S.V., Wilson, L.: Inhibition of the transport of several hexoses in mammalian cells by cytochalasin B. J. biol. Chem. 247, 4102–4105 (1972).

    PubMed  CAS  Google Scholar 

  • Mogey, G.A., Young, P.A.: The antagonism of curarizing activity by phenolic substances. Brit. J. Pharmacol. 4, 359–365 (1949).

    PubMed  CAS  Google Scholar 

  • Molenaar, P.C., Nickolson, V.J., Polak, R.L.: Preferential release of newly synthesized acetylcholine from cerebral cortex. J. Physiol. (Lond.) 213, 64–65P (1971).

    Google Scholar 

  • Molenaar, P.C., Nickolson, V.J., Polak, R.L.: Preferential release of newly synthesized 3H-acetylcholine from rat cerebral cortex slices in vitro. Brit. J. Pharmacol. 47, 97–108 (1973a).

    CAS  Google Scholar 

  • Molenaar, P.C., Polak, R.L.: Newly formed acetylcholine in synaptic vesicles in brain tissue. Brain Res. 62, 537–542 (1973).

    PubMed  CAS  Google Scholar 

  • Molenaar, P.C., Polak, R.L., Nickolson, V.J.: Subcellular localization of newly-formed [3H]acetylcholine in rat cerebral cortex in vitro. J. Neurochem. 21, 667–678 (1973b).

    CAS  Google Scholar 

  • Molinoff, P.B., Potter, L.T.: Isolation of the cholinergic receptor protein of Torpedo electric tissue. Advanc. biochem. Psychopharmacology 6, 111–134 (1972).

    CAS  Google Scholar 

  • Morgan, I.G., Austin, L.: Synaptosomal protein synthesis in a cell-free system. J. Neurochem. 15, 41–51 (1968).

    PubMed  CAS  Google Scholar 

  • Morris, D.: The choline acetyltransferase of human placenta. Biochem. J. 98, 754–763 (1966).

    PubMed  CAS  Google Scholar 

  • Morris, D., Grewaal, D.S.: Halogen substituted derviatives of acetylcholine as inhibitors of choline acetyltransferase. Life Sci. 8, II, 511–516 (1969).

    PubMed  CAS  Google Scholar 

  • Morris, D., Maneckjee, A., Hebb, C.: The kinetic properties of human placental choline acetyl-transferase. Biochem. J. 125, 857–863 (1971).

    PubMed  CAS  Google Scholar 

  • Morris, S.J.: Removal of residual amounts of acetylcholinesterase and membrane contamination from synaptic vesicles isolated from the electric organ of Torpedo. J. Neurochem. 21, 713–715 (1973).

    PubMed  CAS  Google Scholar 

  • Moss, J., Colburn, R. W., Kopin, I. J.: Scorpion toxin-induced catecholamine release from synaptosomes. J. Neurochem. 22, 217–221 (1974).

    PubMed  CAS  Google Scholar 

  • Mulder, A.H., Yamamura, K.L., Kuhar, M.J., Snyder, S.H.: Release of acetylcholine from hippocampal slices by potassium depolarization: dependence on high affinity choline uptake. Brain Res. 70, 372–376 (1974).

    PubMed  CAS  Google Scholar 

  • Musick, J., Hubbard, J.I.: Release of protein from mouse motor nerve terminals. Nature (Lond.) 237, 279–281 (1972).

    CAS  Google Scholar 

  • Nachmansohn, D., Machado, A.L.: The formation of acetylcholine. A new enzyme, “choline acetylase”. J. Neurophysiol. 6, 397–403 (1943).

    CAS  Google Scholar 

  • Nachmansohn, D.: Chemical events in conducting and synaptic membranes during electrical activity. Proc. nat. Acad. Sci. (Wash.) 68, 3170–3174 (1971).

    CAS  Google Scholar 

  • Nakamura, R., Cheng, S.C.: Evidence for the compartmentalization of acetyl-coenzyme A in rat brain slices and its relation to the synthesis of acetylcholine and glutamate. Life Sci. 8, 657–662 (1969).

    PubMed  CAS  Google Scholar 

  • Nakamura, R., Cheng, S.C., Naruse, H.: A study on the precursors of the acetyl moiety of acetylcholine in brain slices. Biochem. J. 118, 443–450 (1970).

    PubMed  CAS  Google Scholar 

  • Nakasoto, Y., Douglas, W.W.: Cytochalasin blocks sympathetic ganglion transmission — a presynaptic effect antagonized by pyruvate. Proc. nat. Acad. Sci. (Wash.) 70, 1730–1733 (1973).

    Google Scholar 

  • Namba, T., Grob, D.: Cholinesterase activity of the motor endplate in isolated muscle membrane. J. Neurochem. 15, 1445–1454 (1968).

    PubMed  CAS  Google Scholar 

  • Neale, J.H., Neale, E.A., Agranoff, B.W.: Radioautography of the optic tectum of the goldfish after intraocular injection of [3H]proline. Science 176, 407–410 (1972).

    PubMed  CAS  Google Scholar 

  • Nickel, E., Potter, L.T.: Synaptic vesicles in freeze-etched electric tissue of Torpedo. Brain Res. 23, 95–100 (1970).

    PubMed  CAS  Google Scholar 

  • Nishi, S.: Cholinergic and adrenergic receptors at sympathetic preganglionic nerve terminals. Fed. Proc. 29, 1957–1965 (1970).

    PubMed  CAS  Google Scholar 

  • Nishi, S., Soeda, H., Koketsu, K.: Release of acetylcholine from sympathetic preganglionic nerve terminals. J. Neurophysiol. 30, 114–134 (1967).

    CAS  Google Scholar 

  • Nordenfelt, I.: Choline acetylase in normal and denervated salivary glands. Quart. J. exp. Physiol. 48, 67–79 (1963).

    PubMed  CAS  Google Scholar 

  • Nordenfelt, J.: Metabolism of transmitter substances in salivary glands. In: Schneyer, L.H., Schneyer, G. A. (Eds.): Secretory Mechanisms of Salivary Glands, pp. 142–154. New York: Academic Press 1967.

    Google Scholar 

  • Ochs, S.: Fast transport of materials in mammalian nerve fibers. Science 176, 252–260 (1972).

    PubMed  CAS  Google Scholar 

  • Oesch, F.: Trans-synaptic induction of choline acetyltransferase in the preganglionic neurone of the peripheral sympathetic nervous system. J. Pharmacol. exp. Ther. 188, 439–446 (1974).

    PubMed  CAS  Google Scholar 

  • Oesch, F., Thoenen, H.: Increased activity of the peripheral nervous system: induction of choline acetyltransferase in the preganglionic cholinergic neuron. Nature (Lond.) 242, 536–537 (1973a).

    CAS  Google Scholar 

  • Oesch, F., Thoenen, H.: Induction of choline acetyltransferase in the preganglionic sympathetic neuron. Experientia (Basel) 29, 765 (1973b).

    Google Scholar 

  • Ogston, A.G.: Removal of acetylcholine from a limited volume by diffusion. J. Physiol. (Lond.) 128, 222–223 (1955).

    CAS  Google Scholar 

  • O’neill, J. J., Sakamoto, T.: Enzymatic fluorometric determination of acetylcholine in biological extracts. J. Neurochem. 17, 1451–1460 (1970).

    CAS  Google Scholar 

  • Otsuka, M., Endo, M.: The effect of guanidine on neuromuscular transmission. J. Pharmacol. exp. Ther. 128, 273–282 (1960).

    PubMed  CAS  Google Scholar 

  • Otsuka, M., Nonomura, Y.: The action of phenolic substances on motor nerve endings. J. Pharmacol. exp. Ther. 140, 41–45 (1963).

    PubMed  CAS  Google Scholar 

  • Paggi, P., Rossi, A.: Effect of Latrodectus mactans tredecimgultatus venom on sympathetic ganglion isolated in vitro. Toxicon 9, 265–269 (1971).

    PubMed  CAS  Google Scholar 

  • Panella, A.: Action du principe actif surrénal sur la fatigue musculaire. Arch. ital. Biol. 48, 430–463 (1907).

    Google Scholar 

  • Parducz, A., Fehér, O.: Fine structural alterations of presynaptic endings in the superior cervical ganglion of the cat after exhausting preganglionic stimulation. Experientia (Basel) 26, 629–630 (1970).

    CAS  Google Scholar 

  • Parducz, A., Fehér, O., Joó, F.: Effects of stimulation and hemicholinium (HC-3) on the fine structure of the nerve endings in the superior cervical ganglion of the cat. Brain Res. 34, 61–72 (1971).

    PubMed  CAS  Google Scholar 

  • Paton, W.D.M.: The action of morphine and related substances on contraction and on acetylcholine output of coaxially stimulated guinea-pig ileum. Brit. J. Pharmacol. 12, 119–127 (1957).

    PubMed  CAS  Google Scholar 

  • Paton, W. D. M.: Cholinergic transmission and acetylcholine output. Canad. J. Biochem. Physiol. 41, 2637–2653 (1963).

    PubMed  CAS  Google Scholar 

  • Paton, W.D.M., Thompson, J.W.: The mechanism of action of adrenaline on the superior cervical ganglion of the cat. Abstr. Commun. XIX International Physiological Congress 664-665 (1953).

    Google Scholar 

  • Paton, W.D.M., Vizi, E.S.: The inhibitory action of noradrenaline and adrenaline on acetylcholine output by guinea-pig ileum longitudinal muscle strip. Brit. J. Pharmacol. 35, 10–28 (1969).

    CAS  Google Scholar 

  • Paton, W.D.M., Vizi, E.S., Zar, M.A.: The mechanism of acetylcholine release from parasympathetic nerves. J. Physiol. (Lond.) 215, 819–848 (1971).

    CAS  Google Scholar 

  • Paton, W.D.M., Zar, M.A.: The origin of acetylcholine released from guinea-pig intestine and longitudinal muscle strips. J. Physiol. (Lond.) 194, 13–33 (1968).

    CAS  Google Scholar 

  • Patterson, P.H., Chun, L.L.Y.: The influence of non-neuronal cells on catecholamine and acetylcholine synthesis and accumulation in cultures of dissociated neurons. Proc. nat. Acad. Sci. (Wash.) 71, 3607–3610 (1974).

    CAS  Google Scholar 

  • Perri, V., Sacchi, O., Raviola, E., Raviola, G.: Evaluation of the number and distribution of synaptic vesicles at cholinergic nerve endings after sustained stimulation. Brain Res. 39, 526–529 (1972).

    PubMed  CAS  Google Scholar 

  • Perry, W.L.M.: Acetylcholine release in the cat’s superior cervical ganglion. J. Physiol. (Lond.) 119, 439–454 (1953).

    CAS  Google Scholar 

  • Persson, B.O., Larsson, L., Schuberth, J., Sörbo, B.: 3-bromoacetonyltrimethylammonium bromide, a choline acetyltransferase inhibitor. Acta chem. scand. 21, 2283–2284 (1967).

    PubMed  CAS  Google Scholar 

  • Peterson, E.R., Bornstein, M. B.: The neurotoxic effects of colchicine on tissue cultures of cordganglia. J. Neuropath, exp. Neurol. 27, 121–122 (1968).

    CAS  Google Scholar 

  • Pilar, G.: Effect of acetylcholine on pre-and postsynaptic elements of avian ciliary ganglion synapses. Fed. Proc. 28, 670 (1969).

    Google Scholar 

  • Pilar, G., Chiappinelli, V., Uchimura, H., Giacobini, E.: Changes, of acetylcholinesterase (AChE) and choline acetyltransferase (ChAc) correlated with the formation of cholinergic synapses in chick embryo. Physiologist 17, 307 (1974).

    Google Scholar 

  • Pilar, G., Jenden, D., Campbell, B.: Change in acetylcholine content in postganglionic cells of adult pigeon ciliary ganglion after denervation. Physiologist 13, 284 (1970).

    Google Scholar 

  • Pilar, G., Jenden, D.J., Campbell, B.: Distribution of acetylcholine in the normal and denervated pigeon ciliary ganglion. Brain Res. 49, 245–256 (1973).

    PubMed  CAS  Google Scholar 

  • Poisner, A.M: Actomyosin-like protein from the adrenal medulla. Fed. Proc. 29, 545 (1970).

    Google Scholar 

  • Poisner, A.M., Bernstein, J.C.: A possible role of microtubules in catecholamine release from the adrenal medulla: effect of colchicine, vinca alkaloids and deuterium oxide. J. Pharmacol. exp. Ther. 177, 102–108 (1971).

    PubMed  CAS  Google Scholar 

  • Poisner, A.M., Trifaró, J.M.: The role of ATP and ATPase in the release of catecholamines from the adrenal medulla. ATP-evoked release of catecholamines, ATP, and protein from isolated chromaffin granules. Molec. Pharmacol. 3, 561–571 (1967).

    CAS  Google Scholar 

  • Polak, R.L.: The influence of drugs on the uptake of acetylcholine by slices of rat cerebral cortex. Brit. J. Pharmacol. 36, 144–152 (1969).

    CAS  Google Scholar 

  • Polak, R.L., Meeuws, M.M.: The influence of atropine on the release and uptake of acetylcholine by the isolated cerebral cortex of the rat. Biochem. Pharmacol. 15, 989–992 (1966).

    PubMed  CAS  Google Scholar 

  • Politoff, A.L., Rose, S., Pappas, G.D.: The calcium-binding sites of synaptic vesicles of the frog sartorius neuromuscular junction. J. Cell Biol. 61, 818–823 (1974).

    PubMed  CAS  Google Scholar 

  • Potter, L.T.: Uptake of choline by nerve endings isolated from the rat cerebral cortex. In: Campbell, P.N. (Ed.): The Interaction of Drugs and Subcellular Components of Animal Cells, pp.293–303. London: Churchill 1968.

    Google Scholar 

  • Potter, L.T.: Synthesis, storage and release of [14C]acetylcholine in isolated rat diaphragm muscles. J. Physiol. (Lond.) 206, 145–166 (1970a).

    CAS  Google Scholar 

  • Potter, L.T.: Acetylcholine, choline acetyltransferase and acetylcholinesterase. Handbook of Neurochemistry, Vol. IV, pp.263–284 (1970b).

    Google Scholar 

  • Potter, L.T.: Acetylcholine metabolism at vertebrate neuromuscular junctions. Advanc. biochem. Psychopharmacol. 2, 163–168 (1970c).

    CAS  Google Scholar 

  • Potter, L.T.: Synthesis, storage and release of acetylcholine from nerve terminals. In: Bourne, G.H. (Ed.): The Structure and Function of the Nervous System, Vol.IV, pp.105–128. New York: Academic Press 1972.

    Google Scholar 

  • Potter, L.T., Glover, V.A.S., Saelens, J.K.: Choline acetyltransferase from rat brain. J. biol. Chem. 243, 3864–3870 (1968).

    PubMed  CAS  Google Scholar 

  • Powers, M.F., Krueger, S., Schueler, F.W.: Synthesis and pharmacological studies of some aliphatic hemicholinium analogs. J. pharm. Sci. 51, 27–31 (1962).

    PubMed  CAS  Google Scholar 

  • Prasad, K.N., Vernadakis, A.: Morphological and biochemical study in X-ray-and dibutyryl cyclic AMP-induced differentiated neuroblastoma cells. Exp. Cell. Res. 70, 27–32 (1972).

    PubMed  CAS  Google Scholar 

  • Pumplin, D.W., McClure, W.O.: Effects of cytochalasin B and vinblastine on the release of acetylcholine from a sympathetic ganglion. Europ. J. Pharmacol. 28, 316–325 (1974).

    CAS  Google Scholar 

  • Puszkin, S., Berl, S.: Actomyosin-like protein from brain: separation and characterization of the actin-like component. Biochim. biophys. Acta (Amst.) 256, 695–709 (1972).

    CAS  Google Scholar 

  • Puszkin, S., Nicklas, W.J., Berl, S.: Actomyosin-like protein in brain: subcellular distribution. J. Neurochem. 19, 1319–1333 (1972).

    PubMed  CAS  Google Scholar 

  • Pysh, J.J., Wiley, R.G.: Morphologic alterations of synapses in electrically stimulated superior cervical ganglion of the cat. Science 176, 191–193 (1972).

    PubMed  CAS  Google Scholar 

  • Quarles, R., Folch-Pi, J.: Some effects of physiological cations on the behaviour of gangliosides in a chloroform-methanol-water biphasic system. J. Neurochem. 12, 543–553 (1965).

    PubMed  CAS  Google Scholar 

  • Quastel, D. M. J.: The role of sodium ions in acetylcholine metabolism in sympathetic ganglia. Ph. D. thesis, McGill University, Montreal (1962).

    Google Scholar 

  • Quastel, D.M.J., Hackett, J.T., Cooke, J.D.: Calcium: is it required for transmitter secretion? Science 172, 1034–1036 (1971).

    PubMed  CAS  Google Scholar 

  • Quastel, J.H., Tennenbaum, M., Wheatley, A.H.M.: Choline ester formation in, and choline esterase activities of, tissues in vitro. Biochem. J. 30, 1668–1681 (1936).

    PubMed  CAS  Google Scholar 

  • Ramirez, G., Levitan, I.B., Mushynski, W.E.: Highly purified synaptosomal membranes from rat brain: incorporation of amino acids into membrane proteins in vitro. J. biol. Chem. 247, 5382–5390 (1972).

    PubMed  CAS  Google Scholar 

  • Ramwell, P.W., Shaw, J.E., Kucharski, J.: Prostaglandin: release from the rat phrenic nerve diaphragm preparation. Science 149, 1390–1391 (1965).

    PubMed  CAS  Google Scholar 

  • Rangachari, P.K., Khatter, J.C., Friesen, A.J.D.: Effect of stimulation on acetylcholine content of a sympathetic ganglion. Proc. Canad. Fed. Biol. Soc. 12, 5 (1969).

    Google Scholar 

  • Ranish, N., Ochs, S.: Fast axoplasmic transport of acetylcholinesterase in mammalian nerve fibres. J. Neurochem. 19, 2641–2649 (1972).

    PubMed  CAS  Google Scholar 

  • Rassin, D.K.: Amino acids as putative transmitters: failure to bind in synaptic vesicles of guinea-pig cerebral cortex. J. Neurochem. 19, 139–148 (1972).

    PubMed  CAS  Google Scholar 

  • Reid, W.D., Haubrich, D.R., Krishna, G.: Enzymic radioassay for acetylcholine and choline in brain. Analyt. Biochem. 42, 390–397 (1971).

    PubMed  CAS  Google Scholar 

  • Reisberg, R.B.: Properties and biological significance of choline acetylase. Yale J. Biol. Med. 29, 403–435 (1957).

    PubMed  CAS  Google Scholar 

  • Reitzel, N.L., Long, J.P.: The neuromuscular blocking properties of α,α’-dimethylaminoethanol-4, 4’-biacetophenone (hemicholinium). Arch. int. Pharmacodyn. 119, 20–30 (1959).

    PubMed  CAS  Google Scholar 

  • Renkin, E.M.: Permability of frog skeletal muscle cells to choline. J. gen. Physiol. 44, 1159–1164 (1961).

    PubMed  CAS  Google Scholar 

  • Rennick, B.R.: The renal tubular excretion of choline and thiamine in the chicken. J. Pharmacol. exp. Ther. 122, 448–456 (1958).

    Google Scholar 

  • Richter, D., Crossland, J.: Variation in acetylcholine content of the brain with physiological state. Amer. J. Physiol. 159, 247–255 (1949).

    PubMed  CAS  Google Scholar 

  • Richter, J.A., Goldstein, A.: Effects of morphine and levorphanol on brain acetylcholine content in mice. J. Pharmacol. exp. Ther. 175, 685–691 (1970).

    PubMed  CAS  Google Scholar 

  • Richter, J.A., Marchbanks, R.M.: Synthesis of radioactive acetylcholine from [3H]choline and its release from cerebral cortex slices in vitro. J. Neurochem. 18, 691–703 (1971a).

    PubMed  CAS  Google Scholar 

  • Richter, J.A., Marchbanks, R.M.: Isolation of [3H]acetylcholine pools by subcellular fractionation of cerebral cortex slices incubated with [3H]choline. J. Neurochem. 18, 705–712 (1971b).

    PubMed  CAS  Google Scholar 

  • Rieger, F., Tsuji, S., Massoulie, J.: Formes natives et globulaires de l’acétylcholinesterase dans la moëlle épinière et le cerveau de gymnote, Electrophorus electricus. Europ. J. Biochem. 30, 73–80 (1972).

    PubMed  CAS  Google Scholar 

  • Riker, W.F., Jr.: Pharmacologic considerations in a re-evaluation of the neuromuscular synapse, Arch. Neurol. Psychiat. (Chic.) 3, 488–499 (1960).

    CAS  Google Scholar 

  • Riker, W.F., Jr., Roberts, J., Standaert, F.G., Fujimori, H.: The motor nerve terminal as the primary focus for drug-induced facilitation of neuromuscular transmission. J. Pharmacol. exp. Ther. 121, 286–312 (1957).

    PubMed  CAS  Google Scholar 

  • Riker, W.F., Jr., Werner, G., Roberts, J., Kuperman, A.: Pharmacologic evidence for the existence of a presynaptic event in neuromuscular transmission. J. Pharmacol. exp. Ther. 125, 150–158 (1959).

    PubMed  CAS  Google Scholar 

  • Ritchie, A.K., Goldberg, A.M.: Vesicular and synaptoplasmic synthesis of acetylcholine. Science 169, 489–490 (1970).

    PubMed  CAS  Google Scholar 

  • Robbins, N., Fischbach, G.D.: Effects of chronic disuse of rat soleus neuromuscular junctions on presynaptic function. J. Neurophysiol. 34, 570–578 (1971).

    PubMed  CAS  Google Scholar 

  • Roberts, D.V.: Neuromuscular activity of the triethyl analogue of choline in the frog. J. Physiol. (Lond.) 160, 94–105 (1962).

    CAS  Google Scholar 

  • Robinson, P. M., Bell, C.: The localization of acetylcholinesterase at the autonomie neuromuscular junction. J. Cell Biol. 33, 93–102 (1967).

    PubMed  CAS  Google Scholar 

  • Rodriguez De Lores Arnaiz, G., Zieher, L.M., De Robertis, E.: Neurochemical and structural studies on the mechanism of action of hemicholinium-3 in central cholinergic synapses. J. Neurochem. 17, 221–229 (1970).

    CAS  Google Scholar 

  • Rogers, A.W., Salpeter, M.M., Ostrowski, K., Darzynkiewicz, Z.: Quantative studies on enzymes in structures in striated muscles by labeled inhibitor methods. I. The number of acetylcholinesterase molecules and of other DFP reactive sites at motor endplates, measured by radioautography. J. Cell Biol. 41, 665–685 (1969).

    PubMed  CAS  Google Scholar 

  • Rose, S., Glow, P.H.: Denervation effects on the presumed de novo synthesis of muscle cholinesterase and the effects of acetylcholine availability on retinal cholinesterase. Exp. Neurol. 18, 267–275 (1967).

    PubMed  CAS  Google Scholar 

  • Rosenberg, P., Kremzner, L.T., McCreery, D., Willette, R.E.: Inhibition of choline acetyltransferase activity in squid giant axon. Biochim. biophys. Acta (Amst.) 268, 49–60 (1972).

    CAS  Google Scholar 

  • Rosenblueth, A., Lissák, K., Lanari, A.: An explanation of the five stages of neuromuscular and ganglionic synaptic transmission. Amer. J. Physiol. 128, 31–44 (1939).

    Google Scholar 

  • Rosenblueth, A., Luco, J.V.: The fifth stage of neuromuscular transmission. Amer. J. Physiol. 126, 39–57 (1939).

    Google Scholar 

  • Rosenthal, J.: Post-tetanic potentiation at the neuromuscular junction of the frog. J. Physiol. (Lond.) 203, 121–134 (1969).

    CAS  Google Scholar 

  • Roskoski, R.: Choline acetyltransferase. Inhibition by thiol reagents. J. biol. Chem. 249, 2156–2159 (1974).

    PubMed  CAS  Google Scholar 

  • Ross, S.B., Florvall, L., Frödén, O.: Inhibiton of choline acetyltransferase by 2-dimethyl-aminoethyl chloroacetate and related compounds. Acta pharmacol. (Kbh.) 30, 396–402 (1971).

    CAS  Google Scholar 

  • Ross, S.B., Jenden, D.J.: Failure of hemicholinium-3 to inhibit the uptake of 3H-choline in mouse brain in vivo. Experientia (Basel) 29, 689–690 (1973).

    CAS  Google Scholar 

  • Rubin, R.P.: The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol. Rev. 22, 389–428 (1970).

    PubMed  CAS  Google Scholar 

  • Ryan, K.J., Kalant, H., Thomas, E.L.: Free-flow electrophoretic separation and electrical surface properties of subcellular particles from guinea-pig brain. J. Cell Biol. 49, 235–246 (1971).

    PubMed  CAS  Google Scholar 

  • Sacchi, O., Perri, V.: Quantal mechanism of transmitter release during progressive depletion of the presynaptic stores at a ganglionic synapse. J. gen. Physiol. 61, 342–360 (1973).

    PubMed  CAS  Google Scholar 

  • Saelens, J.K., Simke, J.P., Allen, M.P., Conroy, C.A.: Some of the dynamics of choline and acetylcholine metabolism in rat brain. Arch. int. Pharmacodyn. 203, 305–312 (1973).

    PubMed  CAS  Google Scholar 

  • Saelens, J.K., Simke, J.P., Schuman, J., Allen, M. P.: Studies with agents which influence acetylcholine metabolism in mouse brain. Arch. int. Pharmacodyn. 209, 250–255 (1974).

    PubMed  CAS  Google Scholar 

  • Saelens, J.K., Stoll, W.R.: Radiochemical determination of choline and acetylcholine flux from isolated tissue. J. Pharmacol. exp. Ther. 147, 336–342 (1965).

    PubMed  CAS  Google Scholar 

  • Salpeter, M.M.: Electron microscopic radioautography as a quantitative tool in enzyme cytochemistry. The distribution of acetylcholinesterase at motor and plates of a vertebrate twitch muscle. J. Cell Biol. 32, 379–389 (1967).

    PubMed  CAS  Google Scholar 

  • Salpeter, M.M.: Electron microscopic radioautography as a quantitative tool in enzyme cytochemistry. The distribution of DFP-reactive sites at motor endplates of a vertebrate twitch muscle. J. Cell Biol. 42, 122–134 (1969).

    PubMed  CAS  Google Scholar 

  • Sastry, B.V.R., Henderson, G.I.: Kinetic mechanisms of human placental choline acetyltransferase. Biochem. Pharmacol. 21, 787–802 (1972).

    PubMed  CAS  Google Scholar 

  • Sastry, P.B.: Ph. D. thesis, McGill University, Montreal (1956).

    Google Scholar 

  • Sattin, A., Rall, T.W.: The effect of adenosine and adenine nucleotides on the cyclic adenosine 3’-5’-phosphate content of guinea pig cerebral cortex slices. Molec. Pharmacol. 6, 13–23 (1970).

    CAS  Google Scholar 

  • Sawyer, C.H.: Cholinesterases in degenerating and regenerating peripheral nerves. Amer. J. Physiol. 146, 246–253 (1946).

    PubMed  CAS  Google Scholar 

  • Sawyer, C.H., Hollinshead, W.H.: Cholinesterases in sympathetic fibers and ganglia. J. Neurophysiol. 8, 137–153 (1945).

    CAS  Google Scholar 

  • Schafer, R.: Acetylcholine: fast axoplasmic transport in insect chemoreceptor fibers. Science 180, 315–317 (1973).

    PubMed  CAS  Google Scholar 

  • Schmidt, D.E., Szilagyi, P.I.A., Alkon, D.A., Green, J.P.: A method for measuring nanogram quantities of acetylcholine by pyrolysis-gas chromatography: the demonstration of acetylcholine in effluents from the rat phrenic nerve-diaphragm preparation. J. Pharmacol. exp. Ther. 174, 337–345 (1970).

    PubMed  CAS  Google Scholar 

  • Schmitt, F.O.: Fibrous proteins — neuronal organelles. Proc. nat. Acad. Sci. (Wash.) 60, 1092–1101 (1968).

    CAS  Google Scholar 

  • Schrier, B.K., Shuster, L.: A simplified radiochemical assay for choline acetyltransferase. J. Neurochem. 14, 977–985 (1967).

    PubMed  CAS  Google Scholar 

  • Schuberth, J.: Choline acetylase purification and effect of salts on the mechanism of the enzyme-catalyzed reaction. Biochim. biophys. Acta (Amst.) 122, 470–481 (1966).

    CAS  Google Scholar 

  • Schuberth, J., Sparf, B., Sundwall, A.: A technique for the study of acetylcholine turnover in mouse brain in vivo. J. Neurochem. 16, 695–700 (1969).

    PubMed  CAS  Google Scholar 

  • Schuberth, J., Sparf, B., Sundwall, A.: On the turnover of acetylcholine in nerve endings of mouse brain in vivo. J. Neurochem. 17, 461–468 (1970).

    PubMed  CAS  Google Scholar 

  • Schuberth, J., Sundwall, A.: Effect of some drugs on the uptake of acetylcholine in cortex slices of mouse brain. J. Neurochem. 14, 807–812 (1967).

    CAS  Google Scholar 

  • Schuberth, J., Sundwall, A.: Differences in the subcellular localization of choline, acetylcholine and atropine taken up by mouse brain slices in vitro. Acta physiol. scand. 72, 65–71 (1968).

    PubMed  CAS  Google Scholar 

  • Schuberth, J., Sundwall, A., Sörbo, B.: Relation between Na+-K+ transport and the uptake of choline by brain slices. Life Sci. 6, 293–296 (1967).

    PubMed  CAS  Google Scholar 

  • Schuberth, J., Sundwall, A., Sörbo, B., Lindell, J.O.: Uptake of choline by rat brain slices. J. Neurochem. 13, 347–352 (1966).

    CAS  Google Scholar 

  • Schueler, F. W.: A new group of respiratory paralyzants. J. Pharmacol. exp. Ther. 115, 127–143 (1955).

    PubMed  CAS  Google Scholar 

  • Schueler, F. W.: The mechanism of action of the hemicholiniums. Int. Rev. Neurobiol. 2, 77–97 (1960).

    PubMed  CAS  Google Scholar 

  • Schwyn, R.C.: An autoradiographic study of satellite cells in autonomie ganglia. Amer. J. Anat. 121, 727–740 (1967).

    PubMed  CAS  Google Scholar 

  • Schwyn, R.C., Hall, J.L.: Studies of neurological activity in autonomie ganglia during electrical stimulation and drug administration. Anat. Rec. 151, 414 (1965).

    Google Scholar 

  • Sellinger, O.Z., Domino, E.F., Haarstad, V.B., Mohrman, M.E.: Intracellular distribution of [C14]-hemicholinium-3 in the canine caudate nucleus and hippocampus. J. Pharmacol. exp. Ther. 167, 63–76 (1969).

    PubMed  CAS  Google Scholar 

  • Severin, S.E., Artenie, V.: The isolation, partial purification and some properties of cholineacetyl transferase from rabbit brain. Biokhimiya 32, 125–132 (1967). (Russian.)

    CAS  Google Scholar 

  • Shapiro, D.L.: Morphological and biochemical alterations in foetal rat brain cells cultivated in the presence of monobutyryl cyclic AMP. Nature (Lond.) 241, 203–204 (1973).

    CAS  Google Scholar 

  • Sharkawi, M.: Effects of some centrally acting drugs on acetylcholine synthesis by rat cerebral cortex slices. Brit. J. Pharmacol. 46, 473–479 (1972).

    CAS  Google Scholar 

  • Sharkawi, M., Schulman, M.P.: Relationship between acetylcholine synthesis and its concentration in rat cerebral cortex. Brit. J. Pharmacol. 36, 373–379 (1969).

    CAS  Google Scholar 

  • Sharpless, S.K.: Reorganization of function in the nervous system — use and disuse. Ann. Rev. Physiol. 26, 357–388 (1964).

    CAS  Google Scholar 

  • Shea, P.A., Aprison, M.H.: An enzymatic method for measuring picomole quantities of acetylcholine and choline in CNS tissue. Analyt. Biochem. 56, 165–177 (1973).

    PubMed  CAS  Google Scholar 

  • Sheridan, M.N., Whittaker, V.P., Israël, M.: The subcellular fractionation of the electric organ of Torpedo. Z. Zellforsch. 74, 291–307 (1966).

    CAS  Google Scholar 

  • Siegel, F., Brooks, J., Childers, S., Campbell, J.: Calcium binding proteins from adrenergic and cholinergic tissue. Abstr. 4th Int. Meet. Neurochem. 72 (1973).

    Google Scholar 

  • Silbergeld, E.K., Faler, J.T., Goldberg, A.M.: Evidence for a junctional effect of lead in neuromuscular function. Nature (Lond.) 247, 49–50 (1974).

    CAS  Google Scholar 

  • Silinsky, E.M., Hubbard, J.L.: Release of ATP from rat motor nerve terminals. Nature (Lond.) 243, 404–405 (1973).

    CAS  Google Scholar 

  • Simpson, L.L.: The role of calcium in neurohumoral and neurohormonal extrusion processes. J. Pharm. Pharmacol. 20, 889–910 (1968).

    PubMed  CAS  Google Scholar 

  • Simpson, L.L.: Ionic requirements for the neuromuscular blocking action of botulinum toxin: implications with regard to synaptic transmission. Neuropharmacology 10, 673–684 (1971).

    PubMed  CAS  Google Scholar 

  • Simpson, L.L.: The interaction between divalent cations and botulinum toxin type A in the paralysis of the rat phrenic nerve-hemidiaphragm preparation. Neuropharmacology 12, 165–176 (1973).

    PubMed  CAS  Google Scholar 

  • Simpson, L.L., Rapport, M.M.: Ganglioside inactivation of botulinum toxin. J. Neurochem. 18, 1341–1343 (1971a).

    PubMed  CAS  Google Scholar 

  • Simpson, L.L., Rapport, M.M.: The binding of botulinum toxin to membrane lipids: sphingolipids, steroids and fatty acids. J. Neurochem. 18, 1751–1759 (1971b).

    PubMed  CAS  Google Scholar 

  • Singer, J.J., Goldberg, A.L.: Cyclic AMP and transmission at the neuromuscular junction. Advances in Biochemical Psychopharmacology 3, 335–348 (1970).

    PubMed  CAS  Google Scholar 

  • Singer, S., Ho, A., Gershon, S.: Changes in activity of choline acetylase in central nervous system of rat after intraventricular administration of noradrenaline. Nature (Lond.) New Biology 230, 152–153 (1971).

    CAS  Google Scholar 

  • Sjöstrand, J., Frizell, M., Hasselgren, P.O.: Effects of colchicine on axonal transport in peripheral nerves. J. Neurochem. 17, 1563–1570 (1970).

    PubMed  Google Scholar 

  • Slater, P.: Effect of triethylcholine and hemicholinium-3 on acetylcholine content of rat brain. Int. J. Neuropharmacol. 7, 421–427 (1968).

    PubMed  CAS  Google Scholar 

  • Slater, P.: The estimation of the “free” and “bound” acetylcholine content of rat brain. J. Pharm. Pharmacol. 23, 514–518 (1971).

    PubMed  CAS  Google Scholar 

  • Slater, P., Stonier, P.D.: The uptake of hemicholinium-3 by rat brain cortex slices. J. Neurochem. 20, 637–639 (1973a).

    PubMed  CAS  Google Scholar 

  • Slater, P., Stonier, P.D.: The uptake of hemicholinium-3 by rat diaphragm and isolated perfused heart. Arch. int. Pharmacodyn. 204, 407–414 (1973b).

    PubMed  CAS  Google Scholar 

  • Smirnov, G.D., Byzov, A.L., Rampan, Yu. I.: Effects of some thiol poisons on the synaptic conduction of excitation in a sympathetic ganglion. Fiziol. Zh. (Mosk.) 40, 424–430 (1954).

    CAS  Google Scholar 

  • Smith, A.D.: Secretion of proteins (chromogranin A and dopamine β-hydroxylase) from a sympathetic neuron. Phil Trans. B 261, 363–370 (1971).

    CAS  Google Scholar 

  • Smith, A.D.: Release of noradrenaline from sympathetic nerves. Brit. med. Bull 29, 123–129 (1973).

    CAS  Google Scholar 

  • Smith, D.S.: On the significance of cross-bridges between microtubules and synaptic vesicles. Phil. Trans. B 261, 395–405 (1971).

    CAS  Google Scholar 

  • Smith, D.S., Järlfors, U., Beránek, R.: The organization of synaptic axoplasm in the lamprey (Petromyzon marinus) central nervous system. J. Cell Biol. 46, 199–219 (1970).

    PubMed  CAS  Google Scholar 

  • Smith, J.C., Cavallito, C.J., Foldes, F.F.: Choline acetyltransferase inhibitors: a group of styryl-pyridine analogs. Biochem. Pharmacol. 16, 2438–2441 (1961).

    Google Scholar 

  • Snell, R.S., McIntyre, N.: Changes in the histochemical appearances of cholinesterase at the motor end plate following denervation. Brit. J. exp. Path. 37, 44–48 (1956).

    PubMed  CAS  Google Scholar 

  • Sollenberg, J., Sörbo, B.: On the origins of the acetyl moiety of acetylcholine in brain studied with a differential labelling technique using 3H-14C-mixed labelled glucose and acetate. J. Neurochem. 17, 201–207 (1970).

    PubMed  CAS  Google Scholar 

  • Sorimachi, M., Kataoka, R.: Choline uptake by nerve terminals: a sensitive and specific marker of cholinergic innervation. Brain Res. 72, 350–353 (1974).

    PubMed  CAS  Google Scholar 

  • Sparf, B.: On the turnover of acetylcholine in the brain: an experimental study using intravenously injected radioactive choline. Acta physiol. scand., Suppl. 397, 7–47 (1973).

    Google Scholar 

  • Spencer, W.A., April, R.S.: Plastic properties of monosynaptic pathways in mammals. In: Horn, G., Hinde, R. A. (Eds.): Short-term Changes in Neural Activity and Behaviour, pp. 433–474. Cambridge: University Press 1970.

    Google Scholar 

  • Spencer, W. A., Wigdor, R.: Ultra-late PTP of monosynaptic reflex responses in the cat. Physiologist 8, 278 (1965).

    Google Scholar 

  • Spoor, R.P., Ferguson, F.C., Jr.: Colchicine IV. Neuromuscular transmission in isolated frog and rat tissues. J. pharm. Sci. 54, 779–780 (1965).

    PubMed  CAS  Google Scholar 

  • Stavinoha, W.B., Weintraub, S.T., Modak, A.T.: The use of microwave heating to inactivate cholinesterase in the rat brain prior to analysis for acetylcholine. J. Neurochem. 20, 361–371 (1973).

    PubMed  CAS  Google Scholar 

  • Stevenson, R.W., Wilson, W.S.: Drug-induced depletion of acetylcholine in the rabbit corneal epithelium. Biochem. Pharmacol. 23, 3449–3457 (1974).

    PubMed  CAS  Google Scholar 

  • Stjärne, L., Wennmalm, A.: Preferential secretion of newly formed noradrenaline in the perfused rabbit heart. Acta physiol. scand. 80, 428–430 (1970).

    PubMed  Google Scholar 

  • Stone, W.E.: Acetylcholine in the brain. I. “Free”, “bound” and total acetylcholine. Arch. Biochem. 59, 181–192 (1955).

    PubMed  CAS  Google Scholar 

  • Stovner, J.: The effect of low calcium and of tetraethylammonium (TEA) on the rat diaphragm. Acta physiol. scand. 40, 285–296 (1957).

    PubMed  CAS  Google Scholar 

  • Straughan, D.W.: The release of acetylcholine from mammalian motor nerve endings. Brit. J. Pharmacol. 15, 417–422 (1960).

    PubMed  CAS  Google Scholar 

  • Strömblad, R.: Acetylcholine inactivation and acetylcholine sensitivity in denervated salivary glands. Acta physiol. scand. 34, 38–58 (1955).

    PubMed  Google Scholar 

  • Suria, A., Costa, E.: Diazepam inhibition of post-tetanic potentiation in bullfrog sympathetic ganglia: possible role of prostaglandins. J. Pharmacol. exp. Ther. 180, 690–696 (1974).

    Google Scholar 

  • Szerb, J.C.: The estimation of acetylcholine, using leech muscle in a microbath. J. Physiol. (Lond.) 158, 8–9P (1961).

    Google Scholar 

  • Szerb, J.C., Malik, H., Hunter, E.G.: Relationship between acetylcholine content and release in the cat’s cerebral cortex. Canad. J. Physiol. Pharmacol. 48, 780–790 (1970).

    CAS  Google Scholar 

  • Szerv, J.C., Somogyi, G.T.: Variation in the release of newly synthesized acetylcholine from the longitudinal muscle of the guinea-pig ileum stimulated at low and high frequencies. Proc. Canad. Fed. Biol. Soc. 16, 8 (1973).

    Google Scholar 

  • Szilagyi, P.I.A., Schmidt, D.E., Green, J.P.: Microanalytical determination of acetylcholine, other choline esters and choline by pyrolysis-gas chromatography. Analyt. Chem. 40, 2009–2013 (1968).

    CAS  Google Scholar 

  • Takahashi, R., Aprison, M.H.: Acetylcholine content of discrete areas of the brain obtained by a near-freezing method. J. Neurochem. 11, 887–898 (1964).

    PubMed  CAS  Google Scholar 

  • Takeno, K., Nishio, A., Yanagiya, I.: Bound acetylcholine in the nerve ending particles. J. Neurochem. 16, 47–52 (1969).

    PubMed  CAS  Google Scholar 

  • Tauc, L., Hoffmann, A., Tsuji, S., Hinzen, D.H., Faille, L.: Transmission abolished on a cholinergic synapse after injection of acetylcholinesterase into the presynaptic neurone. Nature (Lond.) 250, 496–498 (1974).

    CAS  Google Scholar 

  • Taxi, J., Sotelo, C.: Cytological aspects of the axonal migration of catecholamines and of their storage material. Brain Res. 62, 431–437 (1973).

    PubMed  CAS  Google Scholar 

  • Taylor, D.B., Nedergaard, O.Z., Creese, R., Case, R.: Labelled depolarizing drugs in normal and denervated muscle. Nature (Lond.) 208, 901–902 (1965).

    CAS  Google Scholar 

  • Teräväinen, H.: Histochemical localization of acetylcholinesterase in isolated brain synaptosomes. Histochemie 18, 191–194 (1969).

    PubMed  Google Scholar 

  • Thampi, S.N., Domer, F.R., Haarstad, V.B., Schueler, F.W.: Pharmacological studies of norphenyl hemicholinium 3. J. pharm. Sci. 55, 381–386 (1966).

    PubMed  CAS  Google Scholar 

  • Thesleff, S.: Supersensitivity of skeletal muscle produced by botulinum toxin. J. Physiol. (Lond.) 151, 598–607 (1960).

    CAS  Google Scholar 

  • Thies, R. E.: Neuromuscular depression and the apparent depletion of transmitter in mammalian muscle. J. Neurophysiol. 28, 427–442 (1965).

    Google Scholar 

  • Thies, R.E., Brooks, V.B.: Postsynaptic neuromuscular block produced by hemicholinium no. 3. Fed. Proc. 20, 569–578 (1961).

    PubMed  CAS  Google Scholar 

  • Thoa, N.B., Wooten, G.F., Axelrod, J., Kopin, I.J.: Inhibition of release of dopamine-β-hydroxylase and noradrenaline from sympathetic nerves by colchicine, vinblastine, or cytochalasin-B. Proc. nat. Acad. Sci. (Wash.) 69, 520–522 (1972).

    CAS  Google Scholar 

  • Thoenen, H., Kettler, R., Saner, A.: Time course of the development of enzymes involved in the synthesis of norepinephrine in the superior cervical ganglion of the rat from birth to adult life. Brain Res. 40, 459–468 (1972).

    PubMed  CAS  Google Scholar 

  • Thoenen, H., Mueller, R.A., Axelrod, J: Increased tyrosine hydroxylase activity after drug-induced alteration of sympathetic transmission. Nature (Lond.) 221, 1264 (1969).

    CAS  Google Scholar 

  • Thoenen, H., Mueller, R. A., Axelrod, J.: Phase difference in the induction of tyrosine hydroxylase in cell body and nerve terminals of sympathetic neurones. Proc. nat. Acad. Sci. (Wash.) 65, 58–62 (1970).

    CAS  Google Scholar 

  • Tobias, J.M., Lipton, M.A., Lepinat, A.: Effect of anaesthetics and convulsants on brain acetylcholine content. Proc. Soc. exp. Biol. (N.Y.) 61, 51–54 (1946).

    CAS  Google Scholar 

  • Toru, M., Aprison, M.H.: Brain acetylcholine studies: a new extraction procedure. J. Neurochem. 13, 1533–1544 (1966).

    PubMed  CAS  Google Scholar 

  • Trethewie, E.R.: Experiments on the problem of “free” and “bound” histamine and acetylcholine. Aust. J. exp. Biol. med. Sci. 16, 225–232 (1938).

    CAS  Google Scholar 

  • Trifaró, J.M., Collier, B., Lastowecka, A., Stern, D.: Inhibition by colchicine and by vinblastine of acetylcholine-induced catecholamine release from the adrenal gland: an anticholinergic action, not an effect upon microtubules. Molec. Pharmacol. 8, 264–267 (1972).

    Google Scholar 

  • Trimble, M.E., Acara, M., Rennick, B.: Effect of hemicholinium-3 on tubular transport and metabolism of choline in the perfused rat kidney. J. Pharmacol. exp. Ther. 189, 570–576 (1974).

    PubMed  CAS  Google Scholar 

  • Trotter, J.L., Burton, R.M.: Acetylcholinesterase activity of synaptic vesicle fractions and membrane fractions prepared from rat brain tissue. J. Neurochem. 16, 805–812 (1969).

    PubMed  CAS  Google Scholar 

  • Tuček, S.: On subcellular localization and binding of choline acetyltransferase in the cholinergic nerve endings of the brain. J. Neurochem. 13, 1317–1327 (1966a).

    PubMed  Google Scholar 

  • Tuček, S.: On the question of the localization of choline acetyltransferase in synaptic vesicles. J. Neurochem. 13, 1329–1332 (1966b).

    PubMed  Google Scholar 

  • Tuček, S.: Subcellular localization of enzymes generating acetyl-CoA and their possible relation to the biosynthesis of acetylcholine. In: Heilbronn, E., Winter, A. (Eds.): Drugs and Cholinergic Mechanisms in the CNS, pp.117–131. Stockholm: Research Institute of National Defence 1970.

    Google Scholar 

  • Tuček, S.: Choline acetyltransferase activity in rat skeletal muscles during postnatal development. Exp. Neurol. 36, 378–388 (1972).

    PubMed  Google Scholar 

  • Tuček, S., Cheng, S.-C.: Precursors of acetyl groups in acetylcholine in the brain in vivo. Biochim. biophys. Acta (Amst.) 208, 538–540 (1970).

    Google Scholar 

  • Tuček, S., Cheng, S.-C.: Provenance of the acetyl group of acetylcholine and compartmentalization of acetyl-CoA and Krebs cycle intermediates in the brain in vivo. J. Neurochem. 22, 893–914 (1974).

    PubMed  Google Scholar 

  • Turkanis, S. A.: Some effects of vinblastine and colchicine on neuromuscular transmission. Brain Res. 54, 324–329 (1973).

    PubMed  CAS  Google Scholar 

  • Ulmar, G., Whittaker, V.P.: Immunological approach to the characterization of cholinergic vesicular protein. J. Neurochem. 22, 451–454 (1974).

    PubMed  CAS  Google Scholar 

  • Üvnäs, B.: An attempt to explain nervous transmitter release as due to nerve impulse-induced cation exchange. Acta physiol. scand. 87, 168–175 (1973).

    PubMed  Google Scholar 

  • Vander, A.J.: Renal excretion of choline in the dog. Amer. J. Physiol. 202, 319–324 (1962).

    PubMed  CAS  Google Scholar 

  • Vincenzi, F.F., West, T.C.: Effects of hemicholinium on the release of autonomic mediators in the sinoatrial node. Brit. J. Pharmacol. 24, 773–780 (1965).

    PubMed  CAS  Google Scholar 

  • Vital Brazil, O., Corrado, A.P.: The curariform action of streptomycin. J. Pharmacol. exp. Ther. 120, 452–459 (1957).

    PubMed  CAS  Google Scholar 

  • Vital Brazil, O., Excell, B.F.: Action of crotoxin and crotactin from the venom of Crotalus durissus terrificus (South American rattlesnake) on the frog neuromuscular junction. J. Physiol. (Lond.) 212, 34–35P (1971).

    Google Scholar 

  • Vital Brazil, O., Prado-Franceschi, J.: The nature of neuromuscular block produced by neomycin and gentamycin. Arch. int. Pharmacodyn. 179, 78–85 (1969).

    CAS  Google Scholar 

  • Vizi, E. S.: The inhibitory action of noradrenaline and adrenaline on release of acetylcholine from guinea-pig ileum longitudinal strips. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 259, 199–200 (1968).

    CAS  Google Scholar 

  • Vizi, E.S.: Stimulation, by inhibition of (Na+-K+-Mg2+)-activated ATP-ase, of acetylcholine release in cortical slices from rat brain. J. Physiol. (Lond.) 226, 95–118 (1972).

    CAS  Google Scholar 

  • Vizi, E.S., Knoll, J.: The effects of sympathetic nerve stimulation and guanethidine on parasympathetic neuroeffector transmission; the inhibition of acetylcholine release. J. Physiol. (Lond.) 23, 918–925 (1971).

    CAS  Google Scholar 

  • Vogel, J.R., Leaf, R.C.: Initiation of mouse killing in non-killer rats by repeated pilocarpine treatment. Physiol. Behav. 8, 421–424 (1972).

    PubMed  CAS  Google Scholar 

  • Volle, R.L.: Modification by drugs of synpatic mechanisms in autonomic ganglia. Pharmacol. Rev. 18, 839–869 (1966).

    CAS  Google Scholar 

  • Von Hungen, K., Mahler, H.R., Moore, W.J.: Turnover of protein and ribonucleic acid in synaptic subcellular fractions from rat brain. J. biol. Chem. 243, 1415–1423 (1968).

    Google Scholar 

  • Vos, J., Kuriyama, K., Roberts, E.: Electrophoretic mobilities of brain subcellular particles and binding of γ-aminobutyric acid, acetylcholine, norepinephrine and 5-hydroxytryptamine. Brain Res. 9, 224–230 (1968).

    PubMed  CAS  Google Scholar 

  • Wall, P.D.: Habituation and post-tetanic potentiation in the spinal cord. In: Horn, G., Hinde, R.A. (Eds.): Short-term Changes in Neural Activity and Behaviour, pp.181–210. Cambridge: University Press 1970.

    Google Scholar 

  • Waser, P.G., Lüthi, V.: Autoradiographische Lokalisation von 14C-Calebassen-Curarin I und 14C-Decamethonium in der motorischen Endplatte. Arch. int. Pharmacodyn. 112, 272–296 (1957).

    PubMed  CAS  Google Scholar 

  • Watkins, J.C.: Metabolic regulation in the release and action of excitatory and inhibitory amino acids in the central nervous system. Biochem. Soc. Symp. 36, 33–47 (1972).

    PubMed  CAS  Google Scholar 

  • Watson, W.E.: Cellular responses to axotomy and to related procedures. Brit. med. Bull. 30, 112–115 (1974a).

    PubMed  CAS  Google Scholar 

  • Watson, W.E.: Physiology of neuroglia. Physiol. Rev. 54, 245–271 (1974b).

    PubMed  CAS  Google Scholar 

  • Weiss, P., Hiscoe, H.B.: Experiments on the mechanism of nerve growth. J. exp. Zool. 107, 315–396 (1948).

    PubMed  CAS  Google Scholar 

  • Weiss, P., Taylor, A.C., Pillai, P. A.: The nerve fiber as a system in continuous low microcinematographic and electronmicroscopic demonstration. Science 136, 330 (1962).

    PubMed  CAS  Google Scholar 

  • Wellington, B.S., Livett, B.G., Jeffrey, P.L., Austin, L.: Neurostenin: isolation, biochemical characterization and histochemical localization in chick brain. Abstr. 4 th int. Meet. Neurochem. 170 (1973).

    Google Scholar 

  • Welsh, J.H., Hyde, J.E.: The distribution of acetylcholine in brains of rats of different ages. J. Neurophysiol. 7, 41–49 (1944).

    CAS  Google Scholar 

  • Welsh, J.H., Taub, R.: The action of choline and related compounds on the heart of Venus mercenaria. Biol. Bull. Marine Biol. Lab. Woods Hole 95, 346–353 (1948).

    CAS  Google Scholar 

  • Werner, I., Peterson, G.R., Shuster, L.: Choline acetyltransferase and acetylcholinesterase in cultured brain cells from chick embryos. J. Neurochem. 18, 141–151 (1971).

    PubMed  CAS  Google Scholar 

  • Wessells, N.K., Spooner, B.S., Ash, J.F., Bradley, M.O., Luduena, M.A., Taylor, E.L., Wrenn, J.T., Yamada, K.M.: Microfilaments in cellular and developmental processes. Science 171, 135–143 (1971).

    PubMed  CAS  Google Scholar 

  • White, H.L., Cavallito, C.J.: Inhibition of bacterial and mammalian choline acetyltransferases by styrylpyridine analogues. J. Neurochem. 17, 1579–1589 (1970a).

    PubMed  CAS  Google Scholar 

  • White, H.L., Cavallito, C.J.: Choline acetyltransferase. Enzyme mechanism and mode of inhibition by a styrylpyridine analogue. Biochim. biophys. Acta (Amst.) 206, 343–358 (1970b).

    CAS  Google Scholar 

  • White, H.L., Wu, J.C.: Kinetics of choline acetyltransferases (E.C. 2.3.1.6) from human and other mammalian central and peripheral nervous tissues. J. Neurochem. 20, 297–307 (1973a).

    PubMed  CAS  Google Scholar 

  • White, H.L., Wu, J.C.: Separation of apparent multiple forms of human brain choline acetyltransferase by isoelectric focussing. J. Neurochem. 21, 939–948 (1973b).

    PubMed  CAS  Google Scholar 

  • Whittaker, V.P.: The isolation and characterization of acetylcholine containing particles from brain. Biochem. J. 72, 694–706 (1959).

    PubMed  CAS  Google Scholar 

  • Whittaker, V.P.: Identification of acetylcholine and related esters of biological origin. In: Koelle, G.B. (Ed.): Handbuch der experimentellen Pharmakologie, Ergänzungswerk XV, Cholinesterase and Anticholinesterase Agents, pp. 1–39. Berlin-Heidelberg-New York: Springer 1963.

    Google Scholar 

  • Whittaker, V.P.: The application of subcellular fractionation techniques to the study of brain function. Progr. Biophys. molec. Biol. 15, 39–96 (1965).

    CAS  Google Scholar 

  • Whittaker, V.P.: Some properties of synaptic membranes isolated from the central nervous system. Ann. N. Y. Acad. Sci. 137, 982–998 (1966).

    PubMed  CAS  Google Scholar 

  • Whittaker, V.P.: The nature of the acetylcholine pools in tissue. Progr. Brain Res. 31, 211–222 (1969).

    CAS  Google Scholar 

  • Whittaker, V.P.: The vesicle hypothesis. In: Andersen, P., Jansen, J.K.S. (Eds.): Excitatory Synaptic Mechanisms, pp.67–76. Oslo: Universitets Forlaget 1970.

    Google Scholar 

  • Whittaker, V.P.: Origin and function of synaptic vesicles. Ann. N.Y. Acad. Sci. 183, 21–32 (1971).

    PubMed  CAS  Google Scholar 

  • Whittaker, V.P., Sheridan, M.N.: The morphology and acetylcholine content of isolated cerebral cortical synaptic vesicles. J. Neurochem. 12, 363–372 (1965).

    PubMed  CAS  Google Scholar 

  • Whittakter, V.P., Dowdall, M.J., Boyne, A.F.: The storage and release of acetylcholine by cholinergic nerve terminals: recent results with non-mammalian preparations. Biochem. Soc. Symp. 36, 49–68 (1972b).

    Google Scholar 

  • Whittaker, V.P., Dowdall, M.J., Dowe, G.H.C., Facino, R.M., Scotto, J.: Proteins of cholinergic synaptic vesicles from the electric organ of Torpedo: characterization of a low molecular weight acidic protein. Brain Res. 75, 115–131 (1974).

    PubMed  CAS  Google Scholar 

  • Whittaker, V.P., Essman, W.B., Dowe, G.H.C.: The isolation of pure cholinergic synaptic vesicles from the electric organs of elasmobranch fish of the family Torpedinidae. Biochem. J. 128, 833–846 (1972a).

    PubMed  CAS  Google Scholar 

  • Whittaker, V.P., Michaelson, J.A., Kirkland, R.J.: The separation of synaptic vesicles from nerve-endings particles (“synaptosomes”). Biochem. J. 90, 293–303 (1964).

    PubMed  CAS  Google Scholar 

  • Wiegandt, H.: The subcellular localization of gangliosides in the brain. J. Neurochem. 14, 671–674 (1967).

    PubMed  CAS  Google Scholar 

  • Wiener, N.I., Messer, J.: Hemicholinium-3 induced amnesia: some temporal properties. Psychonomic Sci. 26, 129–130 (1972).

    Google Scholar 

  • Wilson, H., Long, J.P.: The effect of hemicholinium (HC-3) at various peripheral cholinergic transmitting sites. Arch. int. Pharmacodyn. 120, 343–352 (1959).

    PubMed  CAS  Google Scholar 

  • Wilson, P.F.: The effects of dibutyryl-3’, 5’-cyclic adenosine monophosphate, theophylline and aminophylline on neuromuscular transmission in the rat. J. Pharmacol. exp. Ther. 188, 447–452 (1974).

    PubMed  CAS  Google Scholar 

  • Wilson, W.S., Cooper, J.R.: The preparation of cholinergic synaptosomes from brain superior cervical ganglia. J. Neurochem. 19, 2779–2790 (1972).

    PubMed  CAS  Google Scholar 

  • Wilson, W.S., Schulz, R.A., Cooper, J.R.: The isolation of cholinergic synaptic vesicles from brain superior cervical ganglion and estimation of their acetylcholine content. J. Neurochem. 20, 659–667 (1973).

    PubMed  CAS  Google Scholar 

  • Winkler, H., Hörtnagl, H., Schöpf, J.A.L., Hörtnagl, H., Zur Nedden, G.: Bovine adrenal medulla: synthesis and secretion of radioactively labelled catecholamines and chromogranins. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 271, 193–203 (1971).

    CAS  Google Scholar 

  • Wisniewski, H., Shelanski, M.L., Terry, R. D.: Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cells. J. Cell Biol. 38, 224 (1968).

    PubMed  CAS  Google Scholar 

  • Wolff, D.J., Siegel, F.L.: Purification of a calcium-binding phosphoprotein from pig brain. J. biol. Chem. 247, 4180–4185 (1972).

    PubMed  CAS  Google Scholar 

  • Wooten, G.F., Coyle, J.T.: Axonal transport of catecholamine synthesizing and metabolizing enzymes. J. Neurochem. 20, 1361–1371 (1973).

    PubMed  CAS  Google Scholar 

  • Yamamura, H. I., Snyder, S. H.: Choline: high-affinity uptake by rat brain synaptosomes. Science 178, 626–628 (1972).

    PubMed  CAS  Google Scholar 

  • Yamamura, H.I., Snyder, S.H.: Affinity transport of choline into synaptosomes of rat brain. J. Neurochem. 21, 1355–1374 (1973).

    PubMed  CAS  Google Scholar 

  • Zablocka-Esplin, B., Esplin, D.W.: Persistent changes in transmission in spinal monosynaptic pathway after prolonged tetanization. J. Neurophysiol. 34, 860–867 (1971).

    PubMed  CAS  Google Scholar 

  • Zacks, S.I., Metzger, J.F., Smith, C.W., Blumberg, J.M.: Localization of ferritin-labelled botulinum toxin in the neuromuscular junction of the mouse. J. Neuropath, exp. Neurol. 21, 610–633 (1962).

    CAS  Google Scholar 

  • Zimmermann, H., Whittaker, V.P.: Effect of electrical stimulation on the yield and composition of synaptic vesicle from the cholinergic synapses of the electric organ of Torpedo: a combined biochemical, electrophysiological and morphological study. J. Neurochem. 22, 435–450 (1974a).

    PubMed  CAS  Google Scholar 

  • Zimmermann, H., Whittaker, V.P.: Different recovery rates of the electrophysiological, biochemical and morphological parameters in the cholinergic synapses of the Torpedo electric organ after stimulation. J. Neurochem. 22, 1109–1114 (1974b).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

MacIntosh, F.C., Collier, B. (1976). Neurochemistry of Cholinergic Terminals. In: Zaimis, E., Maclagan, J. (eds) Neuromuscular Junction. Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45476-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45476-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45478-3

  • Online ISBN: 978-3-642-45476-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics