Advertisement

Neurochemistry of Cholinergic Terminals

  • F. C. MacIntosh
  • B. Collier
Chapter
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 42)

Abstract

This chapter is concerned with the metabolism of acetylcholine (ACh) at synapses where it functions as the neurotransmitter. The vertebrate neuromuscular junction has been studied more closely than any other synapse, but most of the studies have made use of biophysical or morphological techniques rather than biochemical ones; relatively few investigators have attempted to measure the ACh content of skeletal muscle, or the rate of its release or its synthesis. For such neurochemical experiments other tissues, especially the brain, sympathetic ganglia and the electric organ, are generally chosen. These tissues are much richer in cholinergic synapses, and therefore in ACh, so the technical difficulties of estimating submicrogram amounts of ACh are less formidable. Each of the three tissues provides advantages for particular types of experiment, and together they have furnished most of the available neurochemical data. There is now, however, both direct and indirect evidence that ACh metabolism in muscle is similar in many respects to ACh metabolism in the tissues in which it has been studied in more detail. With this justification, a great deal of information obtained from tissues other than muscle will be discussed in this chapter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Latif, A. A., Roberts, M.B., Karp, W.B., Smith, J.P.: Metabolism of phosphatidylcholine, phosphatidylinositol and palmityl carnitine in synaptosomes from rat brain. J. Neurochem. 20, 189–202 (1973).PubMedGoogle Scholar
  2. Abdel-Latif, A. A., Smith, J.P.: Studies on choline transport and metabolism in rat brain synaptosomes. Biochem. Pharmacol. 21, 3005–3021 (1972).PubMedGoogle Scholar
  3. Acara, M., Rennick, B.: Regulation of plasma choline by the renal tubule: bidirectional transport of choline. Amer. J. Physiol. 225, 1123–1128 (1973).PubMedGoogle Scholar
  4. Adamič, S.: Accumulation of acetylcholine by the rat diaphragm. Biochem. Pharmacol. 19, 2445–2451 (1970).PubMedGoogle Scholar
  5. Adlard, B.P.F., Dobbing, J.: Vulnerability of developing brain. 8. Regional acetylcholinesterase activity in early life. Brit. J. Nutr. 28, 139–143 (1972).PubMedGoogle Scholar
  6. Akert, K., Moor, H., Pfenninger, K., Sandri, C.: Contribution of new impregnation methods and freeze etching to the problems of synaptic fine structure. Progr. Brain Res. 31, 223–240 (1969).Google Scholar
  7. Albuquerque, E.X., Warnick, J.E., Sansone, F.M.: The pharmacology of batrachotoxin. II. Effect on electrical properties of the mammalian nerve and skeletal muscle membranes. J. Pharmacol. exp. Ther. 176, 511–528 (1971).PubMedGoogle Scholar
  8. Albuquerque, E.X., Warnick, J.E., Tasse, J.R., Sansone, F.M.: Effects of vinblastine and colchicine on neural regulation of the fast and slow skeletal muscles of the rat. Exp. Neurol. 37, 607–634 (1972).PubMedGoogle Scholar
  9. Aldridge, W.N., Johnson, M.K.: Cholinesterase, succinic dehydrogenase, nucleic acids, esterase, and glutathione reductase in sub-cellular fractions from rat brain. Biochem. J. 73, 270–276 (1959).PubMedGoogle Scholar
  10. Alema, S., Calissano, P., Rusca, G., Giuditta, A.: Identification of a calcium-binding, brain-specific protein in the axoplasm of squid giant axons. J. Neurochem. 20, 681–689 (1973).PubMedGoogle Scholar
  11. Amano, T., Hamprecht, B., Kemper, W.: High activity of choline acetyltransferase induced in neuroblastoma x glia hybrid cells. Abstr. 4th Internat. Meet. Neurochem. 293 (1973).Google Scholar
  12. Ansell, G.B., Spanner, S.: Studies on the origin of choline in the brain of the rat. Biochem. J. 122, 741–750 (1971).PubMedGoogle Scholar
  13. Ansell, G.B., Spanner, S.G.: The inhibition of brain choline kinase by hemicholinium-3. J. Neurochem. 22, 1153–1155 (1974).PubMedGoogle Scholar
  14. Aquilonius, S.M., Frankenberg, L., Stensiö, K.E., Winblad, B.: In vivo studies of two choline acetyltransferase inhibitors. Acta pharmacol. (Kbh.) 30, 129–140 (1971).Google Scholar
  15. Aquilonius, S.M., Flentge, F., Schuberth, J., Sparf, B., Sundwall, A.: Synthesis of acetylcholine in different compartments of brain nerve terminals in vivo as studied by the incorporation of choline from plasma and the effect of pentobarbital on this process. J. Neurochem. 20, 1509–1521 (1973).PubMedGoogle Scholar
  16. Armett, C.J., Ritchie, J.M.: The action of acetylcholine on conduction in mammalian non-myelinated fibres and its prevention by an anticholinesterase. J. Physiol. (Lond.) 152, 141–158 (1960).Google Scholar
  17. Askari, A.: Uptake of some quaternary ammonium ions by human erythrocytes. J. gen. Physiol. 49, 1147–1160 (1966).PubMedGoogle Scholar
  18. Auerbach, A., Betz, W.: Does curare affect transmitter release? J. Physiol. (Lond.) 213, 691–705 (1971).Google Scholar
  19. Austin, L., James, K. A. C.: Rates of regeneration of acetylcholinesterase in rat brain subcellular fractions following DFP inhibition. J. Neurochem. 17, 705–707 (1970).PubMedGoogle Scholar
  20. Axelrod, J.: Dopamine-β-hydroxylase: regulation of its synthesis and release from nerve terminals. Pharmacol. Rev. 24, 233–243 (1972).PubMedGoogle Scholar
  21. Axelrod, J.: Regulation of the neurotransmitter norepinephrine. In: Schmitt, F.O., Worden, F.G. (EDS.): The Neurosciences Third Study Program, pp.863–876. Cambridge, Mass.: MIT Press 1974.Google Scholar
  22. Axelsson, J., Thesleff, S.: A study of supersensitivity in denervated mammalian skeletal muscle. J. Physiol. (Lond.) 147, 178–193 (1959).Google Scholar
  23. Babel-Guérin, E.: Métabolisme du calcium et libération de l’acétylcholine dans l’organe électrique de la Torpille. J. Neurochem. 23, 525–532 (1974).PubMedGoogle Scholar
  24. Babel-Guérin, E., Dunant, Y.: Entrée de calcium et libération d’acétylcholine dans l’organe électrique de la Torpille. C. R. Acad. Sci. (D) (Paris) 275, 2961–2964 (1972).Google Scholar
  25. Baker, B.R., Gibson, R.E.: Irreversible enzyme inhibitors. 181. Inhibition of brain choline acetyl-transferase by derivatives of 4-stilbazole. J. Med. Chem. 14, 315–322 (1971).PubMedGoogle Scholar
  26. Banister, J., Scrase, M.: Acetylcholine synthesis in normal and denervated sympathetic ganglia of the cat. J. Physiol. (Lond.) 111, 437–444 (1950).Google Scholar
  27. Banister, J., Whittaker, V.P., Wijesundera, S.: The occurence of homologues of acetylcholine in ox spleen. J. Physiol. (Lond.) 121, 55–71 (1953).Google Scholar
  28. Banks, P., Mayor, D.: Intra-axonal transport in noradrenergic neurons in the sympathetic nervous system. Biochem. Soc. Symp. 36, 133–149 (1972).PubMedGoogle Scholar
  29. Barker, L. A., Dowdall, M.J., Essman, W.B., Whittaker, V.P.: The compartmentation of acetylcholine in cholinergic nerve terminals. In: Heilbronn, E., Winter, A. (Eds.): Drugs and Cholinergic Mechanisms in the CNS, pp.193–223. Stockholm: Research Institute of National Defence 1970.Google Scholar
  30. Barker, L.A., Dowdall, M.J., Whittaker, V.P.: Choline metabolism in the cerebral cortex of guinea-pigs. Biochem. J. 130, 1063–1075 (1972).PubMedGoogle Scholar
  31. Barker, L.A., Mittag, T.W.: Inhibition of synaptosomal choline uptake by naphthylvinylpyridiniums. FEBS Letters 35, 141–144 (1973).Google Scholar
  32. Barnard, E.A., Wieckowski, J., Chiu, T.H.: Cholinergic receptor molecules and cholinesterase molecules at mouse skeletal muscle junctions. Nature (Lond.) 234, 207–209 (1971).Google Scholar
  33. Barondes, S. H.: Two sites of synthesis of macromolecules in neurons. Symp. Intern. Soc. Cell Biol. 8, 351–364 (1969).Google Scholar
  34. Barsoum, G.S.: The acetylcholine equivalent of nervous tissues. J. Physiol. (Lond.) 84, 259–262 (1935).Google Scholar
  35. Barzaghi, F., Mantegazza, P., Riva, M.: Effects of some guanidine derivatives on neuromuscular and ganglionic transmission. Brit. J. Pharmacol. 19, 414–426 (1962).PubMedGoogle Scholar
  36. Bauer, H.: Die Freisetzung von Acetylcholin an der motorischen Nervenendigung unter dem Einfluß von d-Tubocurarin. Pflügers Arch. ges. Physiol. 326, 162–183 (1971).Google Scholar
  37. Beani, L., Bianchi, C., Ledda, F.: The effect of 2, 4-dinitrophenol on neuromuscular transmission. Brit. J. Pharmacol. 27, 299–312 (1966).PubMedGoogle Scholar
  38. Beani, L., Bianchi, C., Megazzini, P., Ballotti, L., Bernardi, G.: Drug induced changes in free, labile and stable acetylcholine of guinea-pig brain. Biochem. Pharmacol. 18, 1315–1324 (1969).PubMedGoogle Scholar
  39. Beani, L., Bianchi, C., Santinoceto, L., Marchetti, P.: The cerebral acetylcholine release in conscious rabbits with semi-permanently implanted epidural cups. Int. J. Neuropharmacol. 7, 469–481 (1968).PubMedGoogle Scholar
  40. Bellamy, D.: The distribution of bound acetylcholine and choline acetylase in rat and pigeon brain. Biochem. J. 72, 165–168 (1959).PubMedGoogle Scholar
  41. Belleau, B., Ditullio, V.: The anionic sites of acetylcholinesterase versus the acetylcholine receptors. In: Heilbronn, E., Winter, A. (Eds.): Drugs and Cholinergic Mechanisms in the CNS, pp.441–453. Stockholm: Research Institute of National Defence 1970.Google Scholar
  42. Belleroche, J. S. De., Bradford, H. F.: The stimulus-induced release of acetylcholine from synaptosome beds and its calcium dependence. J. Neurochem. 19, 1817–1819 (1972).PubMedGoogle Scholar
  43. Bennett, M.R.: Autonomic Neuromuscular Transmission. Cambridge: University Press 1972.Google Scholar
  44. Bennett, M.R., McLachlan, E.M.: An electrophysiological analysis of the storage of acetylcholine in preganglionic nerve terminals. J. Physiol. (Lond.) 221, 657–668 (1972a).Google Scholar
  45. Bennett, M.R., McLachlan, E.M: An electrophysiological analysis of the synthesis of acetylcholine in preganglionic nerve terminals. J. Physiol. (Lond.) 221, 669–682 (1972b).Google Scholar
  46. Benz, F.W., Long, J.P.: Investigations on a series of heterocyclic hemicholinium-3 analogs. J. Pharmacol. exp. Ther. 166, 225–236 (1969a).PubMedGoogle Scholar
  47. Benz, F.W., Long, J.P.: Structure-activity relationships of N-alkyl and heterocyclic analogs of hemicholinium-3. J. Pharmacol. exp. Ther. 168, 315–321 (1969b).PubMedGoogle Scholar
  48. Beranek, R., Vyskočil, F.: The action of tubocurarine and atropine on the normal and denervated rat diaphragm. J. Physiol. (Lond.) 188, 53–66 (1967).Google Scholar
  49. Berl, S., Puszkin, S., Nicklas, W.J.: Actomyosin-like protein in brain. Science 179, 441 (1973).PubMedGoogle Scholar
  50. Berman, R., Wilson, I.B., Nachmansohn, D.:Choline acetylase specificity in relation to biological function. Biochim. biophys. Acta (Amst.) 12, 315–324 (1953).Google Scholar
  51. Berry, J.F., Whittaker, V.P.: The acyl-group specificity of choline acetylase. Biochem. J. 73, 447–458 (1959).PubMedGoogle Scholar
  52. Bertel-Meeuws, M.M., Polak, R.L.: Influence of antimuscarinic substances on in vitro synthesis of acetylcholine by rat cerebral cortex. Brit. J. Pharmacol. 33, 368–380 (1968).Google Scholar
  53. Beswick, F.B., Conroy, R.T.W.L.: Optimal tetanic conditioning of heteronymous monosynaptic reflexes. J. Physiol. (Lond.) 180, 134–146 (1965).Google Scholar
  54. Bhatnagar, S.P., Lam, A., McColl, J.D.: Inhibition of synthesis of acetylcholine by some esters of trimethoxybenzoic acid. Nature (Lond.). 204, 485–486 (1964).Google Scholar
  55. Bhatnagar, S.P., Lam, A., McColl, J.D.: Inhibition of acetylcholine synthesis in nervous tissue by some quaternary compounds. Biochem. Pharmacol. 14, 421–434 (1965).PubMedGoogle Scholar
  56. Bhatnagar, S.P., Macintosh, F.C.: Acetylcholine content of striated muscle. Proc. Canad. Fed. Biol. Soc. 3, 12–13 (1960).Google Scholar
  57. Bhatnagar, S.P., Macintosh, F.C.: Effects of quaternary bases and inorganic cations on acetylcholine synthesis in nervous tissue. Can. J. Physiol. Pharmacol. 45, 249–268 (1967).PubMedGoogle Scholar
  58. Bianchi, C.: The effect of caffeine on radiocalcium movement in frog sartorius. J. gen. Physiol. 44, 845–858 (1961).PubMedGoogle Scholar
  59. Birks, R.L.: The role of sodium ions in the metabolism of acetylcholine. Canad. J. Biochem. Physiol. 41, 2573–2597 (1963).PubMedGoogle Scholar
  60. Birks, R.L.: Effects of stimulation on synaptic vesicles in sympathetic ganglia, as shown by fixation in the presence of Mg2+. J. Physiol. (Lond.) 216, 26–28P (1971).Google Scholar
  61. Birks, R. I.: The relationship of transmitter release and storage to fine structure in a sympathetic ganglion. J. Neurocytol. 3, 133–160 (1974).PubMedGoogle Scholar
  62. Birks, R.L., Burstyn, P.G.R., Firth, D.R.: The form of sodium-calcium competition at the frog myoneural junction. J. gen. Physiol. 52, 887–907 (1968).PubMedGoogle Scholar
  63. Birks, R.I., Cohen, M.W.: Effects of sodium on transmitter release from frog motor nerve terminals. In: Paul, W.M, Daniel, E.E., Kay, C.M., Monckton, G., (Eds.): Muscle, pp.403–420. Oxford: Pergamon Press 1965.Google Scholar
  64. Birks, R.I., Cohen, M.W.: The action of sodium pump inhibitors on neuromuscular transmission. Proc. roy. Soc. B 170, 381–399 (1968a).Google Scholar
  65. Birks, R.I., Cohen, M.W.: The influence of internal sodium on the behaviour of motor nerve endings. Proc. roy. Soc. B 170, 401–421 (1968b).Google Scholar
  66. Birks, R.I., Fitch, S.J.G.: Storage and release of acetylcholine in a sympathetic ganglion. J. Physiol. (Lond.) 240, 125–134 (1974).Google Scholar
  67. Birks, R. I., Huxley, H. E., Katz, B.: The fine structure of the neuromuscular junction of the frog. J. Physiol. (Lond.) 150, 134–144 (1960)Google Scholar
  68. Birks, R.I., Macintosh, F.C.: Acetylcholine metabolism at nerve endings. Brit. med. Bull. 13, 157–161 (1957).PubMedGoogle Scholar
  69. Birks, R.I., Macintosh, F.C.: Acetylcholine metabolism of a sympathetic ganglion. Canad. J. Biochem. Physiol. 39, 787–827 (1961).Google Scholar
  70. Bisby, M. A.: Return of axonally transported protein towards the cell body. Physiol. Canada 6, 20 (1975).Google Scholar
  71. Blaber, L.C.: The effect of facilitatory concentrations of decamethonium on the storage and release of transmitter at the neuromuscular junctions of the cat. J. Pharmacol. exp. Ther. 175, 664–672 (1970).Google Scholar
  72. Blaber, L.C.: The prejunctional actions of some non-polarizing blocking drugs. Brit. J. Pharmacol. 47, 109–116 (1973).Google Scholar
  73. Black, I.B., Hendry, J.A., Iversen, L.L.: Trans-synaptic regulation of growth and development of adrenergic neurones in a mouse sympathetic ganglion. Brain Res. 34, 229–240 (1971).PubMedGoogle Scholar
  74. Black, I.B., Hendry, J.A., Iversen, L.L.: The role of postsynaptic neurons in the biochemical maturation of presynaptic cholinergic nerves. J. Physiol. (Lond.) 221, 149–160 (1972a).Google Scholar
  75. Black, I.B., Hendry, J.A., Iversen, L.L.: Effects of surgical decentralization and nerve growth factor on the maturation of adrenergic neurone in a mouse sympathetic ganglion. J. Neurochem. 19, 1367–1377 (1972b).PubMedGoogle Scholar
  76. Blackman, J.G.: Stimulus frequency and neuromuscular block. Brit. J. Pharmacol. 20, 5–16 (1963).PubMedGoogle Scholar
  77. Blackman, J.G., Ginsborg, B.L., Ray, C.: Synaptic transmission in the sympathetic ganglion of the frog. J. Physiol. (Lond.) 167, 355–373 (1963a).Google Scholar
  78. Blackman, J. G., Ginsborg, B. A., Ray, C.: Some effects of changes in ionic concentration on the action potential of sympathetic ganglion cells in the frog. J. Physiol. (Lond.) 167, 374–388 (1963b).Google Scholar
  79. Blackman, J.G., Ginsborg, B.L., Ray, C.: Spontaneous synaptic activity in sympathetic ganglion cells of the frog. J. Physiol. (Lond.) 167, 389–401 (1963c).Google Scholar
  80. Blackman, J.G., Ginsborg, B.L., Ray, C.: On the quantal release of the transmitter at a sympathetic synapse. J. Physiol. (Lond.) 167, 402–415 (1963d).Google Scholar
  81. Blackman, J.G., Purves, R. V.: Intracellular recordings from ganglia of the thoracic sympathetic chain of the guinea-pig. J. Physiol. (Lond.) 203, 173–198 (1969).Google Scholar
  82. Blaustein, M.P.: Preganglionic stimulation increases calcium uptake by sympathetic ganglia. Science 172, 391–393 (1971).PubMedGoogle Scholar
  83. Bligh, J.: The level of free choline in plasma. J. Physiol. (Lond.) 117, 234–240 (1952).Google Scholar
  84. Bligh, J.: The role of the liver and the kidneys in the maintenance of the level of free choline in plasma. J. Physiol. (Lond.) 120, 53–62 (1953a).Google Scholar
  85. Bligh, J.: The effect of a choline-free diet upon the level of free choline in plasma of the rat. J. Physiol. (Lond.) 120, 440–444 (1953b).Google Scholar
  86. Blioch, Z.L., Glagoleva, J.M., Liberman, E.A., Nenashev, V.A.: A study of the mechanism of quantal transmitter release at a chemical synapse. J. Physiol. (Lond.) 199, 11–35 (1968).Google Scholar
  87. Bliss, T.V.P., Gardner-Medwin, A.R.: Long-lasting increases of synaptic influence in the unanaesthetized hippocampus. J. Physiol. (Lond.) 216, 32–33P (1971).Google Scholar
  88. Bliss, T.V.P., Lømo, T.: Plasticity in a monosynaptic cortical pathway. J. Physiol. (Lond.) 207, 61P (1970).Google Scholar
  89. Blume, A., Gilbert, F., Wilson, S., Farber, J., Rosenberg, R., Nirenberg, M.: Regulation of acetylcholinesterase in neuroblastoma cells. Proc. nat. Acad. Sci. USA 67, 786–792 (1970).PubMedGoogle Scholar
  90. Bohan, T.P., Boyne, A.F., Guth, P.S., Narayanan, Y., Williams, T.H.: Electron-dense particle in cholinergic synaptic vesicles. Nature (Lond.) 244, 32–34 (1973).Google Scholar
  91. Borle, A.B.: Calcium and phosphate metabolism. Ann. Rev. Physiol. 36, 361–390 (1974).Google Scholar
  92. Bornstein, J.C.: The effects of physostigmine on synaptic transmission in the inferior mesenteric ganglion of guinea-pigs. J. Physiol. (Lond.) 241, 309–325 (1974).Google Scholar
  93. Boroff, D.A., Del Castillo, J., Evoy, J.H., Steinhardt, R.A.: Observations on the action of type A botulinum toxin on frog neuromuscular junctions. J. Physiol. (Lond.) 240, 227–253 (1974).Google Scholar
  94. Bosmann, H.B., Hemsworth, B.A.: Synaptic vesicles — incorporation of choline by isolated synaptosomes and synaptic vesicles. Biochem. Pharmacol. 19, 133–141 (1970).PubMedGoogle Scholar
  95. Bourdois, P. S., McCandless, D. L., Macintosh, F. C.: A prolonged after-effect of high frequency stimulation in a cholinergic pathway. Proc. Canad. Fed. Biol. Soc. 13, 148 (1970).Google Scholar
  96. Bourdois, P. S., McCandless, D. L., Macintosh, F. C.: A prolonged after-effect of intense synaptic activity on acetylcholine in a sympathetic ganglion. Canad. J. Physiol. Pharmacol. 53, 155–165 (1975).Google Scholar
  97. Bourdois, P.S., Szerb, J.C.: The absence of “surplus” acetylcholine in prisms prepared from rat cerebral cortex. J. Neurochem. 19, 1189–1193 (1972).PubMedGoogle Scholar
  98. Bowman, W.C., Hemsworth, B. A.: Effects of triethylcholine on the output of acetylcholine from isolated diaphragm of rat. Brit. J. Pharmacol. 24, 110–118 (1965a).PubMedGoogle Scholar
  99. Bowman, W.C., Hemsworth, B.A.: Effects of some polymethylene-bis(hydroxyethyl) dimethyl-ammonium salts on neuromuscular transmission. Brit. J. Pharmacol. 25, 392–404 (1965b).PubMedGoogle Scholar
  100. Bowman, W.C., Hemsworth, B.A., Rand, M.J.: Triethylcholine compared with other substances affecting ganglionic transmission. Brit. J. Pharmacol. 19, 198–218 (1962).PubMedGoogle Scholar
  101. Bowman, W.C., Hemsworth, B.A., Rand, M.J.: Effects of analogues of choline on neuromuscular transmission. Ann. N.Y. Acad. Sci. 144, 471–481 (1967).Google Scholar
  102. Bowman, W.C., Marshall, I.G.: Inhibitors of acetylcholine synthesis. In: Cheymol, J., (Ed.): Neuromuscular Blocking and Stimulating Agents. International Encyclopaedia of Pharmacology and Therapeutics, Section 14, Vol.1, pp.357–390. Oxford: Pergamon Press 1972.Google Scholar
  103. Bowman, W.C., Nott, M.W.: Actions of sympathomimetic amines and their antagonists on skeletal muscle. Pharmacol. Rev. 21, 27–72 (1969).PubMedGoogle Scholar
  104. Bowman, W.C., Rand, J.J.: Actions of triethylcholine on neuromuscular transmission. Brit. J. Pharmacol. 17, 176–195 (1961).PubMedGoogle Scholar
  105. Bowman, W.C., Rand, M.J.: The neuromuscular blocking action of substances related to choline. Int. J. Neuropharmacol. 1, 129–132 (1962).Google Scholar
  106. Bowman, W.C., Webb, S.N.: Acetylcholine and anticholinesterase drugs. In: Cheymol, J. (Ed.): Neuromuscular Blocking and Stimulating Agents. International Encyclopaedia of Pharmacology and Therapeutics, Section 14, Vol. II, pp.427–502. Oxford: Pergamon Press 1972.Google Scholar
  107. Boyd, J.A., Forrester, T.: The release of adenosine triphosphate from frog skeletal muscle in vitro. J. Physiol. (Lond.) 199, 115–135 (1968).Google Scholar
  108. Boyd, J.A., Martin, A.R.: The end-plate potential in mammalian muscle. J. Physiol. (Lond.) 132, 74–91 (1956).Google Scholar
  109. Bradford, H.F.: An in vitro approach to the biochemistry of transmission. In: Heilbronn, E., Winter, A., (Eds.): Drugs and Cholinergic Mechanisms in the CNS, pp. 309–319. Stockholm: Research Institute of National Defence 1970.Google Scholar
  110. Bragança, B.M., Quastel, J.H.: Action of snake venom on acetylcholine synthesis in brain. Nature (Lond.) 169, 695–697 (1952).Google Scholar
  111. Breckenridge, B.M.L., Burn, J.H., Matshinsky, F.M.: Theophylline, epinephrine and neostigmine facilitation of neuromuscular transmission. Proc. nat. Acad. Sci. (Wash.) 57, 1893–1897 (1967).Google Scholar
  112. Breemen, V.L. Van., Andersson, E., Reger, J.F.: An attempt to determine the origin of synaptic vesicles. Exp. Cell Res., Suppl. 5, 153–167 (1958).Google Scholar
  113. Bremer, J., Greenberg, D.M.: Methyl transferring enzyme system of microsomes in the biosynthesis of lecithin (phosphatidylcholine). Biochim. biophys. Acta (Amst.) 46, 205–216 (1961).Google Scholar
  114. Brindley, G.S.: The classification of modifiable synapses and their use in models for conditioning. Proc. roy. Soc. B 168, 361–376 (1967).Google Scholar
  115. Brodkin, E., Elliott, K.A.C.: Binding of acetylcholine. Amer. J. Physiol. 173, 437–442 (1953).PubMedGoogle Scholar
  116. Bronk, D.W.: Synaptic mechanisms in sympathetic ganglia. J. Neurophysiol. 2, 280–401 (1939).Google Scholar
  117. Bronk, D.W., Larrabee, M.G., Gaylor, J.B., Brink, F. Jr.: The influence of altered chemical environment on the activity of ganglion cells. Amer. J. Physiol. 123, 24–25 (1938).Google Scholar
  118. Brooks, V.B.: An intracellular study of the action of repetitive nerve volleys and of botulinum toxin on miniature end-plate potentials. J. Physiol. (Lond.) 134, 264–277 (1956).Google Scholar
  119. Brooks, V.B., Thies, R.E.: Reduction of quantum content during neuromuscular transmission. J. Physiol. (Lond.) 162, 298–310 (1962).Google Scholar
  120. Brown, D. A., Jones, K.B., Halliwell, J.B., Quilliam, J.P.: Evidence against a presynaptic action of acetylcholine during ganglionic transmission. Nature (Lond.) 226, 958–959 (1970).Google Scholar
  121. Brown, G.L.: The actions of acetylcholine on denervated mammalian and frog’s muscle. J. Physiol. (Lond.) 89, 438–461 (1937).Google Scholar
  122. Brown, G.L., Von Euler, U.S.: The after-effects of a tetanus on mammalian muscle. J. Physiol. (Lond.) 93, 39–60 (1938).Google Scholar
  123. Brown, G.L., Feldberg, W.: Differential paralysis of the superior cervical ganglion. J. Physiol. (Lond.) 86, 10–11P (1935).Google Scholar
  124. Brown, G.L., Feldberg, W.: The action of potassium on the superior cervical ganglion of the cat. J. Physiol. (Lond.) 86, 290–305 (1936a).Google Scholar
  125. Brown, G.L., Feldberg, W.: The acetylcholine metabolism of a sympathetic ganglion. J. Physiol. (Lond.) 88, 265–283 (1936b).Google Scholar
  126. Brown, G.L., Gray, J. A.B.: Some effects of nicotine-like substances and their relation to sensory nerve endings. J. Physiol. (Lond.) 107, 306–317 (1948).Google Scholar
  127. Brown, G.L., Harvey, A.M.: Effects of changes in dietary calcium on neuromuscular transmission. J. Physiol. (Lond.) 97, 330–337 (1940).Google Scholar
  128. Browning, E.T.: Free choline formation by cerebral cortical slices from rat brain. Biochem. biophys. Res. Commun. 45, 1986–1990 (1971).Google Scholar
  129. Browning, E.T.: Fluorometric enzyme assay for choline and acetylcholine. Analyt. Biochem. 46, 624–638 (1972).PubMedGoogle Scholar
  130. Browning, E.T., Schulman, M.P.: 14C-acetylcholine synthesis by cortex slices of rat brain. J. Neurochem. 15, 1391–1405 (1968).PubMedGoogle Scholar
  131. Brücke, F.T. Von: The cholinesterase in sympathetic ganglia. J.Physiol. (Lond.) 89, 429–437 (1937).Google Scholar
  132. Buller, A.J., Lewis, D.M.: Further observations on mammalian cross-innervated skeletal muscle. J. Physiol. (Lond.) 178, 343–358 (1965).Google Scholar
  133. Buller, A.J., Eccles, J.C., Eccles, R.M.: Differentiation of fast and slow muscles in the cat hind limb. J. Physiol. (Lond.) 150, 399–416 (1960).Google Scholar
  134. Burgen, A. S.V., Burke, G., Desbarats-Schönbaum, M.L.: The specificity of brain choline acetylase. Brit. J. Pharmacol. 11, 308–312 (1956).PubMedGoogle Scholar
  135. Burgen, A.S.V., Chipman, L.M.: The location of cholinesterase in the central nervous system. Quart. J. exp. Physiol. 37, 61–74 (1952).PubMedGoogle Scholar
  136. Burgen, A.S.V., Macintosh, F.C.: The physiological significance of acetylcholine. In: Elliott, K. A. C., Page, J.H., Quastel, J.H., (Eds.): Neurochemistry, 1st Ed., pp. 311–389. Springfield, Ill.: Thomas 1955.Google Scholar
  137. Burkhalter, A., Featherstone, R.M., Schueler, F.W., Jones, M.: The effects of some acetylcholine derivatives on the cholinesterases of chick embryo intestine cultured in vitro. J. Pharmacol. exp. Ther. 120, 285–290 (1958).Google Scholar
  138. Burt, A.M.: The histochemical demonstration of choline acetyltransferase activity in the spinal cord of the rat. Anat. Rec. 163, 162 (1969).Google Scholar
  139. Burt, A.M.: A histochemical procedure for the localization of choline acetyltransferase activity. J. Histochem. Cytochem. 18, 408–415 (1970).PubMedGoogle Scholar
  140. Burt, A.M., Dettbarn, W.-D.: A histochemical study of the distribution of choline acetyltransferase and acetylcholinesterase activity in sensory ganglia and nerve roots of the bullfrog. Histochem. J. 4, 401–411 (1972).PubMedGoogle Scholar
  141. Burt, A.M., Silver, A.: Non-enzymatic imidazole catalysed acyl transfer reaction and acetylcholine synthesis. Nature (Lond.) New Biol. 243, 157–159 (1973).Google Scholar
  142. Burton, R.M.: Gangliosides and acetylcholine of the central nervous system — the binding of radioactive acetylcholine by subcellular particles of the brain. Int. J. Neuropharmacol. 3, 13–21 (1964).PubMedGoogle Scholar
  143. Burton, R. M., Howard, R.E.: Gangliosides and acetylcholine in the central nervous system. VIII. Role of lipids in the binding and release of neurohormones by synaptic vesicles. Ann. N.Y. Acad. Sci. 144, 411–430 (1967).Google Scholar
  144. Burton, R.M., Howard, R.E., Baer, S., Balfour, Y.M.: Gangliosides and acetylcholine of the central nervous system. Biochim. biophys. Acta (Amst.) 84, 441–447 (1964).Google Scholar
  145. Canepa, F.G.: Acetylcholine quanta. Nature (Lond.) 201, 184–185 (1964).Google Scholar
  146. Cangiano, A.: Acetylcholine supersensitivity: the role of neurotrophic factors. Brain Res. 58, 255–259 (1973).PubMedGoogle Scholar
  147. Capek, R., Esplin, D. W., Salehmoghaddam, S.: Rates of transmitter turnover at the frog neuromuscular junction estimated by electrophysiological techniques. J. Neurophysiol. 34, 831–841 (1971).PubMedGoogle Scholar
  148. Carlini, E.A., Green, J.P.: Acetylcholine activity in the sciatic nerve. Biochem. Pharmacol. 12, 1367–1376 (1963).PubMedGoogle Scholar
  149. Carlyle, R.F.: The mode of action of neostigmine and physostigmine on the guinea-pig trachealis muscle. Brit. J. Pharmacol. 21, 137–149 (1963).PubMedGoogle Scholar
  150. Carmody, J.J., Gage, P.W.: Lithium stimulates secretion of acetylcholine in the absence of extracellular calcium. Brain Res. 50, 476–479 (1973).PubMedGoogle Scholar
  151. Carter, S.B.: Effects of cytochalasins on mammalian cells. Nature (Lond.) 213, 261–264 (1967).Google Scholar
  152. Casati, C., Michalek, H., Paggi, P., Toschi, G.: Effects of triperidol on transmission and on release of acetylcholine in the rat sympathetic ganglion in vitro. Biochem. Pharmacol. 22, 1165–1169 (1973).PubMedGoogle Scholar
  153. Castillo, J. Del., Engbaek, L.: Nature of the neuromuscular block produced by magnesium. J. Physiol. (Lond.) 124, 370–384 (1954).Google Scholar
  154. Castillo, J. Del., Katz, B.: The effect of magnesium on motor nerve endings. J. Physiol. (Lond.) 124, 553–559 (1954a).Google Scholar
  155. Castillo, J. Del, Katz, B.: Changes in end-plate activity produced by presynaptic polarization. J. Physiol. (Lond.) 124, 586–604 (1954b).Google Scholar
  156. Castillo, J. Del., Stark, L.: The effect of calcium ions on the motor end-plate potentials. J. Physiol. (Lond.) 116, 507–515 (1952).Google Scholar
  157. Cavallito, G.J., Yun, H.S., Kaplan, T., Smith, J.C., Foldes, F.F.: Choline acetyltransferase inhibitors. Dimensional and substituent effects among styrylpyridine analogs. J. Med. Chem. 13, 221–224 (1970).PubMedGoogle Scholar
  158. Cavallito, C.J., Yun, H.S., Smith, J.C., Foldes, F.F.: Choline acetyltransferase inhibitors. Configuration and electronic features of styrylpyridine analogs. J. Med. Chem. 12, 134–138 (1969).PubMedGoogle Scholar
  159. Ceccarelli, B., Hurlbut, W.P., Mauro, A.: Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J. Cell Biol. 57, 499–524 (1973).PubMedGoogle Scholar
  160. Celesia, G.G., Jasper, H.H.: Acetylcholine released from cerebral cortex in relation to state of activation. Neurology (Minneap.) 16, 1053–1063 (1966).Google Scholar
  161. Chakrin, L.W., Marchbanks, R.M., Mitchell, J.F., Whittaker, V.P.: Origin of acetylcholine released from the surface of the cortex. J. Neurochem. 19, 2727–2736 (1972).PubMedGoogle Scholar
  162. Chakrin, L.W., Shideman, F.E.: Synthesis of acetylcholine from labelled choline by brain. Int. J. Neuropharmacol. 7, 337–349 (1968).PubMedGoogle Scholar
  163. Chakrin, L.W., Whittaker, V.P.: The subcellular distribution of N-Me-3H acetylcholine synthesized by brain in vivo. Biochem. J. 113, 97–107 (1969).PubMedGoogle Scholar
  164. Chan, S.L., Shirachi, D.Y., Trevor, A.J.: Purification and properties of brain acetylcholinesterase (EC 3.1.1.7). J. Neurochem. 19, 437–447 (1972).PubMedGoogle Scholar
  165. Chang, C.C., Chen, T.F., Lee, C.Y.: Studies of the presynaptic effect of β-bungarotoxin on neuromuscular transmission. J. Pharmacol. exp. Ther. 184, 339–345 (1973a).PubMedGoogle Scholar
  166. Chang, C.C., Cheng, H.C., Chen, T.F.: Does d-Tubocurarine inhibit the release of ACh from motor nerve endings? Jap. J. Physiol. 17, 505–515 (1967).Google Scholar
  167. Chang, C.C., Huang, M.C.: Comparison of the presynaptic actions of botulinum toxin and β-bungarotoxin in neuromuscular transmission. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 282, 129–142 (1974).Google Scholar
  168. Chang, C.C., Huang, M.C., Lee, C.Y.: Mutual antagonism between botulinum toxin and β-bungarotoxin. Nature (Lond.) 243, 166–167 (1973b).Google Scholar
  169. Chang, C.C., Lee, C.Y.: Isolation of neurotoxins from the venom of Bungarus multicinctus and their modes of neuromuscular blocking action. Arch. int. Pharmacodyn. 144, 241–257 (1963).PubMedGoogle Scholar
  170. Chang, C.C., Lee, C.: Studies on the [3H]choline uptake in rat phrenic nerve-diaphragm preparations. Neuropharmacology 9, 223–233 (1970).PubMedGoogle Scholar
  171. Chang, H.C., Gaddum, J.H.: Choline esters in tissue extracts. J. Physiol. (Lond.) 79, 255–285 (1933).Google Scholar
  172. Chao, L.P., Wolfgram, F.: Purification and some properties of choline acetyltransferase. J. Neurochem. 20, 1075–1082 (1973).PubMedGoogle Scholar
  173. Chen, I. L., Lee, C. Y.: Ultrastructural changes in the motor nerve. Virchows Arch. Abt.B 6, 318–325 (1970).Google Scholar
  174. Cheney, D.L., Hanin, L., Massarelli, R., Trabucchi, M., Costa, E.: Vinblastine and vincristine: a study of their action on tissue concentration of epinephrine, norepinephrine and acetylcholine. Neuropharmacology 12, 233–238 (1973).PubMedGoogle Scholar
  175. Cheng, S.C., Nakamura, R.: A study on the tricarboxylic acid cycle and the synthesis of acetylcholine in the lobster nerve. Biochem. J. 118, 451–455 (1970).PubMedGoogle Scholar
  176. Cheng, S.C., Nakamura, R., Waelsch, H.: Krebs cycle and acetylcholine synthesis in nervous tissue. Biochem. J. 104, 52P–53P (1967).PubMedGoogle Scholar
  177. Cheymol, J., Bourillet, F., Ogura, Y.: Actions de quelques paralysants neuromusculaires sur la libération de l’acétylcholine au niveau des terminaisons nerveuses motrices. Arch. int. Pharmacodyn. 139, 187–197 (1962).PubMedGoogle Scholar
  178. Chiou, C.Y.: Effects of ganglionic blocking agents on the neuromuscular junction. Europ. J. Pharmacol. 12, 342–347 (1970).Google Scholar
  179. Chiou, C.Y.: Mechanism of acetylcholine release by drugs and its blockade. Arch. int. Pharmacodyn. 201, 170–181 (1973).PubMedGoogle Scholar
  180. Chiou, C.Y., Long, J.P.: Acetylcholine-releasing effects of some nicotinic agents on chick biventer cervicis nerve muscle preparation. Proc. Soc. exp. Biol. (N.Y.) 132, 732–737 (1969).Google Scholar
  181. Chmouliovsky, M., Dunant, Y., Graf, J., Straub, R.W., Rufener, C.: Inhibition of creatine phosphokinase activity and synaptic transmission by black widow spider venom. Brain Res. 44, 289–293 (1972).PubMedGoogle Scholar
  182. Ciani, S., Edwards, C.: The effect of acetylcholine on neuromuscular transmission in the frog. J. Pharmacol. exp. Ther. 142, 21–23 (1963).PubMedGoogle Scholar
  183. Clark, A.W., Hurlbut, W.F., Mauro, A.: Changes in the fine structure of the neuromuscular junction caused by black widow spider venom. J. Cell Biol. 52, 1–14 (1972).PubMedGoogle Scholar
  184. Cleland, W.W.: The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim. biophys. Acta (Amst.) 67, 104–137 (1963).Google Scholar
  185. Close, R.: Effect of cross-union of motor nerves to fast and slow skeletal muscles. Nature (Lond.) 206, 831–832 (1965).Google Scholar
  186. Cohen, J.A., Oosterbaan, R.A.: The active site of acetylcholinesterase and related esterases and its reactivity towards substrates and inhibitors. In: Koelle, G.B. (Ed.): Handbuch der experimentellen Pharmakologie, Ergänzungswerk XV. Cholinesterases and anticholinesterase agents, pp.299–373. Berlin-Heidelberg-New York: Springer 1963.Google Scholar
  187. Cohen, M.W.: The development of neuromuscular activity in amphibian embryonic tissue cultured in vitro. Proc. Intern. Union Physiol. Sci. 9, 117 (1971).Google Scholar
  188. Collier, B.: The preferential release of newly synthesized transmitter by a sympathetic ganglion. J. Physiol. (Lond.) 205, 341–352 (1969).Google Scholar
  189. Collier, B.: Preferential release of newly-synthesized acetylcholine. In: Fardeau, M., Israël, M., Manaranche, R. (Eds.): La Transmission Cholinergique de l’Excitation, 199–207. Paris: Inserm 1972.Google Scholar
  190. Collier, B.: The accumulation of hemicholinium by tissues that transport choline. Canad. J. Physiol. Pharmacol. 51, 491–495 (1973).Google Scholar
  191. Collier, B., Exley, K.A.: Mechanism of the antagonism by tetraethylammonium of neuromuscular block due to d-tubocurarine or calcium deficiency. Nature (Lond.) 199, 702–703 (1963).Google Scholar
  192. Collier, B., Katz, H.S.: The release of acetylcholine by acetylcholine in the cat’s superior cervical ganglion. Brit. J. Pharmacol. 39, 428–438 (1970).Google Scholar
  193. Collier, B., Katz, H. S.: The synthesis, turnover and release of surplus acetylcholine in a sympathetic ganglion. J. Physiol. (Lond.) 214, 537–552 (1971).Google Scholar
  194. Collier, B., Katz, H.S.: Acetylcholine synthesis from recaptured choline by a sympathetic ganglion. J. Physiol. (Lond.) 238, 639–655 (1974).Google Scholar
  195. Collier, B., Lang, C.: The metabolism of choline by a sympathetic ganglion. Canad. J. Physiol. Pharmacol. 47, 119–126 (1969).Google Scholar
  196. Collier, B., Macintosh, F.C.: The source of choline for acetylcholine synthesis in a sympathetic ganglion. Canad. J. Physiol. Pharmacol. 47, 127–135 (1969).Google Scholar
  197. Collier, B., Mitchell, J.F.: The central release of acetylcholine during stimulation of the visual pathway. J. Physiol. (Lond.) 184, 239–254 (1966).Google Scholar
  198. Collier, B., Mitchell, J.F.: The central release of acetylcholine during consciousness and after brain lesions. J. Physiol. (Lond.) 188, 83–89 (1967).Google Scholar
  199. Collier, B., Poon, P., Salehmoghaddam, S.: The formation of choline and of acetylcholine by brain in vitro. J. Neurochem. 19, 51–60 (1972).PubMedGoogle Scholar
  200. Colomo, F., Rahamimoff, R.: Interaction between sodium and calcium ions in the process of transmitter release at the neuromuscular junction. J. Physiol. (Lond.) 198, 203–218 (1968).Google Scholar
  201. Comline, R.S.: Synthesis of acetylcholine by non-nervous tissue. J. Physiol. (Lond.) 105, 6–7P (1946).Google Scholar
  202. Cooke, J.D., Quastel, D.M.J.: Cumulative and persistent effects of nerve terminal depolarization on transmitter release. J. Physiol. (Lond.) 228, 407–434 (1973).Google Scholar
  203. Cooke, W.J., Robinson, J.D.: Factors influencing choline movement in rat brain slices. Biochem. Pharmacol. 20, 2355–2366 (1971).PubMedGoogle Scholar
  204. Cooper, P.D., Smith, R.S.: The movement of optically detectable organelles in myelinated axons of Xenopus laevis. J. Physiol. (Lond.) 242, 77–97 (1974).Google Scholar
  205. Corteggiani, E., Gautrelet, J., Kaswin, A., Mentzer, C.: Sur l’existence d’un complexe libérant l’acétylcholine dans les centres nerveux sous l’influence de la chaleur. C. r. Soc. Biol. (Paris) 123, 667–668 (1936).Google Scholar
  206. Cotman, C., Herschman, H., Taylor, D.: Subcellular fractionation of cultured glial cells. J. Neurobiology 2, 169–180 (1971).Google Scholar
  207. Couteaux, R., Nachmansohn, D.: Changes of choline esterase at end-plates of voluntary muscle following section of sciatic nerve. Proc. Soc. exp. Biol. (N. Y.) 43, 177–181 (1940).Google Scholar
  208. Couteaux, R., Taxi, J.: Recherches histochimiques sur la distribution des activités cholinestérasiques au niveau de la synapse myoneurale. Arch. Anat. micr. Morph. exp. 41, 352–392 (1952).Google Scholar
  209. Cowan, S. L.: The action of eserine-like compounds upon frog’s nerve-muscle preparations, and conditions in which a single shock can evoke a repetitive response. Proc. roy. Soc. B 129, 356–391 (1940).Google Scholar
  210. Cowie, A.L., Kosterlitz, H.W., Watt, A.J.: Mode of action of morphine-like drugs on autonomic neuro-effectors. Nature (Lond.) 220, 1040–1042 (1968).Google Scholar
  211. Cragg, B.G.: What is the signal for chromatolysis? Brain Res. 23, 1–21 (1970).PubMedGoogle Scholar
  212. Creese, R., Maclagan, J.: Autoradiography of decamethonium in rat muscle. Nature (Lond.) 215, 988–989 (1967).Google Scholar
  213. Crone, H.D., Freeman, S.E.: The acetylcholinesterase activity of the denervated rat diaphragm. J. Neurochem. 19, 1207–1208 (1972).PubMedGoogle Scholar
  214. Crossland, J., Slater, P.: The effect of some drugs on the “free” and “bound” acetylcholine content of rat brain. Brit. J. Pharmacol. 33, 42–47 (1968).PubMedGoogle Scholar
  215. Crow, T. J., Grove-White, I.G.: An analysis of the learning deficit following hyoscine administration to man. Brit. J. Pharmacol. 49, 322–327 (1973).Google Scholar
  216. Csillik, B., Haarstad, V.B., Knyihar, E.: Autoradiographic localization of 14C-hemicholinium — an approach to locate sites of acetylcholine synthesis. J. Histochem. Cytochem. 18, 58–60 (1970).PubMedGoogle Scholar
  217. Cull-Candy, C., Neal, H., Usherwood, P.N.R.: Action of black widow spider venom on an aminergic synapse. Nature (Lond.) 241, 353–354 (1973).Google Scholar
  218. Currier, S.F., Mautner, H.G.: On the mechanism of action of choline acetyltransferase. Proc. nat. Acad. Sci. (Wash.) 71, 3355–3358 (1974).Google Scholar
  219. Dahlström, A.: Observations on the accumulation of noradrenaline in the proximal and distal parts of peripheral adrenergic nerves after compression. J. Anat. (Lond.) 99, 677–689 (1965).Google Scholar
  220. Dahlström, A.: Effect of colchicine on transport of amine storage granules in sympathetic nerves of rat. Europ. J. Pharmacol. 5, 111–113 (1968).Google Scholar
  221. Dahlström, A.: Axoplasmic transport (with particular respect to adrenergic neurons). Phil. Trans. B 261, 325–358 (1971).Google Scholar
  222. Dahlström, A.B., Evans, C.A.N., Häggendal, C.J., Heiwall, P.O., Saunders, N.R.: Rapid transport of acetylcholine in rat sciatic nerve proximal and distal to a lesion. J. neural Transmission 35, 1–11 (1974).Google Scholar
  223. Dahlström, A., Häggendal, J.: Studies on the transport and life-span of amine storage granules in a peripheral adrenergic neuron system. Acta physiol. scand. 67, 278–288 (1966).PubMedGoogle Scholar
  224. Dale, H.H.: Adventures in Physiology, p. 637. London: Pergamon Press 1953.Google Scholar
  225. Dale, H.H., Feldberg, W., Vogt, M.: Release of acetylcholine at voluntary motor nerve endings. J. Physiol. (Lond.) 86, 353–380 (1936).Google Scholar
  226. Dauterman, W.C., Mehrotra, K.N.: The N-alkyl group specificity of choline acetylase from brain. J. Neurochem. 10, 113–123 (1963).PubMedGoogle Scholar
  227. Davis, H.A., Horton, E.W., Jones, K.B., Quilliam, J.P.: Identification of prostaglandins in prevertebral venous blood after preganglionic stimulation of the cat superior cervical ganglion. Brit. J. Pharmacol. 42, 569–583 (1971).Google Scholar
  228. Davis, R., Koelle, G.B.: Electron microscopic localization of acetylcholinesterase and nonspecific cholinesterase at the neuromuscular junction by the gold-thiocholine and gold-thiolacetic acid methods. J. Cell Biol. 34, 157–171 (1967).PubMedGoogle Scholar
  229. Dawes, P. M., Vizi, E. S.: Acetylcholine release from the rabbit isolated superior cervical ganglion preparation. Brit. J. Pharmacol. 48, 225–232 (1973).Google Scholar
  230. Debassio, W.S., Schnitzler, R.M., Parsons, R.M.: Influence of lanthanum on transmitter release at the neuromuscular junction. Fed. Proc. 30, 617 (1971).Google Scholar
  231. Debecker, J.: Activation of neuromuscular transmission: calcium, potassium, veratrum, guanidine. In: Cheymol, J. (Ed.): Neuromuscular Blocking and Stimulating Agents, International Encyclopedia of Pharmacology and Therapeutics, Section 14, Vol. 11, pp. 503–513. Oxford: Pergamon Press 1972.Google Scholar
  232. Degroat, W.C., Volle, R.L.: The actions of the catecholamines on transmission in the superior cervical ganglion of the cat. J. Pharmacol. exp. Ther. 154, 1–13 (1966).Google Scholar
  233. Dennis, M.J., Harris, A.J., Kuffler, S.W.: Synaptic transmission and its duplication by focally applied acetylcholine in parasympathetic neurons in the heart of the frog. Proc. roy. Soc. B 177, 509–539 (1971).Google Scholar
  234. De Robertis, E., Pellegrino De Iraldi, A., Rodriguez De Lores Arnaiz, G., Gomez, C.J.: On the isolation of nerve endings and synaptic vesicles. J. biophys. biochem. Cytol. 9, 229–235 (1961).Google Scholar
  235. De Robertis, E., Rodriguez De Lores Arnaiz, G., Pellegrino De Iraldi, A., Salganicoff, L.: Cholinergic and non-cholinergic nerve endings in rat brain. J. Neurochem. 9, 24–35 (1962).Google Scholar
  236. De Robertis, E., Rodriguez De Lores Arnaiz, G., Salganicoff, L., Pellegrino De Iraldi, A., Ziehler, L.M.: Isolation of synaptic vesicles and structural organization of the acetylcholine system within brain nerve endings. J. Neurochem. 10, 225–235 (1963).Google Scholar
  237. Desiraju, T.: Role of potassium and calcium in the turnover of acetylcholine. Quart. J. exp. Physiol. 51, 177–183 (1966).PubMedGoogle Scholar
  238. Desmedt, J.E.: Guanidine et myasthénie grave. Rev. neurol. 94, 154–158 (1956).PubMedGoogle Scholar
  239. Detwiler, P.B.: The effects of germine-3-acetate on neuromuscular transmission. J. Pharmacol. exp. Ther. 180, 244–254 (1972).PubMedGoogle Scholar
  240. Deutsch, J.A.: The cholinergic synapse and the site of memory. Science 174, 788–794 (1971).PubMedGoogle Scholar
  241. Diamond, I.: Choline metabolism in brain: the role of choline transport and the effects of phenobarbital. Arch. Neurol. (Chic.) 24, 333–339 (1971).Google Scholar
  242. Diamond, I., Franklin, G.M., Milfay, D.: The relationship of choline acetyltransferase activity at the neuromuscular junction to changes in muscle mass and function. J. Physiol. (Lond.) 236, 247–257 (1974).Google Scholar
  243. Diamond, I., Kennedy, E.P.: Carrier-mediated transport of choline into synaptic nerve endings. J. biol. Chem. 244, 3258–3263 (1969).PubMedGoogle Scholar
  244. Diamond, I., Milfay, D.: Uptake of 3H-methyl choline by microsomal, synaptosomal, mitochondrial and synaptic vesicle fractions of rat brain. The effects of hemicholinium. J. Neurochem. 19, 1899–1909 (1972).PubMedGoogle Scholar
  245. Diamond, J., Evans, C.A.N.: Acetylcholine in regenerating motor nerves. J. Physiol. (Lond.) 154, 69P (1960).Google Scholar
  246. Di Augustine, R.P., Haarstad, V.B.: The active structure of hemicholinium inhibiting the bio-synthesis of acetylcholine. Biochem. Pharmacol. 19, 559–580 (1970).Google Scholar
  247. Dobson, J.G. Jr., Rubio, R., Berne, R.M.: Role of adenine nucleotides, adenosine, and inorganic phosphate in the regulation of skeletal muscle blood flow. Circulat. Res. 29, 375–384 (1971).PubMedGoogle Scholar
  248. Dodge, F.A. Jr., Miledi, R., Rahamimoff, R.: Strontium and quantal release of transmitter at the neuromuscular junction. J. Physiol. (Lond.) 200, 267–283 (1969).Google Scholar
  249. Domino, E.F., Morhman, M.E., Wilson, A. E., Haarstadt, V.B.: Acetylsecohemicholinium-3, a new choline acetyltransferase inhibitor, useful in neuropharmacological studies. Neuropharmacology 12, 549–561 (1973).PubMedGoogle Scholar
  250. Domino, E.F., Shellenberger, M.K., Frappin, J.: Inhibition of acetylcholinesterase in vitro by hemicholinium. Arch. int. Pharmacodyn. 176, 42–49 (1968).PubMedGoogle Scholar
  251. Douglas, W.W.: Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Brit. J. Pharmacol. 34, 451–474 (1968).Google Scholar
  252. Douglas, W.W., Gray, J.A.B.: The excitant action of acetylcholine and other substances on cutaneous sensory pathways and its prevention by hexamethonium and D-tubocurarine. J. Physiol. (Lond.) 119, 118–128 (1953).Google Scholar
  253. Douglas, W.W., Lywood, D.W.: The stimulant effect of tetraethylammonium on acetylcholine output from the superior cervical ganglion: comparison with barium. Fed. Proc. 20, 324 (1961).Google Scholar
  254. Douglas, W.W., Lywood, D.W., Straub, R.W.: The stimulant effect of barium on the release of acetylcholine from the superior cervical ganglion. J. Physiol. (Lond.) 156, 515–522 (1961).Google Scholar
  255. Douglas, W.W., Poisner, A.M.: Evidence that the secreting adrenal chromaffin cell releases catecholamines directly from ATP-rich granules. J. Physiol. (Lond.) 183, 236–248 (1966).Google Scholar
  256. Douglas, W.W., Ritchie, J.M.: The excitatory action of acetylcholine on cutaneous non-myelinated fibres. J. Physiol. (Lond.) 150, 501–514 (1960).Google Scholar
  257. Douglas, W.W., Sorimachi, M.: Effects of cytochalasin B and colchicine on posterior pituitary and adrenal medullary hormones. Brit. J. Pharmacol. 45, 143–144P (1972a).Google Scholar
  258. Douglas, W.W., Sorimachi, M.: Colchicine inhibits adrenal medullary secretion evoked by acetylcholine without affecting that evoked by potassium. Brit. J. Pharmacol. 45, 129–132 (1972b).Google Scholar
  259. Dowdall, M.J., Boyne, A.F., Whittaker, V.P.: Adenosine triphosphate. A constituent of cholinergic synaptic vesicles. Biochem. J. 140, 1–12 (1974).PubMedGoogle Scholar
  260. Dowdall, M. J., Simon, E.J.: Comparative studies on synaptosomes: uptake of [N-methyl-3H]choline by synaptosomes from squid optic lobes. J. Neurochem. 21, 969–982 (1973).PubMedGoogle Scholar
  261. Drachman, D. A., Leavitt, J.: Human memory and the cholinergic system. A relationship to aging. Arch. Neurol. (Chic.) 30, 113–121 (1974).Google Scholar
  262. Dropp, J.J., Sodetz, F.J.: Changes in neuroglia and neurons of behaviourally stressed rats. Brain Res. 33, 419–430 (1971).PubMedGoogle Scholar
  263. Dross, K., Kewitz, H.: Concentration and origin of choline in the rat brain. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 274, 91–106 (1972).Google Scholar
  264. Droz, B.: Renewal of synaptic proteins. Brain Res. 62, 383–394 (1973).PubMedGoogle Scholar
  265. Droz, B., Koenig, H.L.: Dynamic condition of protein in axons and axon terminals. Acta neuropath. (Berl), Suppl. 5, 109–118 (1971).Google Scholar
  266. Duchen, L. W., Tonge, D. A.: The effects of tetanus toxin on neuromuscular transmission and on the morphology of motor end-plates in slow and fast skeletal muscle of the mouse. J. Physiol. (Lond.) 228, 157–172 (1973).Google Scholar
  267. Dunant, Y.: Mechanisms of synaptic transmission. Presynaptic spike and excitatory postsynaptic potential in sympathetic ganglion. Their modification by pharmacological agents. Progress in Brain Res. 31, 131–139 (1969).Google Scholar
  268. Dunant, Y.: Some properties of the presynaptic nerve terminals of a mammalian sympathetic ganglion. J. Physiol. (Lond.) 221, 577–588 (1972).Google Scholar
  269. Dunant, Y., Dolivo, M.: Presynaptic recording in excised sympathetic ganglion of the rat. Brain Res. 10, 268–270 (1968).PubMedGoogle Scholar
  270. Dunant, Y., Gautron, J., Israël, M., Lesbats, B., Manaranche, R.: Effet de la stimulation de l’organe électrique de la Torpille sur les “compartiments libre et lié” d’acétylcholine. C. r. Acad. Sci. (Paris) 273, 233–236 (1971).Google Scholar
  271. Dunant, Y., Gautron, J., Israël, M., Lesbats, B., Manaranche, R.: Les compartiments d’acétylcholine de l’organe électrique de la Torpille et leurs modifications par la stimulation. J. Neurochem. 19, 1987–2002 (1972).PubMedGoogle Scholar
  272. Dunant, Y., Gautron, J., Israël, M., Lesbats, B., Manaranche, R.: Evolution de la décharge de l’organe électrique de la Torpille et variations simultanées de l’acétylcholine au cours de la stimulation. J. Neurochem. 23, 635–644 (1974).PubMedGoogle Scholar
  273. Ebel, A., Hermetet, J.C., Mandel, P.: Comparative study of acetylcholinesterase and choline acetyltransferase enzyme activity in brain of DBA and C57 mice. Nature (Lond.) New Biol. 242, 56–57 (1973).Google Scholar
  274. Eccles, J.C.: The nature of synaptic transmission in a sympathetic ganglion. J. Physiol. (Lond.) 103, 27–54 (1944).Google Scholar
  275. Eccles, J.C., Katz, B., Kuffler, S.W.: Nature of the “endplate potential” in curarized muscle. J. Neurophysiol. 4, 362–387 (1941).Google Scholar
  276. Eccles, J.C., Katz, B., Kuffler, S.W.: Effect of eserine on neuromuscular transmission. J. Neurophysiol. 5, 211–230 (1942).Google Scholar
  277. Eccles, J.C., McIntyre, A.K.: Plasticity of mammalian monosynaptic reflexes. Nature (Lond.) 167, 466–468 (1951).Google Scholar
  278. Eccles, J.C., McIntyre, A. K.: The effects of disuse and of activity on mammalian spinal reflexes. J. Physiol. (Lond.) 121, 492–516 (1953).Google Scholar
  279. Edström, A., Mattson, H.: Fast axonal transport in the sciatic system of the frog. J. Neurochem. 19, 205–221 (1972).PubMedGoogle Scholar
  280. Eichberg, J., Whittaker, V.P., Dawson, R.M.C.: Distribution of lipids in subcellular particles of guinea-pig brain. Biochem. J. 92, 91–100 (1964).PubMedGoogle Scholar
  281. Eisenstadt, M.L., Treistman, S.N., Schwartz, J.H.: Metabolism of acetylcholine in the nervous system of Aplysia californica. II. Regional localization and characterization of choline uptake. J. gen. Physiol. 65, 275–291 (1975).PubMedGoogle Scholar
  282. Eksborg, S., Persson, B. A.: Photometric determination of acetylcholine and choline after selective isolation by ion-pair chromatography. In: Hanin, I. (Ed.): Choline and Acetylcholine: Handbook of Chemical Assay Methods, pp. 181–193. New York: Raven Press 1974.Google Scholar
  283. Ekström, J.: Choline acetyltransferase and secretory responses of the rat’s salivary glands after liquid diet. Quart. J. exp. Physiol. 58, 171–179 (1973).PubMedGoogle Scholar
  284. Ekström, J.: Choline acetyltransferase in the heart and salivary glands of the rat after physical training. Quart. J. exp. Physiol. 59, 73–80 (1974a).PubMedGoogle Scholar
  285. Ekström, J.: Choline acetyltransferase activity in rat salivary glands after cellulose-rich diet or treatment with an atropine-like drug. Quart. J. exp. Physiol. 59, 191–199 (1974b).PubMedGoogle Scholar
  286. Ekström, J., Holmberg, J.: Effect of decentralization on the choline acetyltransferase of the canine parotid gland. J. Physiol. (Lond.) 222, 93–94P (1972).Google Scholar
  287. Elliott, K.A.C., Henderson, N.: Factors affecting acetylcholine found in excised rat brain. Amer. J. Physiol. 165, 365–374 (1951).PubMedGoogle Scholar
  288. Elliott, K.A.C., Swank, R.L., Henderson, N.: Effects of anaesthetics and convulsants on acetylcholine content of brain. Amer. J. Physiol. 162, 469–474 (1950).PubMedGoogle Scholar
  289. Elmqvist, D., Feldman, D.S.: Calcium dependence of spontaneous acetylcholine release at mammalian motor nerve terminals. J. Physiol. (Lond.) 181, 487–497 (1965a).Google Scholar
  290. Elmqvist, D., Feldman, D.S.: Effects of sodium pump inhibitors on spontaneous acetylcholine release at the neuromuscular junction. J. Physiol. (Lond.) 181, 498–505 (1965b).Google Scholar
  291. Elmqvist, D., Josefsson J. O.: The nature of the neuromuscular block produced by neomycine. Acta physiol. scand. 54, 105–110 (1962).PubMedGoogle Scholar
  292. Elmqvist, D., Quastel, D.M.J.: Presynaptic action of hemicholinium at the neuromuscular junction. J. Physiol. (Lond.) 177, 463–482 (1965a).Google Scholar
  293. Elmqvist, D., Quastel, D.M. J.: A quantitative study of end-plate potentials in human muscle. J. Physiol. (Lond.) 178, 505–529 (1965b).Google Scholar
  294. Emmelin, N.: Action of transmitters on the responsiveness of cells. Experientia (Basel) 21, 57–65 (1965).Google Scholar
  295. Emmelin, N., Macintosh, F.C.: The release of acetylcholine from perfused sympathetic ganglia and skeletal muscles. J. Physiol. (Lond.) 131, 477–496 (1956).Google Scholar
  296. Emmelin, N., Muren, A.: Acetylcholine release at parasympathetic synapses. Acta physiol. scand. 20, 13–32 (1950).PubMedGoogle Scholar
  297. Eng, L.F., Uyeda, C.T., Chao, L.P., Wolfgram, F.: Antibody to bovine choline acetyltransferase and immunofluorescent localization of the enzyme in neurones. Nature (Lond.) 250, 243–245 (1974).Google Scholar
  298. Eränkö, O., Teräväinen, H.: Cholinesterase and eserine-resistant carboxylic esterases in degenerating and regenerating motor end plates of the rat. J. Neurochem. 14, 947–954 (1967).PubMedGoogle Scholar
  299. Evans, C.A.N., Saunders, N.R.: The distribution of acetylcholine in normal and in regenerating nerves. J. Physiol. (Lond.) 192, 79–92 (1967).Google Scholar
  300. Evans, C.A.N., Saunders, N.R.: An outflow of acetylcholine from normal and regenerating ventral roots of the cat. J. Physiol. (Lond.) 240, 15–32 (1974).Google Scholar
  301. Evans, R.H.: Some characteristics of calcium accumulation at motor end-plates of mouse diaphragm. Brit. J. Pharmacol. 49, 168–169P (1973).Google Scholar
  302. Farel, P.B.: Persistent increase in synaptic efficacy following a brief tetanus in isolated frog spinal cord. Brain Res. 66, 113–120 (1974).Google Scholar
  303. Fatt, P.: Biophysics of junctional transmission. Physiol. Rev. 34, 674–710 (1954).PubMedGoogle Scholar
  304. Fatt, P., Katz, B.: An analysis of the end-plate potential recorded with an intracellular electrode. J. Physiol. (Lond.) 115, 320–370 (1951).Google Scholar
  305. Fatt, P., Katz, B.: Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).Google Scholar
  306. Feigenson, M.E., Saelens, J.K.: An enzyme assay for acetylcholine. Biochem. Pharmacol. 18, 1479–1486 (1969).PubMedGoogle Scholar
  307. Feldberg, W.: Present views on the mode of action of acetylcholine in the central nervous system. Physiol. Rev. 25, 596–642 (1945).PubMedGoogle Scholar
  308. Feldberg, W., Fessard, A.: The cholinergic nature of the nerves to the electric organ of the Torpedo (Torpedo marmorata). J. Physiol. (Lond.) 101, 200–216 (1942).Google Scholar
  309. Feldberg, W., Lin, R. C. Y.: Synthesis of acetylcholine in the wall of the digestive tract. J. Physiol. (Lond.) 111, 96–118 (1950).Google Scholar
  310. Fellman, J.H.: A chemical method for the determination of acetylcholine: its application in a study of presynaptic release and choline acetyltransferase assay. J. Neurochem. 16, 135–143 (1969).PubMedGoogle Scholar
  311. Feng, T.P.: Studies on neuromuscular function: local potentials around neuromuscular junctions induced by single and multiple volleys. Chin. J. Physiol. 15, 367–404 (1940).Google Scholar
  312. Feng, T.P.: Studies on the neuromuscular junction. V. The succession of inhibitory and facilitatory effects of prolonged high frequency stimulation on neuromuscular transmission. Chin. J. Physiol. 11, 451–470 (1937).Google Scholar
  313. Feng, T.P., Lee, L. Y., Meng, C. W., Wang, S.C.: Studies on the neuromuscular junction. IX. The after-effects of tetanization on neuromuscular transmission in cat. Chin. J. Physiol. 13, 79–108 (1938).Google Scholar
  314. Ferguson, F.C., Jr.: Colchicine. I. General pharmacology. J. Pharmacol. exp. Ther. 106, 261–270 (1952).PubMedGoogle Scholar
  315. Filogamo, G., Gabella, G.: Cholinesterase behavior in the denervated and reinnervated muscles. Acta anat. (Basel) 63, 199–214 (1966).Google Scholar
  316. Filogamo, G., Gabella, G.: The development of neuromuscular correlations in vertebrates. Arch. Biol. (Liège) 78, 9–60 (1967).Google Scholar
  317. Filogamo, G., Marchisio, P.C.: Acetylcholine system and neural development. Neurosci. Res. 4, 29–64 (1971).PubMedGoogle Scholar
  318. Fischbach, G.D., Robbins, N.: Changes in contractile properties of disused soleus muscles. J. Physiol. (Lond.) 201, 305–320 (1969).Google Scholar
  319. Fitzgerald, G.G., Cooper, J.R.: Studies on ACh in the corneal epithelium. Fed. Proc. 26, 651 (1967).Google Scholar
  320. Flacke, W.E., Blume, R.B., Scott, W.R., Foldes, F.F., Osserman, K.E.: Germine mono-and diacetate in myasthenia gravis. Ann. N. Y. Acad. Sci. 183, 316–333 (1971).PubMedGoogle Scholar
  321. Folkow, B., Häggendal, J., Lisander, B.: Extent of release and elimination of noradrenaline at peripheral adrenergic nerve terminals. Acta physiol. scand., Suppl. 307, 5–38 (1967).Google Scholar
  322. Fonnum, F.: The compartmentation of choline acetyltransferase within the synaptosome. Biochem. J. 103, 262–270 (1967).PubMedGoogle Scholar
  323. Fonnum, F.: Choline acetyltransferase: Binding to and release from membranes. Biochem. J. 109, 389–398 (1968a).PubMedGoogle Scholar
  324. Fonnum, F.: The distribution of glutamate decarboxylase and aspartate transaminase in subcellular fractions of rat and guinea-pig brain. Biochem. J. 106, 401–412 (1968b).PubMedGoogle Scholar
  325. Fonnum, F.: Isolation of choline esters from aqueous solutions by extraction with Na tetraphenylboron in organic solvents. Biochem. J. 113, 291–298 (1969).PubMedGoogle Scholar
  326. Fonnum, F.: Surface charge of choline acetyltransferases from different species. J. Neurochem. 17, 1095–1100 (1970).PubMedGoogle Scholar
  327. Fonnum, F., Frizell, M., Sjöstrand, J.: Transport, turnover and distribution of choline acetyl-transferase and acetylcholinesterase in the vagal and hypoglossal nuclei of the rabbit. J. Neurochem. 21, 1107–1120 (1974).Google Scholar
  328. Fonnum, F., Malthe-Sørenssen, D.: Molecular properties of choline acetyltransferase and their importance for the compartmentation of acetylcholine synthesis. Progr. Brain Res. 36, 13–27 (1972).Google Scholar
  329. Fonnum, F., Malthe-Sørenssen, D.: Membrane affinities and subcellular distribution of the different molecular forms of choline acetyltransferase from rat. J. Neurochem. 20, 1351–1359 (1973).PubMedGoogle Scholar
  330. Forrester, T., Lind, A.R.: Identification of adenosine triphosphate in human plasma and the concentration in the venous effluent of forearm muscles before, during and after sustained contractions. J. Physiol. (Lond.) 204, 347–364 (1969).Google Scholar
  331. Frankenberg, L., Heimburger, G., Nilsson, C., Sörbo, B.: Biochemical and pharmacological studies on the sulfonium analogues of choline and acetylcholine. Europ. J. Pharmacol. 23, 37–46 (1973).Google Scholar
  332. Frazier, D.T., Narahashi, T., Moore, J.W.: Hemicholinium-3: non-cholinergic effects on squid axons. Science 163, 820–821 (1969).PubMedGoogle Scholar
  333. Frederickson, R.C.A., Pinsky, C.: Morphine impairs acetylcholine release but facilitates acetylcholine action at a skeletal neuromuscular junction. Nature (Lond.) New Biol. 231, 93–94 (1971).Google Scholar
  334. Friedenberg, M., Seligman, A.M.: Acetylcholinesterase at the myoneural junction: cytochemical ultrastructure and some biochemical considerations. J. Histochem. Cytochem. 20, 771–792 (1972).PubMedGoogle Scholar
  335. Friesen, A.J.D., Khatter, J.C.: The effect of preganglionic stimulation on the acetylcholine and choline content of a sympathetic ganglion. Can. J. Physiol. Pharmacol. 49, 375–381 (1971a).PubMedGoogle Scholar
  336. Friesen, A.J.D., Khatter, J.C.: Effect of stimulation on synaptic vesicles in the superior cervical ganglion of the cat. Experientia (Basel) 27, 285–287 (1971b).Google Scholar
  337. Friesen, A.J.D., Macconaill, M.: Choline and acetylcholine metabolism in a sympathetic ganglion. Proc. Canad. Fed. Biol. Soc. 10, 30 (1967).Google Scholar
  338. Friesen, A.J.D., Ling, G.M., Nagai, M.: Choline and phospholipidcholine in a sympathetic ganglion and their relationship to acetylcholine synthesis. Nature (Lond.) 214, 722–724 (1967).Google Scholar
  339. Frizell, M., Hasselgren, P.O., Sjöstrand, J.: Axoplasmic transport of acetylcholinesterase and choline acetyltransferase in the vagus and hypoglossal nerve of the rabbit. Exp. Brain Res. 10, 526–531 (1970).PubMedGoogle Scholar
  340. Frontali, N.: Catecholamine-depleting effect of black widow spider venom on iris nerve terminals. Brain Res. 37, 146–148 (1972).PubMedGoogle Scholar
  341. Frontali, N., Grasso, A.: Separation of three toxicologically different protein components from the venom of the spider Latrodectus tredecimgultatus. Arch. Biochem. 106, 213–218 (1964).PubMedGoogle Scholar
  342. Frontali, N., Granata, F., Parisi, P.: Effects of black widow spider venom on acetylcholine release from rat cerebral cortex slices in vitro. Biochem. Pharmacol. 21, 969–974 (1972).PubMedGoogle Scholar
  343. Fukuda, T., Koelle, G.B.: The cytological localization of intracellular neuronal acetylcholinesterase. J. biophys. biochem. Cytol. 5, 433–440 (1959).PubMedGoogle Scholar
  344. Fuxe, K., Grobecker, H., Hökfelt, T., Jonsson, G.: Identification of dopamine, noradrenaline and 5-hydroxytryptamine varicosities in a fraction containing nerve ending particles. Brain Res. 6, 475–480 (1967).PubMedGoogle Scholar
  345. Gage, P.W., Hubbard, J.L.: An investigation of the post-tetanic potentiation of end-plate potentials at a mammalian neuromuscular junction. J. Physiol. (Lond.) 184, 353–375 (1966).Google Scholar
  346. Gage, P.W., Quastel, D.M.: Competition between sodium and calcium ions in transmitter release at a mammalian neuromuscular junction. J. Physiol. (Lond.) 185, 95–123 (1966).Google Scholar
  347. Galindo, A.: Prejunctional effect of curare: its relative importance. J. Neurophysiol. 34, 289–301 (1971).PubMedGoogle Scholar
  348. Gallagher, J.P., Blaber, L.C.: Catechol, a facilitatory drug that demonstrates only a prejunctional site of action. J. Pharmacol. exp. Ther. 184, 129–135 (1973).PubMedGoogle Scholar
  349. Gallup, B., Dubowitz, V.: Failure of “dystrophic” neurones to support functional regeneration of normal or dystrophic muscle in culture. Nature (Lond.) 243, 287–289 (1973).Google Scholar
  350. Gardiner, J. E., Domer, F.R.: Movement of choline between the blood and cerebrospinal fluid in the cat. Arch. int. Pharmacodyn. 175, 482–496 (1968).PubMedGoogle Scholar
  351. Gardiner, J.E., Gwee, M.C.E.: The distribution in the rabbit of choline administered by injection or infusion. J. Physiol. (Lond.) 239, 459–476 (1974).Google Scholar
  352. Gardiner, J.E., Paton, W.D.M.: The control of the plasma choline concentration in the cat. J. Physiol. (Lond.) 227, 71–86 (1972).Google Scholar
  353. Gardiner, J.E., Sung, L.H.: A p-terphenyl hemicholinium compound. Brit. J. Pharmacol. 36, 171–172P (1969).Google Scholar
  354. Geffen, L.B., Rush, R.A.: Transport of noradrenaline in sympathetic nerves and the effect of nerve impulses on its contribution to transmitter stores. J. Neurochem. 15, 925–931 (1968).PubMedGoogle Scholar
  355. George, G., Mellanby, J.: A further study on the effect of physostigmine on memory in rats. Brain Res. 81, 133–144 (1974).PubMedGoogle Scholar
  356. Gerhards, K.P., Röttcher, M., Straub, R. W.: Wirkungen von Ca und Mg auf Freisetzung und Synthese von Acetylcholin am spontan aktiven Darm. Pflügers Arch. ges. Physiol. 279, 239–250 (1964a).Google Scholar
  357. Gerhards, K.P., Röttcher, M., Straub, R. W.: Wirkungen von Ca und Mg auf Freisetzung und Synthese von Acetylcholin am ruhiggestellten Darm. Pflügers Arch. ges. Physiol. 279, 251–264 (1964b).Google Scholar
  358. Gesler, R.M., Hoppe, J.O.: Pharmacology of 3, 6(3-diethylaminopropoxy) pyridazine bis-methiodide, a hemicholinium-like agent. Fed. Proc. 20, 587–593 (1961).PubMedGoogle Scholar
  359. Gesler, R.M., Lasker, A.B., Hoppe, J.O., Steck, E.A.: Further studies on the site of action of the neuromuscular blocking agent 3, 6-bis (diethylaminopropoxy)pyridazine bis-methiodide. J. Pharmacol. exp. Ther. 125, 323–329 (1959).PubMedGoogle Scholar
  360. Gfeller, E.M., Kuhar, M.J., Snyder, S.H.: Neurotransmitter-specific synaptosomes in rat corpus striatum: morphological variations. Proc. nat. Acad. Sci. (Wash.) 68, 155–159 (1971).Google Scholar
  361. Giacobini, E.: The distribution and localization of cholinesterases in nerve cells. Acta physiol. scand. 45 (Suppl. 156), 1–45 (1959).Google Scholar
  362. Giacobini, G., Filogamo, G., Weber, M., Boquet, P., Changeux, J.-P.: Effects of a snake a-neurotoxin on the development of innervated skeletal muscle in chick embryo. Proc. nat. Acad. Sci. (Wash.) 70, 1708–1712 (1973).Google Scholar
  363. Giarman, N. J., Pepeu, G. Drug-induced changes in brain acetylcholine. Brit. J. Pharmacol. 19, 226–234 (1962).PubMedGoogle Scholar
  364. Gilbert, J.C., Hutchinson, M., Kosterlitz, H.W.: The effect of electrical stimulation of the myenteric plexus-longitudinal muscle preparation of the guinea-pig ileum on its acetylcholine content. Brit. J. Pharmacol. 49, 166–167P (1973).Google Scholar
  365. Giller, E.L. Jr., Schrier, B.K., Shainberg, A., Fisk, H.R., Nelson, P.G.: Choline acetyltransferase activity is increased in combined cultures of spinal cord and muscle cells in mice. Science 182, 588–589 (1973).PubMedGoogle Scholar
  366. Giller, E.L., Jr., Schwartz, J.H.: Acetylcholinesterase in identified neurons of abdominal ganglion of Aplysia californica. J. Neurophysiol. 34, 108–115 (1971).PubMedGoogle Scholar
  367. Ginsborg, B.L.: The vesicle hypothesis for the release of acetylcholine. In: Andersen, P., Jensen, J.K.S., (EDS.): Excitatory Synaptic Mechanisms, pp.77–82. Oslo: Universitetsforlaget 1970.Google Scholar
  368. Ginsborg, B.L., Hamilton, J.T.: The effect of caesium ions on neuromuscular transmission in the frog. Quart. J. exp. Physiol. 53, 162–169 (1968).PubMedGoogle Scholar
  369. Ginsborg, B.L., Hirst, G.D.S.: Prostaglandin E1 and noradrenaline at the neuromuscular junction. Brit. J. Pharmacol. 42, 153–154 (1971).Google Scholar
  370. Ginsborg, B.L., Hirst, G.D.S.: The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J. Physiol. (Lond.) 224, 629–645 (1972).Google Scholar
  371. Glick, D.: Choline esterase and the theory of chemical mediation of nerve impulses. J. gen. Physiol. 21, 431–438 (1938).PubMedGoogle Scholar
  372. Glick, S.D., Mittag, T.W., Green, J.P.: Central cholinergic correlates of impaired learning. Neuropharmacology 12, 291–296 (1973).PubMedGoogle Scholar
  373. Glover, V.A.S., Potter, L.T.: Purification and properties of choline acetyltransferase from ox brain striate nuclei. J. Neurochem. 18, 571–580 (1971).PubMedGoogle Scholar
  374. Glow, P.H., Rose, S.: Activity of cholinesterase in the retina with different levels of physiological stimulation. Aust. J. exp. Biol. med. Sci. 44, 65–72 (1966).PubMedGoogle Scholar
  375. Goldberg, A.L., Singer, J. J.: Evidence for a role of cyclic AMP in neuromuscular transmission. Proc. nat. Acad. Sci. (Wash.) 64, 134–141 (1969).Google Scholar
  376. Goldberg, A.M., McCaman, R.E.: Determination of picomole amounts of acetylcholine in brain. J. Neurochem. 20, 1–8 (1973).PubMedGoogle Scholar
  377. Goldberg, A.M., Welch, B.L.: Adaptation of the adrenal medulla: sustained increase in choline acetyltransferase by psychosocial stimulation. Science 178, 319–320 (1972).PubMedGoogle Scholar
  378. Goldberg, M.E., Salama, A.I., Blum, S.W.: Inhibition of choline acetyltransferase and hexobarbitone-metabolizing enzymes by naphthylvinyl pyridine analogues. J. Pharm. Pharmacol. 23, 384–385 (1971).PubMedGoogle Scholar
  379. Goldberg, M.E., Sledge, K., Robichaud, R.C., Dubinsky, B.: A comparative study of the behavioral effects of scopolamine and 4-(1-naphthylvinyl) pyridine hydrochloride (NVP), an inhibitor of choline acetyltransferase. Psychopharmacologia 23, 34–47 (1972).PubMedGoogle Scholar
  380. Gomez, M. V., Dai, M.E.M., Diniz, C.R.: Effects of scorpion venom, tityustoxin, on the release of acetylcholine from incubated slices of rat brain. J. Neurochem. 20, 1051–1061 (1973).PubMedGoogle Scholar
  381. Goodwin, B.C., Sizer, I.W.: Effects of spinal cord and substrate on acetylcholinesterase in chick embryonic skeletal muscle. Develop. Biol. 11, 136–153 (1965).PubMedGoogle Scholar
  382. Grafstein, B.: Transneuronal transfer of radioactivity in the central nervous system. Science 172, 177–179 (1971).PubMedGoogle Scholar
  383. Grafstein, B., Forman, D.S., McEwen, B.S.: Effects of temperature on axonal transport and turnover of protein in goldfish optic system. Exp. Neurol. 34, 158–170 (1972).PubMedGoogle Scholar
  384. Gray, E. G., Whittaker, V. P.: The isolation of synaptic vesicles from the central nervous system. J. Physiol. (Lond.) 153, 35–37P (1960).Google Scholar
  385. Gray, E.G., Whittaker, V.P.: The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. (Lond.) 96, 79–87 (1962).Google Scholar
  386. Grewaal, D.S., Quastel, J.H.: Control of synthesis and release of radioactive acetylcholine in brain slices from the rat. Biochem. J. 132, 1–14 (1973).PubMedGoogle Scholar
  387. Griffith, J.S.: A theory of the nature of memory. Nature (Lond.) 211, 1160–1163 (1966).Google Scholar
  388. Gromadzki, C. G., Koelle, G.B.: The effect of axotomy on the acetylcholinesterase of the superior cervical ganglion of the cat. Biochem. Pharmacol. 14, 1745–1754 (1965).PubMedGoogle Scholar
  389. Guth, L.: Trophic influences of nerve on muscle. Physiol. Rev. 48, 645–687 (1968).PubMedGoogle Scholar
  390. Guth, L., Albers, R.W., Brown, W.C.: Quantitative changes in cholinesterase activity of denervated muscle fibres and sole plates. Exp. Neurol. 10, 236–250 (1964).PubMedGoogle Scholar
  391. Guth, P.S.: Acetylcholine binding by isolated synaptic vesicles in vitro. Nature (Lond.) 224, 384–385 (1969).Google Scholar
  392. Gutmann, E., Tuček, S., Hanslikova, V.: Changes in the choline acetyltransferase and cholinesterase activities in levator ani muscle of rats following castration. Physiol. bohemoslov. 18, 195–203 (1969).PubMedGoogle Scholar
  393. Guyenet, P., Lefresne, P., Rossier, J., Beaujouin, J.C., Glowinski, J.: Inhibition by hemicholinium-3 of [14C]acetylcholine synthesis and [3H]choline high-affinity uptake in rat striatal synaptosomes. Molec. Pharmacol. 9, 630–639 (1973).Google Scholar
  394. Gwee, M.C.E., Lim, H.S.: Hydrocortisone and the concentration of choline in the plasma of rodents. Brit. J. Pharmacol. 45, 133–134 (1972).Google Scholar
  395. Habermann, E.: Gewinnung und Eigenschaften von Crotactin, Phospholipase A, Crotamin und »Toxin III« aus dem Gift der brasilianischen Klapperschlange. Biochem. Z. 329, 405–415 (1957).PubMedGoogle Scholar
  396. Haga, T.: Synthesis and release of 14C-acetylcholine in synaptosomes. J. Neurochem. 18, 781–789 (1971).PubMedGoogle Scholar
  397. Haga, T., Abe, T., Kurokawa, M.: Formation and breakdown of microtubules in vitro as studied by flow birefringence. Abstr. 4th internat. Meet. Neurochem. 280 (1973).Google Scholar
  398. Haga, T., Noda, H.: Choline uptake systems of rat brain synaptosomes. Biochim. biophys. Acta (Amst.) 291, 564–575 (1973).Google Scholar
  399. Häggendäl, C.J., Saunders, N.R., Dahlström, A.B.: Rapid accumulation of acetylcholine in nerve above a crush. J. Pharm. Pharmacol. 23, 552–555 (1971).PubMedGoogle Scholar
  400. Häggendäl, C.J., Dahlström A.B., Saunders, N.R.: Axonal transport and acetylcholine in rat preganglionic neurones. Brain Res. 58, 494–499 (1973).PubMedGoogle Scholar
  401. Hall, Z.W., Kelly, R.B.: Enzymatic detachment of endplate acetylcholinesterase from muscle. Nature (Lond.) New Biol. 232, 62–63 (1971).Google Scholar
  402. Hanin, I.: Ed., Choline and Acetylcholine: Handbook of Chemical Assay Methods. New York: Raven Press 1974.Google Scholar
  403. Hanin, I., Jenden, D.J.: Estimation of choline esters in brain by a new gas chromatographic procedure. Biochem. Pharmacol. 18, 837–845 (1969).PubMedGoogle Scholar
  404. Hanin, I., Massarelli, R., Costa, E.: Environmental and technical preconditions influencing choline and acetylcholine concentrations in rat brain. In: Heilbronn, E., Winter, A. (EDS.): Drugs and Cholinergic Mechanisms in the CNS, pp.33–54. Stockholm: Research Institute of National Defence 1970.Google Scholar
  405. Hanin, I., Massarelli, R., Costa, E.: An approach to the in vivo study of acetylcholine turnover in rat salivary glands by radio gas chromatography. J. Pharmacol. exp. Ther. 181, 10–18 (1972a).PubMedGoogle Scholar
  406. Hanin, I., Massarelli, R., Costa, E.: An approach to the study of biochemical pharmacology of cholinergic function. Advanc. biochem. Psychopharmacol. 6, 181–202 (1972b).Google Scholar
  407. Harris, A.J., Miledi, R.: The effect of type D botulinum toxin on frog neuromuscular junctions. J. Physiol. (Lond.) 217, 497–515 (1971).Google Scholar
  408. Harry, J.: The action of drugs on the circular muscle strip from the guinea-pig isolated ileum. Brit. J. Pharmacol. 20, 397–417 (1963).Google Scholar
  409. Hart, L.G., Dixon, R.L., Long, J.P., Mackay, B.: Studies using Clostridium botulinum toxin — type A. Toxicol. appl. Pharmacol. 7, 84–89 (1965).PubMedGoogle Scholar
  410. Harvey, A.M., Macintosh, F.C.: Calcium and synaptic transmission in a sympathetic ganglion. J. Physiol. (Lond.) 97, 408–416 (1940).Google Scholar
  411. Hazra, J.: Effect of hemicholinium-3 on slow wave and paradoxical sleep of cat. Europ. J. Pharmacol. 11, 395–397 (1970).Google Scholar
  412. Hebb, C.: Cholinergic neurons in vertebrates. Nature (Lond.) 192, 527–529 (1961).Google Scholar
  413. Hebb, C.: Biosynthesis of acetylcholine in nervous tissue. Physiol. Rev. 52, 918–957 (1972).PubMedGoogle Scholar
  414. Hebb, C.: Formation, storage and liberation of acetylcholine. In: Koelle, G.B. (Ed.): Handbuch der experimentellen Pharmakologie, Ergänzungswerk XV. Cholinesterases and Anticholinesterase Agents, pp. 55–88. Berlin-Heidelberg-New York: Springer 1963.Google Scholar
  415. Hebb, C.O., Krnjević, K., Silver, A.: Acetylcholine and choline acetyltransferase in the diaphragm of the rat. J. Physiol. (Lond.) 171, 504–513 (1964).Google Scholar
  416. Hebb, C., Morris, D.: Identification of acetylcholine and its metabolism in nervous tissue. In: Bourne, G.H. (Ed.): The Structure and Function of Nervous Tissue, Vol.3, Biochemistry and Disease, pp.25–60. New York: Academic Press 1969.Google Scholar
  417. Hebb, C.O., Silver, A.: Gradient of choline acetylase activity. Nature (Lond.) 189, 123–125 (1961).Google Scholar
  418. Hebb, C.O., Silver, A.: The effect of transection on the level of choline acetylase in the goat’s sciatic nerve. J. Physiol. (Lond.) 169, 41–42P (1963).Google Scholar
  419. Hebb, C.O., Waites, G.M.H.: Choline acetylase in antero-and retrograde degeneration of a cholinergic nerve. J. Physiol. (Lond.) 132, 667–671 (1956).Google Scholar
  420. Hebb, C.O., Whittaker, V.P.: Intracellular distributions of acetylcholine and choline acetylase. J. Physiol. (Lond.) 142, 187–196 (1958).Google Scholar
  421. Hebb, D. O.: The Organization of Behavior, p. 62–66. New York: Wiley 1949.Google Scholar
  422. Hedqvist, P., Von Euler, U.S.: Prostaglandin controls neuromuscular transmission in guinea-pig vas deferens. Nature (Lond.) New Biol. 236, 113–115 (1972).Google Scholar
  423. Heilbronn, E.: The effect of phospholipases on the uptake of atropine and acetylcholine by slices of mouse brain cortex. J. Neurochem. 16, 627–635 (1969).PubMedGoogle Scholar
  424. Heilbronn, E.: Further experiments on the uptake of acetylcholine and atropine and the release of acetylcholine from mouse brain cortex slices after treatment with phospholipases. J. Neurochem. 17, 381–389 (1970).PubMedGoogle Scholar
  425. Heilbronn, E., Cedergren, E.: Chemically induced changes in the acetylcholine uptake and storage capacity of brain tissue. In: Heilbronn, E., Winter, A. (EDS.): Drugs and Cholinergic Mechanisms in the CNS, pp.245–265. Stockholm: Research Institute of National Defence 1970.Google Scholar
  426. Hemsworth, B.A., Darmer, K.I., Jr., Bosmann, H.B.: The incorporation of choline into isolated synaptosomal and synaptic vesicle fractions in the presence of quaternary ammonium compounds. Neuropharmacology 10, 109–120 (1971).PubMedGoogle Scholar
  427. Hemsworth, B. A., Foldes, F.F.: Preliminary pharmacological screening of styrylpyridine choline acetyltransferase inhibitors. Europ. J. Pharmacol. 11, 187–194 (1970).Google Scholar
  428. Hemsworth, B.A., Morris, D.: A comparison of the N-alkyl group specificity of choline acetyl-transferase from different species. J. Neurochem. 11, 793–803 (1964).PubMedGoogle Scholar
  429. Hemsworth, B. A., Smith, J.C.: The enzymic acetylation of choline analogues. J. Neurochem. 17, 171–177 (1970a).PubMedGoogle Scholar
  430. Hemsworth, B.A., Smith, J.C.: Enzymic acetylation of the stereoisomers of alpha-and beta-methyl choline. Biochem. Pharmacol. 19, 2925–2927 (1970b).PubMedGoogle Scholar
  431. Henderson, G. I., Sastry, B. V. R.: Kinetic studies of the reaction mechanism of human placental choline acetyltransferase. Fed. Proc. 30, 621 (1971).Google Scholar
  432. Hendry, I.A., Iversen, L.L., Black, I.B.: A comparison of the neural regulation of tyrosine hydroxylase activity in sympathetic ganglia of adult mice and rats. J. Neurochem. 20, 1683–1689 (1973).PubMedGoogle Scholar
  433. Hestrin, S.: The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine and its analytical application. J. biol. Chem. 180, 249–261 (1949).PubMedGoogle Scholar
  434. Heuser, J., Miledi, R.: Effect of lanthanum ions on function and structure of frog neuromuscular junction. Proc. roy. Soc. B 179, 247–260 (1971).Google Scholar
  435. Heuser, J., Reese, T.S.: Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344 (1973).PubMedGoogle Scholar
  436. Hodgkin, A.L., Keynes, R.D.: Movements of labelled calcium in squid giant axons. J. Physiol. (Lond.) 138, 253–281 (1957).Google Scholar
  437. Hodgkin, A.L., Martin, K.: Choline uptake by giant axons of Loligo. J. Physiol. (Lond.) 179, 26–27P (1965).Google Scholar
  438. Hoezl, J., Franck, H.P.: Proceedings of the Second International Meeting of the International Society of Neurochemistry, 219. Tamburini Editore (1969).Google Scholar
  439. Hofmann, W.W.: Caffeine effects on transmitter depletion and mobilization at motor nerve terminals. Amer. J. Physiol. 216, 621–629 (1969).PubMedGoogle Scholar
  440. Hofmann, W.W., Parsons, R.L., Feigen, G. A.: Effects of temperature and drugs on mammalian motor nerve terminals. Amer. J. Physiol. 211, 135–140 (1966).PubMedGoogle Scholar
  441. Hofmann, W.W., Struppler, A., Weindl, A., Velho, F.: Neuromuscular transmission with colchicine-treated nerves. Brain Res. 49, 208–213 (1973).PubMedGoogle Scholar
  442. Hofmann, W.W., Thesleff, S.: Studies on the trophic influence of nerve on skeletal muscle. Europ. J. Pharmacol. 20, 256–260 (1972).Google Scholar
  443. Hollunger, G., Niklasson, B.: The occurence of soluble acetylcholinesterases in mammalian brain. Acta pharmacol. (Kbh.) 25, Suppl.4, 78 (1967).Google Scholar
  444. Hollunger, E.G., Niklasson, B.H.: The release and molecular state of mammalian brain acetylcholinesterase. J. Neurochem. 20, 821–836 (1973).PubMedGoogle Scholar
  445. Holtzman, E., Freeman, A.R., Kashner, L.A.: Stimulation-dependent alterations in peroxidase uptake at lobster neuromuscular junctions. Science 173, 733–736 (1971).PubMedGoogle Scholar
  446. Hosie, R.J.A.: The localization of adenosine triphosphatases in morphologically characterized subcellular fractions of guinea-pig brain. Biochem. J. 96, 404–412 (1965).PubMedGoogle Scholar
  447. Hrdina, P.D., Maneckjee, A.: “Free” and “bound” acetylcholine concentrations in rat brain: variability in determination of “free” acetylcholine fraction. J. Pharm. Pharmacol. 23, 540–541 (1971).PubMedGoogle Scholar
  448. Hubbard, J. I.: Mechanism of transmitter release. Progr. Biophys. 21, 33–124 (1970).PubMedGoogle Scholar
  449. Hubbard, J.I.: Neuromuscular transmission — presynaptic factors. In: Hubbard, J.I. (Ed.): The Peripheral Nervous System, pp. 151–180. New York: Plenum Press 1974.Google Scholar
  450. Hubbard, J.I., Jones, S.F., Landau, E.M.: An examination of the effects of osmotic pressure changes upon transmitter release from mammalian motor nerve terminals. J. Physiol. (Lond.) 197, 639–657 (1968).Google Scholar
  451. Hubbard, J.I., Kwanbunbumpen, S.: Evidence for the vesicle hypothesis. J. Physiol. (Lond.) 194, 407–420 (1968).Google Scholar
  452. Hubbard, J.I., Quastel, D.M.J.: Micropharmacology of vertebrate neuromuscular transmission. Ann. Rev. Pharmacol. 13, 199–216 (1973).PubMedGoogle Scholar
  453. Hubbard, J.I., Schmidt, R.F., Yokota, T.: The effect of acetylcholine upon mammalian motor nerve terminals. J. Physiol. (Lond.) 181, 810–829 (1965).Google Scholar
  454. Hubbard, J.I., Wilson, D.F.: Neuromuscular transmission in a mammalian preparation in the absence of blocking drugs and the effect of D-tubocurarine. J. Physiol. (Lond.) 228, 307–325 (1973).Google Scholar
  455. Hubbard, J.I., Wilson, D.F., Miyamoto, M.: Reduction of transmitter release by tubocurarine. Nature (Lond.) 223, 531–533 (1969).Google Scholar
  456. Hughes, J.R.: Post-tetanic potentiation. Physiol. Rev. 38, 91–113 (1958).PubMedGoogle Scholar
  457. Hughes, R., Whaler, B.C.: Influence of nerve ending activity and of drugs on the rate of paralysis of rat diaphragm preparations by Cl. botulinum type A toxin. J. Physiol. (Lond.) 160, 221–233 (1962).Google Scholar
  458. Hunt, R.: A physiological test for choline and some of its applications. J. Pharmacol. exp. Ther. 7, 301–337 (1915).Google Scholar
  459. Hurlbut, W.P., Longenecker, H.E., Jr., Mauro, A.: Effects of calcium and magnesium on the frequency of miniature end-plate potentials during prolonged tetanization. J. Physiol. (Lond.) 219, 17–38 (1971).Google Scholar
  460. Hutter, O. F.: Post-tetanic restoration of neuromuscular transmission blocked by D-tubocurarine. J. Physiol. (Lond.) 118, 216–222 (1952).Google Scholar
  461. Hutter, O.P., Kostial, K.: Effect of magnesium and calcium ions on the release of acetylcholine. J. Physiol. (Lond.) 124, 234–241 (1954).Google Scholar
  462. Hutter, O.F., Kostial, K.: Relationship of sodium ions to release of acetylcholine. J. Physiol. (Lond.) 129, 159–166 (1955).Google Scholar
  463. Iggo, A., Vogt, M.: Preganglionic activity in normal and in reserpine-treated cats. J. Physiol. (Lond.) 150, 114–133 (1960).Google Scholar
  464. Imai, S., Riley, A.L., Berne, R.M.: Effect of ischemia on adenine nucleotides in cardiac and skeletal muscle. Circulat. Res. 15, 443–450 (1964).PubMedGoogle Scholar
  465. Israël, M., Gautron, J., Lesbats, B.: Fractionnement de l’organe électrique de la torpille: localisation subcellulaire de l’acétylcholine. J. Neurochem. 17, 1441–1450 (1970).PubMedGoogle Scholar
  466. Israël, M., Lesbats, B., Manaranche, R.: Variations d’acétylcholine en relation avec l’évolution de la décharge, pendant la stimulation de l’organe électrique de la Torpille. C. r. Acad. Sci. (Paris) 275, 2957–2960 (1972).Google Scholar
  467. Israël, M., TuČek, S.: Utilization of acetate and pyruvate for the synthesis of “total”, “bound” and “free” acetylcholine in the electric organ of Torpedo. J. Neurochem. 22, 487–491 (1974).PubMedGoogle Scholar
  468. Iversen, L.L.: Catecholamine uptake processes. Brit. med. Bull. 29, 130–135 (1973).PubMedGoogle Scholar
  469. Izquierdo, J.A.: Cholinergic mechanism-monoamines relation in certain brain structures. Progr. Drug Res. 16, 334–363 (1972).Google Scholar
  470. Jeffrey, P.L., Austin, L.: Axoplasmic transport. Progr. Neurobiol. 2, 207–255 (1973).Google Scholar
  471. Jenden, D.J., Choi, L., Silverman, R. W., Steinborn, J. A., Roch, M., Booth, R. A.: Acetylcholine turnover estimation in brain by gas chromatography / mass spectrometry. Life Sci. 14, 55–63 (1974).PubMedGoogle Scholar
  472. Johnson, G.A., Boukma, S.J., Lahti, R.A., Mathews, J.: Cyclic AMP and phosphodiesterase in synaptic vesicles from mouse brain. J. Neurochem. 20, 1387–1392 (1973).PubMedGoogle Scholar
  473. Jones, J.J., Laity, J.L.H.: A note on an unusual effect of gallamine and tubocurarine. Brit. J. Pharmacol. 24, 360–364 (1965).PubMedGoogle Scholar
  474. Jones, M., Featherstone, R.M., Bonting, S. L.: The effect of acetylcholine on the cholinesterases of chick embryo intestine cultured in vitro. J. Pharmacol. exp. Ther. 116, 114–118 (1956).PubMedGoogle Scholar
  475. Jones, R., Vrbová, G.: Effect of muscle activity on denervation hypersensitivity. J. Physiol. (Lond.) 210, 144–145P (1970).Google Scholar
  476. Jones, S.F., Kwanbunbumpen, S.: The effects of nerve stimulation and hemicholinium on synaptic vesicles at the mammalian neuromuscular junction. J. Physiol. (Lond.) 207, 31–50 (1970a).Google Scholar
  477. Jones, S.F., Kwanbunbumpen, S.: Some effects of nerve stimulation and hemicholinium on quantal transmitter release at the mammalian neuromuscular junction. J. Physiol. (Lond.) 207, 51–61 (1970b).Google Scholar
  478. Jordan, L.M., Phillis, J.W.: Acetylcholine inhibition in the intact and chronically isolated cerebral cortex. Brit. J. Pharmacol. 45, 584–595 (1972).Google Scholar
  479. Kahane, E., Lévy, J.: Sort de la choline. Administration au rat et à la souris. Arch. Sci. physiol. 4, 173–183 (1950).Google Scholar
  480. Kahlson, G., Macintosh, F. C.: Acetylcholine synthesis in a sympathetic ganglion. J. Physiol. (Lond.) 96, 277–292 (1939).Google Scholar
  481. Kaita, A.A., Goldberg, A.M.: Control of acetylcholine synthesis — the inhibition of choline acetyltransferase by acetylcholine. J. Neurochem. 16, 1185–1191 (1969).PubMedGoogle Scholar
  482. Kajimoto, N., Kirpekar, S.M.: Effect of manganese and lanthanum on spontaneous release of acetylcholine at frog motor nerve terminals. Nature (Lond.) New Biology 235, 29–30 (1972).Google Scholar
  483. Kapeller, H., Mayor, D.: The accumulation of noradrenaline in constricted sympathetic nerves as studied by fluorescence and electron microscopy. Proc. roy. Soc. B 167, 282–292 (1967).Google Scholar
  484. Karczmar, A.G., Srinavasan, R., Bernsohn, J.: Cholinergic function in the developing fetus. In: Boreus, L.O. (Ed.): Fetal Pharmacology, pp.127–176. New York: Raven Press 1972.Google Scholar
  485. Karlsson, J.O., Sjöstrand, J.: The effect of colchicine on the axonal transport of protein in the optic nerve and tract of the rabbit. Brain Res. 13, 612–616 (1969).Google Scholar
  486. Karlsson, J.O., Sjöstrand, J.: Transport of microtubular proteins in axons of retinal ganglion cells. J. Neurochem. 18, 975–982 (1971).PubMedGoogle Scholar
  487. Kasa, P.: Identification of cholinergic neurones in the spinal cord: an electron histochemical study of choline acetyltransferase. J. Physiol. (Lond.) 210, 89–90P (1970).Google Scholar
  488. Kása, P., Mann, S.P., Hebb, C.: Localization of choline acetylase: histochemistry at the light microscope level. Nature (Lond.) 226, 812–814 (1970a).Google Scholar
  489. Kása, P., Mann, S.P., Hebb, C.: Localization of choline acetylase: ultrastructural localization in spinal neurons. Nature (Lond.) 226, 814–816 (1970b).Google Scholar
  490. Kása, P., Mann, S.P., Karcsu, S., Toth, L., Jordan, S.: Transport of choline acetyltransferase and acetylcholinesterase in the rat sciatic nerve: a biochemical and histochemical study. J. Neurochem. 21, 431–436 (1973).PubMedGoogle Scholar
  491. Kato, A.C., Katz, H.S., Collier, B.: Absence of adenine nucleotide release from autonomic ganglion. Nature (Lond.) 249, 576–577 (1974).Google Scholar
  492. Katz, B., Miledi, R.: The effect of calcium on acetylcholine release from motor nerve terminals. Proc. roy. Soc. B 161, 496–503 (1965).Google Scholar
  493. Katz, B., Miledi, R.: The release of acetylcholine from nerve endings by graded electrical pulses. Proc. roy. Soc. B 167, 23–38 (1967).Google Scholar
  494. Katz, B., Miledi, R.: The binding of acetylcholine to receptors and its removal from the synaptic cleft. J. Physiol. (Lond.) 231, 549–574 (1973).Google Scholar
  495. Katz, H.S., Salehmoghaddam, S., Collier, B.: The accumulation of radioactive acetylcholine by a sympathetic ganglion and by brain: failure to label endogenous stores. J. Neurochem. 20, 569–579 (1973).PubMedGoogle Scholar
  496. Katz, N.L.: The effects on frog neuromuscular transmission of agents which act upon microtubules and microfilaments. Europ. J. Pharmacol. 19, 88–93 (1972).Google Scholar
  497. Katz, N. L., Edwards, C.: Effects of metabolic inhibitors in spontaneous and neurally evoked transmitter release from frog motor nerve terminals. J. gen. Physiol. 61, 259–260 (1973).Google Scholar
  498. Kayaalp, S.O., McIsaac, R.J.: Absence of effects of prostaglandins E1 and E2 on ganglionic transmission. Europ. J. Pharmacol. 4, 283–288 (1968).Google Scholar
  499. Kelly, J.S.: The antagonism of Ca++ by Na+ and other monovalent ions at the frog neuromuscular junction. Quart. J. exp. Physiol. 53, 239–249 (1968).PubMedGoogle Scholar
  500. Kerkut, G.A., Shapira, A., Walker, R.J.: The transport of 14C-labelled material from CNS to and from muscle along a nerve trunk. Comp. Biochem. Physiol. 23, 729–748 (1967).PubMedGoogle Scholar
  501. Keston, A.S., Wortis, S.B.: The antagonistic action of choline and its triethyl analogue. Proc. Soc. exp. Biol. (N. Y.) 61, 439–440 (1946).Google Scholar
  502. Kirshner, N., Kirshner, A.G.: Chromogranin A, dopamine β-hydroxylase and secretion from the adrenal medulla. Phil. Trans. B 261, 279–288 (1971).Google Scholar
  503. Kita, H., Van Der Kloot, W.: Calcium ionophore X-537A increases spontaneous and phasic quantal release of acetylcholine at frog neuromuscular junction. Nature (Lond.) 250, 658–660 (1974).Google Scholar
  504. Kletzien, R.F., Perdue, J.F., Springer, A.: Cytochalasin A and B. Inhibition of sugar uptake in cultured cells. J. biol. Chem. 247, 2964–2966 (1972).PubMedGoogle Scholar
  505. Knoll, J., Somogyi, G.T., Illes, P., Vizi, E.S.: Acetylcholine release from isolated vas deferens of the rat. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 274, 198–202 (1972).Google Scholar
  506. Knoll, J., Vizi, E.S.: Effect of frequency of stimulation on the inhibition by noradrenaline of the acetylcholine output from parasympathetic nerve terminals. Brit. J. Pharmacol. 42, 263–272 (1971).Google Scholar
  507. Knyihár, E., Csillik, B.: Localizations of inhibitors of the acetylcholine-and GABA-synthesizing systems in the rat brain. Exp. Brain Res. 11, 1–16 (1970).PubMedGoogle Scholar
  508. Koelle, G.B.: The elimination of enzymatic diffusion artefacts in the histochemical localization of cholinesterases and a survey of their cellular distributions. J. Pharmacol. exp. Ther. 103, 153–171 (1951).PubMedGoogle Scholar
  509. Koelle, G.B.: The histochemical identification of acetylcholinesterase in cholinergic, adrenergic and sensory neurons. J. Pharmacol. exp. Ther. 114, 167–184 (1955).PubMedGoogle Scholar
  510. Koelle, G.B.: Histochemical demonstration of reversible anticholinesterase action at selective cellular sites in vivo. J. Pharmacol. exp. Ther. 120, 488–503 (1957).PubMedGoogle Scholar
  511. Koelle, G.B.: A proposed dual neurohumoral role of acetylcholine: its function at the pre-and post-synaptic sites. Nature (Lond.) 190, 208–211 (1961).Google Scholar
  512. Koelle, G.B.: A new general concept of the neurohumoral function of acetylcholine and acetylcholinesterase. J. Pharm. Pharmacol. 14, 65–90 (1962).PubMedGoogle Scholar
  513. Koelle, G.B.: Cytological distributions and physiological functions of cholinesterases. In: Koelle, G.B. (Ed.): Handbuch der experimentellen Pharmakologie. Ergänzungswerk XV, Cholinesterases and Anticholinesterase Agents, pp. 187–298. Berlin-Heidelberg-New York: Springer 1963.Google Scholar
  514. Koelle, G.B.: Improvement in the accuracy of histochemical localization of acetylcholinesterase: facts and artifacts. In: Heilbronn, E., Winter, A. (EDS.): Drugs and Cholinergic Mechanisms in the CNS. Stockholm: Research Institute of National Defence (1970).Google Scholar
  515. Koelle, G.B.: Current concepts of synaptic structure and function. Ann. N.Y. Acad. Sci. 183, 5–20 (1971).PubMedGoogle Scholar
  516. Koelle, G.B., Davis, R., Smyrl, E.G.: New findings concerning the localization by electronmicroscopy of acetylcholinesterase in autonomie ganglia. Progr. Brain Res. 34, 371–375 (1971).Google Scholar
  517. Koelle, G.B., Friedenwald, J.S.: A histochemical method for localizing cholinesterase activity. Proc. Soc. exp. Biol. (N.Y.) 70, 617–622 (1949).Google Scholar
  518. Koelle, G.B., Steiner, E.C.: The cerebral distributions of a tertiary and a quaternary anticholinesterase agent following intravenous and intraventricular injection. J. Pharmacol. exp. Ther. 118, 420–434 (1956).PubMedGoogle Scholar
  519. Koelle, W.A., Koelle, G.B.: The localization of external or functional acetylcholinesterase at the synapses of autonomie ganglia. J. Pharmacol. exp. Ther. 126, 1–8 (1959).PubMedGoogle Scholar
  520. Koenig, E.: Synthetic mechanisms in the axon. I. Local axonal synthesis of acetylcholinesterase. J. Neurochem. 12, 343–355 (1965).PubMedGoogle Scholar
  521. Koenig, E.: Synthetic mechanisms in the axon. III. Stimulation of acetylcholinesterase synthesis by actinomycin-D in the hypoglossal nerve. J. Neurochem. 14, 429–435 (1967).PubMedGoogle Scholar
  522. Koenig, E., Koelle, G.B.: Acetylcholinesterase regeneration in peripheral nerve after irreversible inactivation. Science 132, 1249–1250 (1960).PubMedGoogle Scholar
  523. Koike, H., Eisenstadt, M., Schwartz, J.H.: Axonal transport of newly synthesized acetylcholine in an identified neuron of Aplysia. Brain Res. 37, 152–159 (1972).PubMedGoogle Scholar
  524. Koketsu, K.: Action of tetraethylammonium chloride on neuromuscular transmission. Amer. J. Physiol. 193, 213–218 (1958).PubMedGoogle Scholar
  525. Koketsu, K., Nishi, S.: Cholinergic receptors at sympathetic preganglionic nerve terminals. J. Physiol. (Lond.) 196, 293–310 (1968).Google Scholar
  526. Kopin, I.J., Breese, G.R., Krauss, K.R., Weisse, V.K.: Selective release of newly synthesized noradrenaline from cat spleen during sympathetic nerve stimulation. J. Pharmacol. exp. Ther. 161, 271–278 (1968).PubMedGoogle Scholar
  527. Korey, A., Hamilton, J.T.: The effect of replacement of potassium by cesium ions on neuromuscular blockade of the rat phrenic nerve-diaphragm preparation in vitro. Canad. J. Physiol. Pharmacol. 52, 61–69 (1974).Google Scholar
  528. Kosterlitz, H.W., Wallis, D.I.: The effects of hexamethonium and morphine on transmission in the superior cervical ganglion of the rabbit. Brit. J. Pharmacol. 26, 334–344 (1966).PubMedGoogle Scholar
  529. Kosterlitz, H.W., Waterfield, A. A.: The effect of the interval between electrical stimuli on the acetylcholine output of the myenteric plexus-longitudinal muscle preparation of the guinea-pig ileum. Brit. J. Pharmacol. 40, 162–163P (1970).Google Scholar
  530. Kosterlitz, H.W., Waterfield, A.A.: Effect of calcium and manganese on acetylcholine release from the myenteric plexus of guinea-pig and rabbit ileum. Brit. J. Pharmacol. 45, 157–158P (1972).Google Scholar
  531. Kosterlitz, H.W., Waterfield, A. A.: Characteristics of the morphine receptor in the myenteric plexus of the guinea-pig ileum. Abstr. 4th int. Meet. Neurochem. 34, (1973).Google Scholar
  532. Kostial, D., Landeka, M., Šlat, B.: Manganese ions and synaptic transmission in the superior cervical ganglion of the rat. Brit. J. Pharmacol. 51, 231–236 (1974).Google Scholar
  533. Kostial, K., Vouk, V.B.: Lead ions and synaptic transmission in the superior cervical ganglion of the cat. Brit. J. Pharmacol. 12, 219–222 (1957).PubMedGoogle Scholar
  534. Kraatz, H.G., Trautwein, W.: Die Wirkung von 2, 4-Dinitrophenol auf die neuromuskulare Erregungsübertragung. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 231, 419–439 (1957).Google Scholar
  535. Krech, D., Rosenzweig, M.R., Bennett, E. L.: Environmental impoverishment, social isolation and changes in brain chemistry and anatomy. Physiol. Behav. 1, 99–104 (1966).Google Scholar
  536. Kreutzberg, G. W.: Neuronal dynamics and axonal flow. IV. Blockage of intra-axonal enzyme transport by colchicine. Proc. nat. Acad. Sci. (Wash.) 62, 722–728 (1969).Google Scholar
  537. Krishnan, N., Singer, M.: Penetration of peroxidase into peripheral nerve fibres. Amer. J. Anat. 136, 1–13 (1973).PubMedGoogle Scholar
  538. Kristensson, K., Olsson, Y.: Uptake and retrograde axonal transport of peroxidase in hypoglossal neurons. Electron microscopical localization in the neuronal perikaryon. Acta Neuropath. (Bed.) 19, 1–9 (1971).Google Scholar
  539. Krnjević, K., Miledi, R.: Acetylcholine in mammalian neuromuscular transmission. Nature (Lond.) 182, 805–806 (1958).Google Scholar
  540. Krnjević, K., Mitchell, J.F.: The release of acetylcholine in the isolated diaphragm. J. Physiol. (Lond.) 155, 246–262 (1961).Google Scholar
  541. Krnjević, K., Phillis, J.W.: Acetylcholine-sensitive cells in the cerebral cortex. J. Physiol. (Lond.) 166, 296–326 (1963).Google Scholar
  542. Krnjević, K., Straughan, D.W.: The release of acetylcholine from the denervated rat diaphragm. J. Physiol. (Lond.) 170, 371–378 (1964).Google Scholar
  543. Kuffler, S.W.: Physiology of neuromuscular junctions: electrical aspects. Fed. Proc. 7, 437–446 (1948).PubMedGoogle Scholar
  544. Kuhar, M.J., Sethy, V.H., Roth, R.H., Aghajanian, G. K.: Choline: selective accumulation by central cholinergic neurons. J. Neurochem. 20, 581–593 (1973).PubMedGoogle Scholar
  545. Kuhar, M.J., Simon, J.R.: Acetylcholine uptake: lack of association with cholinergic neurons. J. Neurochem. 22, 1135–1137 (1974).PubMedGoogle Scholar
  546. Kuno, M.: Quantum aspects of central and ganglionic synaptic transmission in vertebrates. Physiol. Rev. 51, 647–678 (1971).PubMedGoogle Scholar
  547. Kuperman, A.S., Okamoto, M.: A comparison of the effects of some ethonium ions and their structural analogues on neuromuscular transmission in the cat. Brit. J. Pharmacol. 24, 223–239 (1965).PubMedGoogle Scholar
  548. Kupfer, C.: Histochemistry of muscle cholinesterase after motor nerve section. J. cell. comp. Physiol. 38, 469–473 (1951).Google Scholar
  549. Kuriyama, K., Roberts, E., Vos, J.: Some characteristics of binding of γ-amino butyric acid and acetylcholine to a synaptic vesicle fraction from mouse brain. Brain Res. 9, 231–252 (1968).PubMedGoogle Scholar
  550. Laity, J. L. H.: The release of prostaglandin E1 from the rat phrenic nerve-diaphragm preparation. Brit. J. Pharmacol. 37, 698–704 (1969).Google Scholar
  551. Lam, D.M.K.: Biosynthesis of acetylcholine in turtle photoreceptors. Proc. nat. Acad. Sci. (Wash.) 69, 1987–1991 (1972).Google Scholar
  552. Lampert, P., Cressman, M.: Axonal regeneration in the dorsal columns of the spinal cord of adult rats. Lab. Invest. 13, 825–839 (1964).PubMedGoogle Scholar
  553. Lanari, A., Rosenblueth, A.: The fifth stage of transmission in autonomie ganglia. Amer. J. Physiol. 127, 347–355 (1939).Google Scholar
  554. Landmesser, L., Pilar, G.: The outset and development of transmission in the chick ciliary ganglion. J. Physiol. (Lond.) 222, 691–713 (1972).Google Scholar
  555. Lapetina, E.G., Lunt, G.G., De Robertis, E.: The turnover of phosphatidyl choline in rat cerebral cortex membranes in vivo. J. Neurobiol. 1, 295–302 (1969).PubMedGoogle Scholar
  556. Larrabee, M.G., Bronk, D.W.: Prolonged facilitation of synaptic excitation in sympathetic ganglia. J. Neurophysiol. 10, 139–154 (1947).PubMedGoogle Scholar
  557. Laskowski, M.B., Thies, R.: Interaction between calcium and barium on the spontaneous release of transmitter from mammalian motor nerve terminals. Inter. J. Neurosci. 4, 11–16 (1972).Google Scholar
  558. Law, P.K., Atwood, H.L.: Cross-reinnervation of dystrophic mouse muscle. Nature (Lond.) 238, 287–288 (1972).Google Scholar
  559. Lees, G.M., Kosterlitz, H.W., Waterfield, A.A.: Characteristics of morphine-sensitive release of neuro-transmitter substances. In: Kosterlitz, H.W., Collier, H.O.J., Villareal, J.E. (Eds.): Agonist and Antagonist Actions of Narcotic Analgesic Drugs, pp. 142–152. Baltimore: University Park Press 1973.Google Scholar
  560. Lefresne, P., Guyenet, P., Glowinski, J.: Acetylcholine synthesis from [2-14C]pyruvate in rat striatal slices. J. Neurochem. 20, 1083–1098 (1973).PubMedGoogle Scholar
  561. Leheux, J.W.: Cholin als Hormon der Darmbewegung. Pflügers Arch. ges. Physiol. 173, 8–27 (1918).Google Scholar
  562. Leheux, J.W.: Cholin als Hormon der Darmbewegung. III. Die Beteiligung des Cholins an der Wirkung verschiedener organischer Säuren auf den Darm. Pflügers Arch. ges. Physiol. 190, 280–300 (1921).Google Scholar
  563. Leheux, J.W.: Cholin als Hormon der Darmbewegung. IV. Über den Einfluß des Cholins auf die normale Darmbewegung. Pflügers Arch. ges. Physiol. 190, 301–310 (1921b).Google Scholar
  564. Lehmann, K., Oelszner, W.: Die Beteiligungen zentral-cholinergischer Mechanismen an Ausbildung und Hemmung bedingter Reaktionen bei Ratten. Acta biol. med. germ. 26, 559–566 (1971).PubMedGoogle Scholar
  565. Lewartowski, B., Bielecki, K.: The influence of hemicholinium no. 3 and vagal stimulation on acetylcholine content of rabbit atria. J. Pharmacol. exp. Ther. 142, 24–30 (1963).PubMedGoogle Scholar
  566. Lewis, P.R., Shute, C.C.D.: The distribution of cholinesterase in cholinergic neurones demonstrated with the electron microscope. J. Cell. Sci. 1, 381–390 (1966).PubMedGoogle Scholar
  567. Lewis, P.R., Shute, C.C.D., Silver, A.: Confirmation from choline acetylase analyses of massive cholinergic innervation to the rat hippocampus. J. Physiol. (Lond.) 191, 215–224 (1967).Google Scholar
  568. Li, T.H.: Study of neuromuscular junction; N-M transmission in rats on choline-deficient diets. Chin. J. Physiol. 16, 9–12 (1941).Google Scholar
  569. Liang, C.C., Quastel, J.H.: Uptake of acetylcholine in rat brain cortex slices. Biochem. Pharmacol. 18, 1169–1185 (1969a).PubMedGoogle Scholar
  570. Liang, C.C., Quastel, J.H.: Effect of drugs on the uptake of acetylcholine in rat brain cortex slices. Biochem. Pharmacol. 18, 1187–1194 (1969b).Google Scholar
  571. Liberman, R.: Retinal cholinesterase in rats raised in darkness. Science 135, 372–373 (1962).PubMedGoogle Scholar
  572. Libertun, C., Timiras, P.S., Kragt, C.L.: Sexual differences in the hypothalamic cholinergic system before and after puberty: inductory effect of testosterone. Neuroendocrinology 12, 73–85 (1973).PubMedGoogle Scholar
  573. Libet, B., Owman, C.H.: Concomitant changes in formaldehyde-induced fluorescence of dopamine interneurones and in slow inhibitory postsynaptic potentials of the rabbit superior cervical ganglion, induced by stimulation of the preganglionic nerve or by a muscarinic agent. J. Physiol. (Lond.) 237, 635–662 (1974).Google Scholar
  574. Lièvremont, M., Czajka, M., Tazieff-Depierre, F.: Cycle du calcium à la jonction neuromusculaire, C. r. Acad. Sci. (Paris) 268, 379–382 (1969).Google Scholar
  575. Liley, A. W.: An investigation of spontaneous activity at the neuromuscular junction of the rat. J. Physiol. (Lond.) 132, 650–666 (1956a).Google Scholar
  576. Liley, A.W.: The effects of presynaptic polarization on the spontaneous activity at the mammalian neuromuscular junction. J. Physiol. (Lond.) 134, 427–443 (1956b).Google Scholar
  577. Liley, A.W., North, K.A.K.: An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. J. Neurophysiol. 16, 509–527 (1953).PubMedGoogle Scholar
  578. Lilleheil, G., Naess, K.: A presynaptic effect of d-tubocurarine in the neuromuscular junction. Acta physiol. scand. 52, 120–136 (1961).PubMedGoogle Scholar
  579. Lipicky, R.J., Hertz, L., Shanes, A.M.: Ca45 transfer and acetylcholine release in the rabbit superior cervical ganglion. J. cell. comp. Physiol. 62, 233–241 (1963).Google Scholar
  580. Lissák, K.: Effect of extracts of adrenergic fibers on the frog heart. Amer. J. Physiol. 125, 778–785 (1939).Google Scholar
  581. Livett, B.G., Geffen, L.B., Austin, L.: Proximo-distal transport of [14C]noradrenaline and protein in sympathetic nerves. J. Neurochem. 15, 931–939 (1968).PubMedGoogle Scholar
  582. Lloyd, D. P. C.: Post-tetanic potentiation of response in monosynaptic reflex pathways of the spinal cord. J. gen. Physiol. 33, 147–170 (1949).PubMedGoogle Scholar
  583. Loewi, O., Hellauer, H.: Über das Acetylcholin in peripheren Nerven. Pflügers Arch. ges. Physiol. 240, 769–775 (1939).Google Scholar
  584. Lømo, T.: Neurotrophic control of colchicine effects on muscle? Nature (Lond.) 249, 473–474 (1974).Google Scholar
  585. Lømo, T., Rosenthal, J.: Control of acetylcholine sensivity by muscle activity in the rat. J. Physiol. (Lond.) 221, 493–513 (1972).Google Scholar
  586. Long, J.P., Evans, C.T., Wong, S.: A pharmacological evaluation of hemicholinium analogs. J. Pharmacol. exp. Ther. 155, 223–230 (1967).PubMedGoogle Scholar
  587. Long, J.P., Schueler, F.W.: A new series of cholinesterase inhibitors. J. Amer. pharm. Ass. 43, 79–86 (1954).Google Scholar
  588. Longenecker, H.E. Jr., Hurlbut, W.P., Mauro, A., Clark, A.W.: Effects of black widow spider venom on the frog neuromuscular junction. Nature (Lond.) 225, 701–703 (1970).Google Scholar
  589. Lorente De Nó, R.: On the effect of certain quaternary ions upon frog nerve. J. cell. comp. Physiol. 33, Suppl. 1–291 (1949).Google Scholar
  590. Lubińska, L., Niemierko, S.: Velocity and intensity of bidirectional migration of acetylcholinesterase in transected nerves. Brain Res. 27, 329–342 (1971).PubMedGoogle Scholar
  591. Lubińska, L., Niemierko, S., Oberfeld, B.: Gradient of cholinesterase activity. Nature (Lond.) 189, 122–123 (1961).Google Scholar
  592. Lubinska, L., Niemierko, S., Oderfeld-Nowak, B., Szwarc, L.: Behaviour of acetylcholinesterase in isolated nerve segments. J. Neurochem. 11, 493–503 (1964).PubMedGoogle Scholar
  593. Lüllmann, H., Holland, W.: Influence of ouabain on an exchangeable calcium fraction, contractile force, and resting tension of guinea-pig atria. J. Pharmacol. exp. Ther. 137, 186–192 (1962).PubMedGoogle Scholar
  594. Lunt, G.G., Lapetina, E. G.: Incorporation of [Me14C]choline into phosphatidyl choline of rat cerebral cortex membranes in vitro. Brain Res. 18, 451–459 (1970).PubMedGoogle Scholar
  595. Macintosh, F.C.: The distribution of acetylcholine in the peripheral and the central nervous system. J. Physiol. (Lond.) 99, 436–442 (1941).Google Scholar
  596. Macintosh, F. C.: Formation, storage and release of acetylcholine at nerve endings. Canad. J. Biochem. Physiol. 37, 343–356 (1959).PubMedGoogle Scholar
  597. Macintosh, F.C.: Effect of HC-3 on acetylcholine turnover. Fed. Proc. 20, 562–568 (1961).PubMedGoogle Scholar
  598. Macintosh, F. C.: Synthesis and storage of acetylcholine in nervous tissue. Canad. J. Biochem. Physiol. 41, 2555–2571 (1963).Google Scholar
  599. Macintosh, F.C., Birks, R.L., Sastry, P.B.: Pharmacological inhibition of acetylcholine synthesis. Nature (Lond.) 178, 1181 (1956).Google Scholar
  600. Macintosh, F.C., Birks, R.L, Sastry, P.B.: Mode of action of an inhibitor of acetylcholine synthesis. Neurology (Minneap.) 8 (Suppl. 1), 90–91 (1958).Google Scholar
  601. Macintosh, F.C., Perry, W.L.M.: Biological estimation of acetylcholine. Meth. med. Res. 3, 78–92 (1950).Google Scholar
  602. Maeno, T., Nobe, S.: Analysis of presynaptic effect of d-tubocurarine on the neuromuscular transmission. Proc. Japan Acad. 46, 750–754 (1970).Google Scholar
  603. Magleby, K. L., Stevens, C. F.: The effect of voltage on the time course of end-plate currents. J. Physiol. (Lond.) 223, 151–171 (1972a).Google Scholar
  604. Magleby, K.L., Stevens, C.F.: A quantitative description of end-plate currents. J. Physiol. (Lond.) 223, 173–197 (1972b).Google Scholar
  605. Magnan, J.L., Whittaker, V.P.: Distribution of free amino acids in subcellular fractions of guinea-pig brain. Biochem. J. 98, 128–137 (1966).Google Scholar
  606. Mandel, P., Ebel, E.: Correlations between alterations in cholinergic system and behavior. In: Derobertis, E., Schacht, J. (Eds.): Neurochemistry of Cholinergic Receptors, pp.131–139. New York: Raven Press 1974.Google Scholar
  607. Mandell, A.J., Krapp, S.: The effects of chronic administration of some cholinergic and adrenergic drugs on the activity of choline acetyltransferase in the optic lobes of the chick brain. Neuropharmacology 10, 513–516 (1971).PubMedGoogle Scholar
  608. Mann, P.J.G., Tennenbaum, M., Quastel, J.H.: On the mechanism of acetylcholine formation in brain in vitro. Biochem. J. 32, 243–261 (1938).PubMedGoogle Scholar
  609. Mannervik, B., Sörbo, B.: Inhibition of choline acetyltransferase from bovine caudate nucleus by sulfhydryl reagents and reactivation of the inhibited enzyme. Biochem. Pharmacol. 19, 2509–2516 (1970).PubMedGoogle Scholar
  610. Marchbanks, R.M.: Exchangeability of radioactive acetylcholine with the bound acetylcholine of synaptosomes and synaptic vesicles. Biochem. J. 106, 87–95 (1968a).PubMedGoogle Scholar
  611. Marchbanks, R.M.:The uptake of [14C]choline into synaptosomes in vitro. Biochem. J. 110, 533–541 (1968b).Google Scholar
  612. Marchbanks, R.M.: The conversion of 14C-choline to 14C-acetylcholine in synaptosomes in vitro. Biochem. Pharmacol. 18, 1763–1766 (1969).PubMedGoogle Scholar
  613. Marchbanks, R.M.: Problems concerning the compartmentation of acetylcholine in the synaptic region. In: Balazs, R., Cremer, J.E. (Eds.): Molecular Compartmentation in the Brain, pp.21–33. New York: Wiley 1973.Google Scholar
  614. Marchbanks, R.M., Israël, M.: Aspects of acetylcholine metabolism in the electric organ of Torpedo marmorata. J. Neurochem. 18, 439–448 (1971).PubMedGoogle Scholar
  615. Marchbanks, R.M., Israël, M.: The heterogeneity of bound acetylcholine and synaptic vesicles. Biochem. J. 129, 1049–1061 (1972).PubMedGoogle Scholar
  616. Marnay, A., Nachmansohn, D.: Choline esterase in voluntary muscle. J. Physiol. (Lond.) 92, 37–47 (1938).Google Scholar
  617. Marshall, F.N., Long, J.P.: Pharmacologic studies on some compounds structurally related to the hemicholinium HC-3. J. Pharmacol. exp. Ther. 127, 236–240 (1959).PubMedGoogle Scholar
  618. Martin, A.R.: Quantal nature of synaptic transmission. Physiol. Rev. 46, 51 (1966).Google Scholar
  619. Martin, A.R., Orkand, R.K.: Postsynaptic effects of HC-3 on the neuromuscular junction of the frog. Canad. J. Biochem. 39, 343–349 (1961).PubMedGoogle Scholar
  620. Martin, A.R., Pilar, G.: Dual mode of synaptic transmission in the avian ciliary ganglion. J. Physiol. (Lond.) 168, 443–463 (1963a).Google Scholar
  621. Martin, A.R., Pilar, G.: Transmission through the ciliary ganglion of the chick. J. Physiol. (Lond.) 68, 464–475 (1963b).Google Scholar
  622. Martin, A.R., Pilar, G.: Quantal components of the synaptic potential in the ciliary ganglion of the chick. J. Physiol. (Lond.) 175, 1–16 (1964).Google Scholar
  623. Martin, K.: Concentrative accumulation of choline by human erythrocytes. J. gen. Physiol. 51, 497–516 (1968).PubMedGoogle Scholar
  624. Martin, K.: Effects of quaternary ammonium compounds on choline transport in red cells. Brit. J. Pharmacol. 36, 458–469 (1969).Google Scholar
  625. Martin, K.: Extracellular cations and the movement of choline across the erythrocyte membrane. J. Physiol. (Lond.) 224, 207–230 (1972).Google Scholar
  626. Masland, R.L., Wigton, R.S.: Nerve activity accompanying fasciculation produced by prostigmin. J. Neurophysiol. 3, 269–275 (1940).Google Scholar
  627. Masuoka, D.: Monoamines in isolated nerve ending particles. Biochem. Pharmacol. 14, 1688–1689 (1968).Google Scholar
  628. Matthews, E. K.: The effects of choline and other factors on the release of acetylcholine from the stimulated perfused superior cervical ganglion of the cat. Brit. J. Pharmacol. 21, 244–249 (1963).PubMedGoogle Scholar
  629. Matthews, E.K.: The presynaptic effects of quaternary ammonium compounds on the acetylcholine metabolism of a sympathetic ganglion. Brit. J. Pharmacol. 26, 552–566 (1966).PubMedGoogle Scholar
  630. Matthews, E.L., Quilliam, J.P.: Effect of central depressant drugs on acetylcholine release. Brit. J. Pharmacol. 22, 415–440 (1964).PubMedGoogle Scholar
  631. Max, S.R., Snyder, S.H., Rifenberick, D.H.: Effect of neuromuscular activity on choline acetyltransferase and acetylcholinesterase. Abstr. 4th int. Meet. Neurochem. 409 (1973).Google Scholar
  632. McCaman, R.E., Hunt, J.M.: Microdetermination of choline acetylase in nervous tissue. J. Neurochem. 12, 253–260 (1965).PubMedGoogle Scholar
  633. McCaman, R.E., Weinreich, D., Borys, H.: Endogenous levels of acetylcholine and choline in individual neurons of Aplysia. J. Neurochem. 21, 473–476 (1973).PubMedGoogle Scholar
  634. McCandless, D.L., Zablocka-Esplin, B., Esplin, D.W.: Rates of transmitter turnover in the cat superior cervical ganglion estimated by electrophysiological techniques. J. Neurophysiol. 34, 817–830 (1971).PubMedGoogle Scholar
  635. McCarty, L.P., Knight, A.S., Chenoweth, M.B.: Incorporation of 14C-choline into phospholipids in the isolated phrenic nerve-diaphragm of the rat. J. Neurochem. 20, 487–494 (1973).PubMedGoogle Scholar
  636. McComas, A.J., Sica, R.E.P.: Muscular dystrophy: myopathy or neuropathy? Lancet 1970 I 1119.Google Scholar
  637. McComas, A.J., Sica, R.E.P., Currie, S.: Muscular dystrophy: evidence for a neural factor. Nature (Lond.) 226, 1263–1264 (1970).Google Scholar
  638. McComas, A.J., Sica, R.E.P., Currie, S.: An electrophysiological study of Duchenne dystrophy. J. Neurol. Neurosurg. Psychiat. 34, 461–468 (1971).PubMedGoogle Scholar
  639. McGeer, P.L., McGeer, E.G., Singh, J.K., Chase, W.H.: Choline acetyltransferase localization in the control nervous system by immunohistochemistry. Brain Res. 81, 373–379 (1974).PubMedGoogle Scholar
  640. McGovern, S., Maguire, M.E., Gurd, R.S., Mahler, H.R., Moore, W.J.: Separation of adrenergic and cholinergic synaptosomes from immature rat brain. FEBS Letters 31, 193–198 (1973).PubMedGoogle Scholar
  641. McIsaac, R.J., Koelle, G.B.: Comparison of the effects of inhibition of external, internal and total acetylcholinesterase upon ganglionic transmission. J. Pharmacol. exp. Ther. 126, 9–20 (1959).PubMedGoogle Scholar
  642. McKinney, T.D.: Brain cholinesterase in grouped and singly caged adrenal-demedullated rats. Amer. J. Physiol. 219, 331–334 (1970).PubMedGoogle Scholar
  643. McKinstry, D.N., Koelle, G.B.: Acetylcholine release from the cat superior cervical ganglion by carbachol. J. Pharmacol. exp. Ther. 157, 319–327 (1967a).PubMedGoogle Scholar
  644. McKinstry, D.N., Koelle, G.B.: Effects of drugs on acetylcholine release from the cat superior cervical ganglion by carbachol. J. Pharmacol. exp. Ther. 157, 328–336 (1967b).PubMedGoogle Scholar
  645. McLennan, H., Elliott, K. A. C.: Factors affecting the synthesis of acetylcholine by brain slices. Amer. J. Physiol. 163, 605–613 (1950).PubMedGoogle Scholar
  646. Meiri, V., Rahamimoff, R.: Activation of transmitter release by strontium and calcium ions at the neuromuscular junction. J. Physiol. (Lond.) 215, 709–726 (1971).Google Scholar
  647. Meiri, V., Rahamimoff, R.: Neuromuscular transmission: inhibition by manganese ions. Science 154, 266–267 (1972).Google Scholar
  648. Mellanby, J., Thompson, P.A.: The effect of tetanus toxin at the neuromuscular junction in the goldfish. J. Physiol. (Lond.) 224, 407–419 (1972).Google Scholar
  649. Michaelson, I.A., Whittaker, V.P.: The subcellular localization of 5-hydroxytryptamine in guinea pig brain. Biochem. Pharmacol. 12, 203–211 (1963).PubMedGoogle Scholar
  650. Miledi, R.: The acetylcholine sensitivity of frog muscle fibres before and after complete or partial denervation. J. Physiol. (Lond.) 151, 1–23 (1960).Google Scholar
  651. Miledi, R.: Transmitter release induced by the injection of calcium ions into nerve terminals. Proc. roy. Soc. B 183, 421–425 (1973).Google Scholar
  652. Miledi, R., Slater, C.R.: Electrophysiology and electron microscopy of rat neuromuscular junctions after denervation. Proc. roy. Soc. B 169, 289–306 (1968).Google Scholar
  653. Miledi, R., Thies, R.E.: Post-tetanic increase in frequency of miniature end-plate potentials in calcium-free solutions. J. Physiol. (Lond.) 192, 54–55P (1967).Google Scholar
  654. Miledi, R., Thies, R.: Tetanic and post-tetanic rise in frequency of miniature end-plate potentials in low-calcium solutions. J. Physiol. (Lond.) 212, 245–257 (1971).Google Scholar
  655. Miller, E.K., Dawson, R.M.C.: Can mitochondria and synaptosomes of guinea-pig brain synthesize phospholipids? Biochem. J. 126, 805–821 (1972).PubMedGoogle Scholar
  656. Minz, B.: Pharmakologische Untersuchungen am Blutegelpräparat, zugleich eine Methode zum biologischen Nachweis von Azetylcholin bei Anwesenheit anderer pharmakologisch wirksamer körpereigener Stoffe. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 168, 292–304 (1932).Google Scholar
  657. Mitchell, J.F., Silver, A.: The spontaneous release of acetylcholine from the denervated hemidiaphragm of the rat. J. Physiol. (Lond.) 165, 117–129 (1963).Google Scholar
  658. Mizel, S.V., Wilson, L.: Inhibition of the transport of several hexoses in mammalian cells by cytochalasin B. J. biol. Chem. 247, 4102–4105 (1972).PubMedGoogle Scholar
  659. Mogey, G.A., Young, P.A.: The antagonism of curarizing activity by phenolic substances. Brit. J. Pharmacol. 4, 359–365 (1949).PubMedGoogle Scholar
  660. Molenaar, P.C., Nickolson, V.J., Polak, R.L.: Preferential release of newly synthesized acetylcholine from cerebral cortex. J. Physiol. (Lond.) 213, 64–65P (1971).Google Scholar
  661. Molenaar, P.C., Nickolson, V.J., Polak, R.L.: Preferential release of newly synthesized 3H-acetylcholine from rat cerebral cortex slices in vitro. Brit. J. Pharmacol. 47, 97–108 (1973a).Google Scholar
  662. Molenaar, P.C., Polak, R.L.: Newly formed acetylcholine in synaptic vesicles in brain tissue. Brain Res. 62, 537–542 (1973).PubMedGoogle Scholar
  663. Molenaar, P.C., Polak, R.L., Nickolson, V.J.: Subcellular localization of newly-formed [3H]acetylcholine in rat cerebral cortex in vitro. J. Neurochem. 21, 667–678 (1973b).Google Scholar
  664. Molinoff, P.B., Potter, L.T.: Isolation of the cholinergic receptor protein of Torpedo electric tissue. Advanc. biochem. Psychopharmacology 6, 111–134 (1972).Google Scholar
  665. Morgan, I.G., Austin, L.: Synaptosomal protein synthesis in a cell-free system. J. Neurochem. 15, 41–51 (1968).PubMedGoogle Scholar
  666. Morris, D.: The choline acetyltransferase of human placenta. Biochem. J. 98, 754–763 (1966).PubMedGoogle Scholar
  667. Morris, D., Grewaal, D.S.: Halogen substituted derviatives of acetylcholine as inhibitors of choline acetyltransferase. Life Sci. 8, II, 511–516 (1969).PubMedGoogle Scholar
  668. Morris, D., Maneckjee, A., Hebb, C.: The kinetic properties of human placental choline acetyl-transferase. Biochem. J. 125, 857–863 (1971).PubMedGoogle Scholar
  669. Morris, S.J.: Removal of residual amounts of acetylcholinesterase and membrane contamination from synaptic vesicles isolated from the electric organ of Torpedo. J. Neurochem. 21, 713–715 (1973).PubMedGoogle Scholar
  670. Moss, J., Colburn, R. W., Kopin, I. J.: Scorpion toxin-induced catecholamine release from synaptosomes. J. Neurochem. 22, 217–221 (1974).PubMedGoogle Scholar
  671. Mulder, A.H., Yamamura, K.L., Kuhar, M.J., Snyder, S.H.: Release of acetylcholine from hippocampal slices by potassium depolarization: dependence on high affinity choline uptake. Brain Res. 70, 372–376 (1974).PubMedGoogle Scholar
  672. Musick, J., Hubbard, J.I.: Release of protein from mouse motor nerve terminals. Nature (Lond.) 237, 279–281 (1972).Google Scholar
  673. Nachmansohn, D., Machado, A.L.: The formation of acetylcholine. A new enzyme, “choline acetylase”. J. Neurophysiol. 6, 397–403 (1943).Google Scholar
  674. Nachmansohn, D.: Chemical events in conducting and synaptic membranes during electrical activity. Proc. nat. Acad. Sci. (Wash.) 68, 3170–3174 (1971).Google Scholar
  675. Nakamura, R., Cheng, S.C.: Evidence for the compartmentalization of acetyl-coenzyme A in rat brain slices and its relation to the synthesis of acetylcholine and glutamate. Life Sci. 8, 657–662 (1969).PubMedGoogle Scholar
  676. Nakamura, R., Cheng, S.C., Naruse, H.: A study on the precursors of the acetyl moiety of acetylcholine in brain slices. Biochem. J. 118, 443–450 (1970).PubMedGoogle Scholar
  677. Nakasoto, Y., Douglas, W.W.: Cytochalasin blocks sympathetic ganglion transmission — a presynaptic effect antagonized by pyruvate. Proc. nat. Acad. Sci. (Wash.) 70, 1730–1733 (1973).Google Scholar
  678. Namba, T., Grob, D.: Cholinesterase activity of the motor endplate in isolated muscle membrane. J. Neurochem. 15, 1445–1454 (1968).PubMedGoogle Scholar
  679. Neale, J.H., Neale, E.A., Agranoff, B.W.: Radioautography of the optic tectum of the goldfish after intraocular injection of [3H]proline. Science 176, 407–410 (1972).PubMedGoogle Scholar
  680. Nickel, E., Potter, L.T.: Synaptic vesicles in freeze-etched electric tissue of Torpedo. Brain Res. 23, 95–100 (1970).PubMedGoogle Scholar
  681. Nishi, S.: Cholinergic and adrenergic receptors at sympathetic preganglionic nerve terminals. Fed. Proc. 29, 1957–1965 (1970).PubMedGoogle Scholar
  682. Nishi, S., Soeda, H., Koketsu, K.: Release of acetylcholine from sympathetic preganglionic nerve terminals. J. Neurophysiol. 30, 114–134 (1967).Google Scholar
  683. Nordenfelt, I.: Choline acetylase in normal and denervated salivary glands. Quart. J. exp. Physiol. 48, 67–79 (1963).PubMedGoogle Scholar
  684. Nordenfelt, J.: Metabolism of transmitter substances in salivary glands. In: Schneyer, L.H., Schneyer, G. A. (Eds.): Secretory Mechanisms of Salivary Glands, pp. 142–154. New York: Academic Press 1967.Google Scholar
  685. Ochs, S.: Fast transport of materials in mammalian nerve fibers. Science 176, 252–260 (1972).PubMedGoogle Scholar
  686. Oesch, F.: Trans-synaptic induction of choline acetyltransferase in the preganglionic neurone of the peripheral sympathetic nervous system. J. Pharmacol. exp. Ther. 188, 439–446 (1974).PubMedGoogle Scholar
  687. Oesch, F., Thoenen, H.: Increased activity of the peripheral nervous system: induction of choline acetyltransferase in the preganglionic cholinergic neuron. Nature (Lond.) 242, 536–537 (1973a).Google Scholar
  688. Oesch, F., Thoenen, H.: Induction of choline acetyltransferase in the preganglionic sympathetic neuron. Experientia (Basel) 29, 765 (1973b).Google Scholar
  689. Ogston, A.G.: Removal of acetylcholine from a limited volume by diffusion. J. Physiol. (Lond.) 128, 222–223 (1955).Google Scholar
  690. O’neill, J. J., Sakamoto, T.: Enzymatic fluorometric determination of acetylcholine in biological extracts. J. Neurochem. 17, 1451–1460 (1970).Google Scholar
  691. Otsuka, M., Endo, M.: The effect of guanidine on neuromuscular transmission. J. Pharmacol. exp. Ther. 128, 273–282 (1960).PubMedGoogle Scholar
  692. Otsuka, M., Nonomura, Y.: The action of phenolic substances on motor nerve endings. J. Pharmacol. exp. Ther. 140, 41–45 (1963).PubMedGoogle Scholar
  693. Paggi, P., Rossi, A.: Effect of Latrodectus mactans tredecimgultatus venom on sympathetic ganglion isolated in vitro. Toxicon 9, 265–269 (1971).PubMedGoogle Scholar
  694. Panella, A.: Action du principe actif surrénal sur la fatigue musculaire. Arch. ital. Biol. 48, 430–463 (1907).Google Scholar
  695. Parducz, A., Fehér, O.: Fine structural alterations of presynaptic endings in the superior cervical ganglion of the cat after exhausting preganglionic stimulation. Experientia (Basel) 26, 629–630 (1970).Google Scholar
  696. Parducz, A., Fehér, O., Joó, F.: Effects of stimulation and hemicholinium (HC-3) on the fine structure of the nerve endings in the superior cervical ganglion of the cat. Brain Res. 34, 61–72 (1971).PubMedGoogle Scholar
  697. Paton, W.D.M.: The action of morphine and related substances on contraction and on acetylcholine output of coaxially stimulated guinea-pig ileum. Brit. J. Pharmacol. 12, 119–127 (1957).PubMedGoogle Scholar
  698. Paton, W. D. M.: Cholinergic transmission and acetylcholine output. Canad. J. Biochem. Physiol. 41, 2637–2653 (1963).PubMedGoogle Scholar
  699. Paton, W.D.M., Thompson, J.W.: The mechanism of action of adrenaline on the superior cervical ganglion of the cat. Abstr. Commun. XIX International Physiological Congress 664-665 (1953).Google Scholar
  700. Paton, W.D.M., Vizi, E.S.: The inhibitory action of noradrenaline and adrenaline on acetylcholine output by guinea-pig ileum longitudinal muscle strip. Brit. J. Pharmacol. 35, 10–28 (1969).Google Scholar
  701. Paton, W.D.M., Vizi, E.S., Zar, M.A.: The mechanism of acetylcholine release from parasympathetic nerves. J. Physiol. (Lond.) 215, 819–848 (1971).Google Scholar
  702. Paton, W.D.M., Zar, M.A.: The origin of acetylcholine released from guinea-pig intestine and longitudinal muscle strips. J. Physiol. (Lond.) 194, 13–33 (1968).Google Scholar
  703. Patterson, P.H., Chun, L.L.Y.: The influence of non-neuronal cells on catecholamine and acetylcholine synthesis and accumulation in cultures of dissociated neurons. Proc. nat. Acad. Sci. (Wash.) 71, 3607–3610 (1974).Google Scholar
  704. Perri, V., Sacchi, O., Raviola, E., Raviola, G.: Evaluation of the number and distribution of synaptic vesicles at cholinergic nerve endings after sustained stimulation. Brain Res. 39, 526–529 (1972).PubMedGoogle Scholar
  705. Perry, W.L.M.: Acetylcholine release in the cat’s superior cervical ganglion. J. Physiol. (Lond.) 119, 439–454 (1953).Google Scholar
  706. Persson, B.O., Larsson, L., Schuberth, J., Sörbo, B.: 3-bromoacetonyltrimethylammonium bromide, a choline acetyltransferase inhibitor. Acta chem. scand. 21, 2283–2284 (1967).PubMedGoogle Scholar
  707. Peterson, E.R., Bornstein, M. B.: The neurotoxic effects of colchicine on tissue cultures of cordganglia. J. Neuropath, exp. Neurol. 27, 121–122 (1968).Google Scholar
  708. Pilar, G.: Effect of acetylcholine on pre-and postsynaptic elements of avian ciliary ganglion synapses. Fed. Proc. 28, 670 (1969).Google Scholar
  709. Pilar, G., Chiappinelli, V., Uchimura, H., Giacobini, E.: Changes, of acetylcholinesterase (AChE) and choline acetyltransferase (ChAc) correlated with the formation of cholinergic synapses in chick embryo. Physiologist 17, 307 (1974).Google Scholar
  710. Pilar, G., Jenden, D., Campbell, B.: Change in acetylcholine content in postganglionic cells of adult pigeon ciliary ganglion after denervation. Physiologist 13, 284 (1970).Google Scholar
  711. Pilar, G., Jenden, D.J., Campbell, B.: Distribution of acetylcholine in the normal and denervated pigeon ciliary ganglion. Brain Res. 49, 245–256 (1973).PubMedGoogle Scholar
  712. Poisner, A.M: Actomyosin-like protein from the adrenal medulla. Fed. Proc. 29, 545 (1970).Google Scholar
  713. Poisner, A.M., Bernstein, J.C.: A possible role of microtubules in catecholamine release from the adrenal medulla: effect of colchicine, vinca alkaloids and deuterium oxide. J. Pharmacol. exp. Ther. 177, 102–108 (1971).PubMedGoogle Scholar
  714. Poisner, A.M., Trifaró, J.M.: The role of ATP and ATPase in the release of catecholamines from the adrenal medulla. ATP-evoked release of catecholamines, ATP, and protein from isolated chromaffin granules. Molec. Pharmacol. 3, 561–571 (1967).Google Scholar
  715. Polak, R.L.: The influence of drugs on the uptake of acetylcholine by slices of rat cerebral cortex. Brit. J. Pharmacol. 36, 144–152 (1969).Google Scholar
  716. Polak, R.L., Meeuws, M.M.: The influence of atropine on the release and uptake of acetylcholine by the isolated cerebral cortex of the rat. Biochem. Pharmacol. 15, 989–992 (1966).PubMedGoogle Scholar
  717. Politoff, A.L., Rose, S., Pappas, G.D.: The calcium-binding sites of synaptic vesicles of the frog sartorius neuromuscular junction. J. Cell Biol. 61, 818–823 (1974).PubMedGoogle Scholar
  718. Potter, L.T.: Uptake of choline by nerve endings isolated from the rat cerebral cortex. In: Campbell, P.N. (Ed.): The Interaction of Drugs and Subcellular Components of Animal Cells, pp.293–303. London: Churchill 1968.Google Scholar
  719. Potter, L.T.: Synthesis, storage and release of [14C]acetylcholine in isolated rat diaphragm muscles. J. Physiol. (Lond.) 206, 145–166 (1970a).Google Scholar
  720. Potter, L.T.: Acetylcholine, choline acetyltransferase and acetylcholinesterase. Handbook of Neurochemistry, Vol. IV, pp.263–284 (1970b).Google Scholar
  721. Potter, L.T.: Acetylcholine metabolism at vertebrate neuromuscular junctions. Advanc. biochem. Psychopharmacol. 2, 163–168 (1970c).Google Scholar
  722. Potter, L.T.: Synthesis, storage and release of acetylcholine from nerve terminals. In: Bourne, G.H. (Ed.): The Structure and Function of the Nervous System, Vol.IV, pp.105–128. New York: Academic Press 1972.Google Scholar
  723. Potter, L.T., Glover, V.A.S., Saelens, J.K.: Choline acetyltransferase from rat brain. J. biol. Chem. 243, 3864–3870 (1968).PubMedGoogle Scholar
  724. Powers, M.F., Krueger, S., Schueler, F.W.: Synthesis and pharmacological studies of some aliphatic hemicholinium analogs. J. pharm. Sci. 51, 27–31 (1962).PubMedGoogle Scholar
  725. Prasad, K.N., Vernadakis, A.: Morphological and biochemical study in X-ray-and dibutyryl cyclic AMP-induced differentiated neuroblastoma cells. Exp. Cell. Res. 70, 27–32 (1972).PubMedGoogle Scholar
  726. Pumplin, D.W., McClure, W.O.: Effects of cytochalasin B and vinblastine on the release of acetylcholine from a sympathetic ganglion. Europ. J. Pharmacol. 28, 316–325 (1974).Google Scholar
  727. Puszkin, S., Berl, S.: Actomyosin-like protein from brain: separation and characterization of the actin-like component. Biochim. biophys. Acta (Amst.) 256, 695–709 (1972).Google Scholar
  728. Puszkin, S., Nicklas, W.J., Berl, S.: Actomyosin-like protein in brain: subcellular distribution. J. Neurochem. 19, 1319–1333 (1972).PubMedGoogle Scholar
  729. Pysh, J.J., Wiley, R.G.: Morphologic alterations of synapses in electrically stimulated superior cervical ganglion of the cat. Science 176, 191–193 (1972).PubMedGoogle Scholar
  730. Quarles, R., Folch-Pi, J.: Some effects of physiological cations on the behaviour of gangliosides in a chloroform-methanol-water biphasic system. J. Neurochem. 12, 543–553 (1965).PubMedGoogle Scholar
  731. Quastel, D. M. J.: The role of sodium ions in acetylcholine metabolism in sympathetic ganglia. Ph. D. thesis, McGill University, Montreal (1962).Google Scholar
  732. Quastel, D.M.J., Hackett, J.T., Cooke, J.D.: Calcium: is it required for transmitter secretion? Science 172, 1034–1036 (1971).PubMedGoogle Scholar
  733. Quastel, J.H., Tennenbaum, M., Wheatley, A.H.M.: Choline ester formation in, and choline esterase activities of, tissues in vitro. Biochem. J. 30, 1668–1681 (1936).PubMedGoogle Scholar
  734. Ramirez, G., Levitan, I.B., Mushynski, W.E.: Highly purified synaptosomal membranes from rat brain: incorporation of amino acids into membrane proteins in vitro. J. biol. Chem. 247, 5382–5390 (1972).PubMedGoogle Scholar
  735. Ramwell, P.W., Shaw, J.E., Kucharski, J.: Prostaglandin: release from the rat phrenic nerve diaphragm preparation. Science 149, 1390–1391 (1965).PubMedGoogle Scholar
  736. Rangachari, P.K., Khatter, J.C., Friesen, A.J.D.: Effect of stimulation on acetylcholine content of a sympathetic ganglion. Proc. Canad. Fed. Biol. Soc. 12, 5 (1969).Google Scholar
  737. Ranish, N., Ochs, S.: Fast axoplasmic transport of acetylcholinesterase in mammalian nerve fibres. J. Neurochem. 19, 2641–2649 (1972).PubMedGoogle Scholar
  738. Rassin, D.K.: Amino acids as putative transmitters: failure to bind in synaptic vesicles of guinea-pig cerebral cortex. J. Neurochem. 19, 139–148 (1972).PubMedGoogle Scholar
  739. Reid, W.D., Haubrich, D.R., Krishna, G.: Enzymic radioassay for acetylcholine and choline in brain. Analyt. Biochem. 42, 390–397 (1971).PubMedGoogle Scholar
  740. Reisberg, R.B.: Properties and biological significance of choline acetylase. Yale J. Biol. Med. 29, 403–435 (1957).PubMedGoogle Scholar
  741. Reitzel, N.L., Long, J.P.: The neuromuscular blocking properties of α,α’-dimethylaminoethanol-4, 4’-biacetophenone (hemicholinium). Arch. int. Pharmacodyn. 119, 20–30 (1959).PubMedGoogle Scholar
  742. Renkin, E.M.: Permability of frog skeletal muscle cells to choline. J. gen. Physiol. 44, 1159–1164 (1961).PubMedGoogle Scholar
  743. Rennick, B.R.: The renal tubular excretion of choline and thiamine in the chicken. J. Pharmacol. exp. Ther. 122, 448–456 (1958).Google Scholar
  744. Richter, D., Crossland, J.: Variation in acetylcholine content of the brain with physiological state. Amer. J. Physiol. 159, 247–255 (1949).PubMedGoogle Scholar
  745. Richter, J.A., Goldstein, A.: Effects of morphine and levorphanol on brain acetylcholine content in mice. J. Pharmacol. exp. Ther. 175, 685–691 (1970).PubMedGoogle Scholar
  746. Richter, J.A., Marchbanks, R.M.: Synthesis of radioactive acetylcholine from [3H]choline and its release from cerebral cortex slices in vitro. J. Neurochem. 18, 691–703 (1971a).PubMedGoogle Scholar
  747. Richter, J.A., Marchbanks, R.M.: Isolation of [3H]acetylcholine pools by subcellular fractionation of cerebral cortex slices incubated with [3H]choline. J. Neurochem. 18, 705–712 (1971b).PubMedGoogle Scholar
  748. Rieger, F., Tsuji, S., Massoulie, J.: Formes natives et globulaires de l’acétylcholinesterase dans la moëlle épinière et le cerveau de gymnote, Electrophorus electricus. Europ. J. Biochem. 30, 73–80 (1972).PubMedGoogle Scholar
  749. Riker, W.F., Jr.: Pharmacologic considerations in a re-evaluation of the neuromuscular synapse, Arch. Neurol. Psychiat. (Chic.) 3, 488–499 (1960).Google Scholar
  750. Riker, W.F., Jr., Roberts, J., Standaert, F.G., Fujimori, H.: The motor nerve terminal as the primary focus for drug-induced facilitation of neuromuscular transmission. J. Pharmacol. exp. Ther. 121, 286–312 (1957).PubMedGoogle Scholar
  751. Riker, W.F., Jr., Werner, G., Roberts, J., Kuperman, A.: Pharmacologic evidence for the existence of a presynaptic event in neuromuscular transmission. J. Pharmacol. exp. Ther. 125, 150–158 (1959).PubMedGoogle Scholar
  752. Ritchie, A.K., Goldberg, A.M.: Vesicular and synaptoplasmic synthesis of acetylcholine. Science 169, 489–490 (1970).PubMedGoogle Scholar
  753. Robbins, N., Fischbach, G.D.: Effects of chronic disuse of rat soleus neuromuscular junctions on presynaptic function. J. Neurophysiol. 34, 570–578 (1971).PubMedGoogle Scholar
  754. Roberts, D.V.: Neuromuscular activity of the triethyl analogue of choline in the frog. J. Physiol. (Lond.) 160, 94–105 (1962).Google Scholar
  755. Robinson, P. M., Bell, C.: The localization of acetylcholinesterase at the autonomie neuromuscular junction. J. Cell Biol. 33, 93–102 (1967).PubMedGoogle Scholar
  756. Rodriguez De Lores Arnaiz, G., Zieher, L.M., De Robertis, E.: Neurochemical and structural studies on the mechanism of action of hemicholinium-3 in central cholinergic synapses. J. Neurochem. 17, 221–229 (1970).Google Scholar
  757. Rogers, A.W., Salpeter, M.M., Ostrowski, K., Darzynkiewicz, Z.: Quantative studies on enzymes in structures in striated muscles by labeled inhibitor methods. I. The number of acetylcholinesterase molecules and of other DFP reactive sites at motor endplates, measured by radioautography. J. Cell Biol. 41, 665–685 (1969).PubMedGoogle Scholar
  758. Rose, S., Glow, P.H.: Denervation effects on the presumed de novo synthesis of muscle cholinesterase and the effects of acetylcholine availability on retinal cholinesterase. Exp. Neurol. 18, 267–275 (1967).PubMedGoogle Scholar
  759. Rosenberg, P., Kremzner, L.T., McCreery, D., Willette, R.E.: Inhibition of choline acetyltransferase activity in squid giant axon. Biochim. biophys. Acta (Amst.) 268, 49–60 (1972).Google Scholar
  760. Rosenblueth, A., Lissák, K., Lanari, A.: An explanation of the five stages of neuromuscular and ganglionic synaptic transmission. Amer. J. Physiol. 128, 31–44 (1939).Google Scholar
  761. Rosenblueth, A., Luco, J.V.: The fifth stage of neuromuscular transmission. Amer. J. Physiol. 126, 39–57 (1939).Google Scholar
  762. Rosenthal, J.: Post-tetanic potentiation at the neuromuscular junction of the frog. J. Physiol. (Lond.) 203, 121–134 (1969).Google Scholar
  763. Roskoski, R.: Choline acetyltransferase. Inhibition by thiol reagents. J. biol. Chem. 249, 2156–2159 (1974).PubMedGoogle Scholar
  764. Ross, S.B., Florvall, L., Frödén, O.: Inhibiton of choline acetyltransferase by 2-dimethyl-aminoethyl chloroacetate and related compounds. Acta pharmacol. (Kbh.) 30, 396–402 (1971).Google Scholar
  765. Ross, S.B., Jenden, D.J.: Failure of hemicholinium-3 to inhibit the uptake of 3H-choline in mouse brain in vivo. Experientia (Basel) 29, 689–690 (1973).Google Scholar
  766. Rubin, R.P.: The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol. Rev. 22, 389–428 (1970).PubMedGoogle Scholar
  767. Ryan, K.J., Kalant, H., Thomas, E.L.: Free-flow electrophoretic separation and electrical surface properties of subcellular particles from guinea-pig brain. J. Cell Biol. 49, 235–246 (1971).PubMedGoogle Scholar
  768. Sacchi, O., Perri, V.: Quantal mechanism of transmitter release during progressive depletion of the presynaptic stores at a ganglionic synapse. J. gen. Physiol. 61, 342–360 (1973).PubMedGoogle Scholar
  769. Saelens, J.K., Simke, J.P., Allen, M.P., Conroy, C.A.: Some of the dynamics of choline and acetylcholine metabolism in rat brain. Arch. int. Pharmacodyn. 203, 305–312 (1973).PubMedGoogle Scholar
  770. Saelens, J.K., Simke, J.P., Schuman, J., Allen, M. P.: Studies with agents which influence acetylcholine metabolism in mouse brain. Arch. int. Pharmacodyn. 209, 250–255 (1974).PubMedGoogle Scholar
  771. Saelens, J.K., Stoll, W.R.: Radiochemical determination of choline and acetylcholine flux from isolated tissue. J. Pharmacol. exp. Ther. 147, 336–342 (1965).PubMedGoogle Scholar
  772. Salpeter, M.M.: Electron microscopic radioautography as a quantitative tool in enzyme cytochemistry. The distribution of acetylcholinesterase at motor and plates of a vertebrate twitch muscle. J. Cell Biol. 32, 379–389 (1967).PubMedGoogle Scholar
  773. Salpeter, M.M.: Electron microscopic radioautography as a quantitative tool in enzyme cytochemistry. The distribution of DFP-reactive sites at motor endplates of a vertebrate twitch muscle. J. Cell Biol. 42, 122–134 (1969).PubMedGoogle Scholar
  774. Sastry, B.V.R., Henderson, G.I.: Kinetic mechanisms of human placental choline acetyltransferase. Biochem. Pharmacol. 21, 787–802 (1972).PubMedGoogle Scholar
  775. Sastry, P.B.: Ph. D. thesis, McGill University, Montreal (1956).Google Scholar
  776. Sattin, A., Rall, T.W.: The effect of adenosine and adenine nucleotides on the cyclic adenosine 3’-5’-phosphate content of guinea pig cerebral cortex slices. Molec. Pharmacol. 6, 13–23 (1970).Google Scholar
  777. Sawyer, C.H.: Cholinesterases in degenerating and regenerating peripheral nerves. Amer. J. Physiol. 146, 246–253 (1946).PubMedGoogle Scholar
  778. Sawyer, C.H., Hollinshead, W.H.: Cholinesterases in sympathetic fibers and ganglia. J. Neurophysiol. 8, 137–153 (1945).Google Scholar
  779. Schafer, R.: Acetylcholine: fast axoplasmic transport in insect chemoreceptor fibers. Science 180, 315–317 (1973).PubMedGoogle Scholar
  780. Schmidt, D.E., Szilagyi, P.I.A., Alkon, D.A., Green, J.P.: A method for measuring nanogram quantities of acetylcholine by pyrolysis-gas chromatography: the demonstration of acetylcholine in effluents from the rat phrenic nerve-diaphragm preparation. J. Pharmacol. exp. Ther. 174, 337–345 (1970).PubMedGoogle Scholar
  781. Schmitt, F.O.: Fibrous proteins — neuronal organelles. Proc. nat. Acad. Sci. (Wash.) 60, 1092–1101 (1968).Google Scholar
  782. Schrier, B.K., Shuster, L.: A simplified radiochemical assay for choline acetyltransferase. J. Neurochem. 14, 977–985 (1967).PubMedGoogle Scholar
  783. Schuberth, J.: Choline acetylase purification and effect of salts on the mechanism of the enzyme-catalyzed reaction. Biochim. biophys. Acta (Amst.) 122, 470–481 (1966).Google Scholar
  784. Schuberth, J., Sparf, B., Sundwall, A.: A technique for the study of acetylcholine turnover in mouse brain in vivo. J. Neurochem. 16, 695–700 (1969).PubMedGoogle Scholar
  785. Schuberth, J., Sparf, B., Sundwall, A.: On the turnover of acetylcholine in nerve endings of mouse brain in vivo. J. Neurochem. 17, 461–468 (1970).PubMedGoogle Scholar
  786. Schuberth, J., Sundwall, A.: Effect of some drugs on the uptake of acetylcholine in cortex slices of mouse brain. J. Neurochem. 14, 807–812 (1967).Google Scholar
  787. Schuberth, J., Sundwall, A.: Differences in the subcellular localization of choline, acetylcholine and atropine taken up by mouse brain slices in vitro. Acta physiol. scand. 72, 65–71 (1968).PubMedGoogle Scholar
  788. Schuberth, J., Sundwall, A., Sörbo, B.: Relation between Na+-K+ transport and the uptake of choline by brain slices. Life Sci. 6, 293–296 (1967).PubMedGoogle Scholar
  789. Schuberth, J., Sundwall, A., Sörbo, B., Lindell, J.O.: Uptake of choline by rat brain slices. J. Neurochem. 13, 347–352 (1966).Google Scholar
  790. Schueler, F. W.: A new group of respiratory paralyzants. J. Pharmacol. exp. Ther. 115, 127–143 (1955).PubMedGoogle Scholar
  791. Schueler, F. W.: The mechanism of action of the hemicholiniums. Int. Rev. Neurobiol. 2, 77–97 (1960).PubMedGoogle Scholar
  792. Schwyn, R.C.: An autoradiographic study of satellite cells in autonomie ganglia. Amer. J. Anat. 121, 727–740 (1967).PubMedGoogle Scholar
  793. Schwyn, R.C., Hall, J.L.: Studies of neurological activity in autonomie ganglia during electrical stimulation and drug administration. Anat. Rec. 151, 414 (1965).Google Scholar
  794. Sellinger, O.Z., Domino, E.F., Haarstad, V.B., Mohrman, M.E.: Intracellular distribution of [C14]-hemicholinium-3 in the canine caudate nucleus and hippocampus. J. Pharmacol. exp. Ther. 167, 63–76 (1969).PubMedGoogle Scholar
  795. Severin, S.E., Artenie, V.: The isolation, partial purification and some properties of cholineacetyl transferase from rabbit brain. Biokhimiya 32, 125–132 (1967). (Russian.)Google Scholar
  796. Shapiro, D.L.: Morphological and biochemical alterations in foetal rat brain cells cultivated in the presence of monobutyryl cyclic AMP. Nature (Lond.) 241, 203–204 (1973).Google Scholar
  797. Sharkawi, M.: Effects of some centrally acting drugs on acetylcholine synthesis by rat cerebral cortex slices. Brit. J. Pharmacol. 46, 473–479 (1972).Google Scholar
  798. Sharkawi, M., Schulman, M.P.: Relationship between acetylcholine synthesis and its concentration in rat cerebral cortex. Brit. J. Pharmacol. 36, 373–379 (1969).Google Scholar
  799. Sharpless, S.K.: Reorganization of function in the nervous system — use and disuse. Ann. Rev. Physiol. 26, 357–388 (1964).Google Scholar
  800. Shea, P.A., Aprison, M.H.: An enzymatic method for measuring picomole quantities of acetylcholine and choline in CNS tissue. Analyt. Biochem. 56, 165–177 (1973).PubMedGoogle Scholar
  801. Sheridan, M.N., Whittaker, V.P., Israël, M.: The subcellular fractionation of the electric organ of Torpedo. Z. Zellforsch. 74, 291–307 (1966).Google Scholar
  802. Siegel, F., Brooks, J., Childers, S., Campbell, J.: Calcium binding proteins from adrenergic and cholinergic tissue. Abstr. 4th Int. Meet. Neurochem. 72 (1973).Google Scholar
  803. Silbergeld, E.K., Faler, J.T., Goldberg, A.M.: Evidence for a junctional effect of lead in neuromuscular function. Nature (Lond.) 247, 49–50 (1974).Google Scholar
  804. Silinsky, E.M., Hubbard, J.L.: Release of ATP from rat motor nerve terminals. Nature (Lond.) 243, 404–405 (1973).Google Scholar
  805. Simpson, L.L.: The role of calcium in neurohumoral and neurohormonal extrusion processes. J. Pharm. Pharmacol. 20, 889–910 (1968).PubMedGoogle Scholar
  806. Simpson, L.L.: Ionic requirements for the neuromuscular blocking action of botulinum toxin: implications with regard to synaptic transmission. Neuropharmacology 10, 673–684 (1971).PubMedGoogle Scholar
  807. Simpson, L.L.: The interaction between divalent cations and botulinum toxin type A in the paralysis of the rat phrenic nerve-hemidiaphragm preparation. Neuropharmacology 12, 165–176 (1973).PubMedGoogle Scholar
  808. Simpson, L.L., Rapport, M.M.: Ganglioside inactivation of botulinum toxin. J. Neurochem. 18, 1341–1343 (1971a).PubMedGoogle Scholar
  809. Simpson, L.L., Rapport, M.M.: The binding of botulinum toxin to membrane lipids: sphingolipids, steroids and fatty acids. J. Neurochem. 18, 1751–1759 (1971b).PubMedGoogle Scholar
  810. Singer, J.J., Goldberg, A.L.: Cyclic AMP and transmission at the neuromuscular junction. Advances in Biochemical Psychopharmacology 3, 335–348 (1970).PubMedGoogle Scholar
  811. Singer, S., Ho, A., Gershon, S.: Changes in activity of choline acetylase in central nervous system of rat after intraventricular administration of noradrenaline. Nature (Lond.) New Biology 230, 152–153 (1971).Google Scholar
  812. Sjöstrand, J., Frizell, M., Hasselgren, P.O.: Effects of colchicine on axonal transport in peripheral nerves. J. Neurochem. 17, 1563–1570 (1970).PubMedGoogle Scholar
  813. Slater, P.: Effect of triethylcholine and hemicholinium-3 on acetylcholine content of rat brain. Int. J. Neuropharmacol. 7, 421–427 (1968).PubMedGoogle Scholar
  814. Slater, P.: The estimation of the “free” and “bound” acetylcholine content of rat brain. J. Pharm. Pharmacol. 23, 514–518 (1971).PubMedGoogle Scholar
  815. Slater, P., Stonier, P.D.: The uptake of hemicholinium-3 by rat brain cortex slices. J. Neurochem. 20, 637–639 (1973a).PubMedGoogle Scholar
  816. Slater, P., Stonier, P.D.: The uptake of hemicholinium-3 by rat diaphragm and isolated perfused heart. Arch. int. Pharmacodyn. 204, 407–414 (1973b).PubMedGoogle Scholar
  817. Smirnov, G.D., Byzov, A.L., Rampan, Yu. I.: Effects of some thiol poisons on the synaptic conduction of excitation in a sympathetic ganglion. Fiziol. Zh. (Mosk.) 40, 424–430 (1954).Google Scholar
  818. Smith, A.D.: Secretion of proteins (chromogranin A and dopamine β-hydroxylase) from a sympathetic neuron. Phil Trans. B 261, 363–370 (1971).Google Scholar
  819. Smith, A.D.: Release of noradrenaline from sympathetic nerves. Brit. med. Bull 29, 123–129 (1973).Google Scholar
  820. Smith, D.S.: On the significance of cross-bridges between microtubules and synaptic vesicles. Phil. Trans. B 261, 395–405 (1971).Google Scholar
  821. Smith, D.S., Järlfors, U., Beránek, R.: The organization of synaptic axoplasm in the lamprey (Petromyzon marinus) central nervous system. J. Cell Biol. 46, 199–219 (1970).PubMedGoogle Scholar
  822. Smith, J.C., Cavallito, C.J., Foldes, F.F.: Choline acetyltransferase inhibitors: a group of styryl-pyridine analogs. Biochem. Pharmacol. 16, 2438–2441 (1961).Google Scholar
  823. Snell, R.S., McIntyre, N.: Changes in the histochemical appearances of cholinesterase at the motor end plate following denervation. Brit. J. exp. Path. 37, 44–48 (1956).PubMedGoogle Scholar
  824. Sollenberg, J., Sörbo, B.: On the origins of the acetyl moiety of acetylcholine in brain studied with a differential labelling technique using 3H-14C-mixed labelled glucose and acetate. J. Neurochem. 17, 201–207 (1970).PubMedGoogle Scholar
  825. Sorimachi, M., Kataoka, R.: Choline uptake by nerve terminals: a sensitive and specific marker of cholinergic innervation. Brain Res. 72, 350–353 (1974).PubMedGoogle Scholar
  826. Sparf, B.: On the turnover of acetylcholine in the brain: an experimental study using intravenously injected radioactive choline. Acta physiol. scand., Suppl. 397, 7–47 (1973).Google Scholar
  827. Spencer, W.A., April, R.S.: Plastic properties of monosynaptic pathways in mammals. In: Horn, G., Hinde, R. A. (Eds.): Short-term Changes in Neural Activity and Behaviour, pp. 433–474. Cambridge: University Press 1970.Google Scholar
  828. Spencer, W. A., Wigdor, R.: Ultra-late PTP of monosynaptic reflex responses in the cat. Physiologist 8, 278 (1965).Google Scholar
  829. Spoor, R.P., Ferguson, F.C., Jr.: Colchicine IV. Neuromuscular transmission in isolated frog and rat tissues. J. pharm. Sci. 54, 779–780 (1965).PubMedGoogle Scholar
  830. Stavinoha, W.B., Weintraub, S.T., Modak, A.T.: The use of microwave heating to inactivate cholinesterase in the rat brain prior to analysis for acetylcholine. J. Neurochem. 20, 361–371 (1973).PubMedGoogle Scholar
  831. Stevenson, R.W., Wilson, W.S.: Drug-induced depletion of acetylcholine in the rabbit corneal epithelium. Biochem. Pharmacol. 23, 3449–3457 (1974).PubMedGoogle Scholar
  832. Stjärne, L., Wennmalm, A.: Preferential secretion of newly formed noradrenaline in the perfused rabbit heart. Acta physiol. scand. 80, 428–430 (1970).PubMedGoogle Scholar
  833. Stone, W.E.: Acetylcholine in the brain. I. “Free”, “bound” and total acetylcholine. Arch. Biochem. 59, 181–192 (1955).PubMedGoogle Scholar
  834. Stovner, J.: The effect of low calcium and of tetraethylammonium (TEA) on the rat diaphragm. Acta physiol. scand. 40, 285–296 (1957).PubMedGoogle Scholar
  835. Straughan, D.W.: The release of acetylcholine from mammalian motor nerve endings. Brit. J. Pharmacol. 15, 417–422 (1960).PubMedGoogle Scholar
  836. Strömblad, R.: Acetylcholine inactivation and acetylcholine sensitivity in denervated salivary glands. Acta physiol. scand. 34, 38–58 (1955).PubMedGoogle Scholar
  837. Suria, A., Costa, E.: Diazepam inhibition of post-tetanic potentiation in bullfrog sympathetic ganglia: possible role of prostaglandins. J. Pharmacol. exp. Ther. 180, 690–696 (1974).Google Scholar
  838. Szerb, J.C.: The estimation of acetylcholine, using leech muscle in a microbath. J. Physiol. (Lond.) 158, 8–9P (1961).Google Scholar
  839. Szerb, J.C., Malik, H., Hunter, E.G.: Relationship between acetylcholine content and release in the cat’s cerebral cortex. Canad. J. Physiol. Pharmacol. 48, 780–790 (1970).Google Scholar
  840. Szerv, J.C., Somogyi, G.T.: Variation in the release of newly synthesized acetylcholine from the longitudinal muscle of the guinea-pig ileum stimulated at low and high frequencies. Proc. Canad. Fed. Biol. Soc. 16, 8 (1973).Google Scholar
  841. Szilagyi, P.I.A., Schmidt, D.E., Green, J.P.: Microanalytical determination of acetylcholine, other choline esters and choline by pyrolysis-gas chromatography. Analyt. Chem. 40, 2009–2013 (1968).Google Scholar
  842. Takahashi, R., Aprison, M.H.: Acetylcholine content of discrete areas of the brain obtained by a near-freezing method. J. Neurochem. 11, 887–898 (1964).PubMedGoogle Scholar
  843. Takeno, K., Nishio, A., Yanagiya, I.: Bound acetylcholine in the nerve ending particles. J. Neurochem. 16, 47–52 (1969).PubMedGoogle Scholar
  844. Tauc, L., Hoffmann, A., Tsuji, S., Hinzen, D.H., Faille, L.: Transmission abolished on a cholinergic synapse after injection of acetylcholinesterase into the presynaptic neurone. Nature (Lond.) 250, 496–498 (1974).Google Scholar
  845. Taxi, J., Sotelo, C.: Cytological aspects of the axonal migration of catecholamines and of their storage material. Brain Res. 62, 431–437 (1973).PubMedGoogle Scholar
  846. Taylor, D.B., Nedergaard, O.Z., Creese, R., Case, R.: Labelled depolarizing drugs in normal and denervated muscle. Nature (Lond.) 208, 901–902 (1965).Google Scholar
  847. Teräväinen, H.: Histochemical localization of acetylcholinesterase in isolated brain synaptosomes. Histochemie 18, 191–194 (1969).PubMedGoogle Scholar
  848. Thampi, S.N., Domer, F.R., Haarstad, V.B., Schueler, F.W.: Pharmacological studies of norphenyl hemicholinium 3. J. pharm. Sci. 55, 381–386 (1966).PubMedGoogle Scholar
  849. Thesleff, S.: Supersensitivity of skeletal muscle produced by botulinum toxin. J. Physiol. (Lond.) 151, 598–607 (1960).Google Scholar
  850. Thies, R. E.: Neuromuscular depression and the apparent depletion of transmitter in mammalian muscle. J. Neurophysiol. 28, 427–442 (1965).Google Scholar
  851. Thies, R.E., Brooks, V.B.: Postsynaptic neuromuscular block produced by hemicholinium no. 3. Fed. Proc. 20, 569–578 (1961).PubMedGoogle Scholar
  852. Thoa, N.B., Wooten, G.F., Axelrod, J., Kopin, I.J.: Inhibition of release of dopamine-β-hydroxylase and noradrenaline from sympathetic nerves by colchicine, vinblastine, or cytochalasin-B. Proc. nat. Acad. Sci. (Wash.) 69, 520–522 (1972).Google Scholar
  853. Thoenen, H., Kettler, R., Saner, A.: Time course of the development of enzymes involved in the synthesis of norepinephrine in the superior cervical ganglion of the rat from birth to adult life. Brain Res. 40, 459–468 (1972).PubMedGoogle Scholar
  854. Thoenen, H., Mueller, R.A., Axelrod, J: Increased tyrosine hydroxylase activity after drug-induced alteration of sympathetic transmission. Nature (Lond.) 221, 1264 (1969).Google Scholar
  855. Thoenen, H., Mueller, R. A., Axelrod, J.: Phase difference in the induction of tyrosine hydroxylase in cell body and nerve terminals of sympathetic neurones. Proc. nat. Acad. Sci. (Wash.) 65, 58–62 (1970).Google Scholar
  856. Tobias, J.M., Lipton, M.A., Lepinat, A.: Effect of anaesthetics and convulsants on brain acetylcholine content. Proc. Soc. exp. Biol. (N.Y.) 61, 51–54 (1946).Google Scholar
  857. Toru, M., Aprison, M.H.: Brain acetylcholine studies: a new extraction procedure. J. Neurochem. 13, 1533–1544 (1966).PubMedGoogle Scholar
  858. Trethewie, E.R.: Experiments on the problem of “free” and “bound” histamine and acetylcholine. Aust. J. exp. Biol. med. Sci. 16, 225–232 (1938).Google Scholar
  859. Trifaró, J.M., Collier, B., Lastowecka, A., Stern, D.: Inhibition by colchicine and by vinblastine of acetylcholine-induced catecholamine release from the adrenal gland: an anticholinergic action, not an effect upon microtubules. Molec. Pharmacol. 8, 264–267 (1972).Google Scholar
  860. Trimble, M.E., Acara, M., Rennick, B.: Effect of hemicholinium-3 on tubular transport and metabolism of choline in the perfused rat kidney. J. Pharmacol. exp. Ther. 189, 570–576 (1974).PubMedGoogle Scholar
  861. Trotter, J.L., Burton, R.M.: Acetylcholinesterase activity of synaptic vesicle fractions and membrane fractions prepared from rat brain tissue. J. Neurochem. 16, 805–812 (1969).PubMedGoogle Scholar
  862. Tuček, S.: On subcellular localization and binding of choline acetyltransferase in the cholinergic nerve endings of the brain. J. Neurochem. 13, 1317–1327 (1966a).PubMedGoogle Scholar
  863. Tuček, S.: On the question of the localization of choline acetyltransferase in synaptic vesicles. J. Neurochem. 13, 1329–1332 (1966b).PubMedGoogle Scholar
  864. Tuček, S.: Subcellular localization of enzymes generating acetyl-CoA and their possible relation to the biosynthesis of acetylcholine. In: Heilbronn, E., Winter, A. (Eds.): Drugs and Cholinergic Mechanisms in the CNS, pp.117–131. Stockholm: Research Institute of National Defence 1970.Google Scholar
  865. Tuček, S.: Choline acetyltransferase activity in rat skeletal muscles during postnatal development. Exp. Neurol. 36, 378–388 (1972).PubMedGoogle Scholar
  866. Tuček, S., Cheng, S.-C.: Precursors of acetyl groups in acetylcholine in the brain in vivo. Biochim. biophys. Acta (Amst.) 208, 538–540 (1970).Google Scholar
  867. Tuček, S., Cheng, S.-C.: Provenance of the acetyl group of acetylcholine and compartmentalization of acetyl-CoA and Krebs cycle intermediates in the brain in vivo. J. Neurochem. 22, 893–914 (1974).PubMedGoogle Scholar
  868. Turkanis, S. A.: Some effects of vinblastine and colchicine on neuromuscular transmission. Brain Res. 54, 324–329 (1973).PubMedGoogle Scholar
  869. Ulmar, G., Whittaker, V.P.: Immunological approach to the characterization of cholinergic vesicular protein. J. Neurochem. 22, 451–454 (1974).PubMedGoogle Scholar
  870. Üvnäs, B.: An attempt to explain nervous transmitter release as due to nerve impulse-induced cation exchange. Acta physiol. scand. 87, 168–175 (1973).PubMedGoogle Scholar
  871. Vander, A.J.: Renal excretion of choline in the dog. Amer. J. Physiol. 202, 319–324 (1962).PubMedGoogle Scholar
  872. Vincenzi, F.F., West, T.C.: Effects of hemicholinium on the release of autonomic mediators in the sinoatrial node. Brit. J. Pharmacol. 24, 773–780 (1965).PubMedGoogle Scholar
  873. Vital Brazil, O., Corrado, A.P.: The curariform action of streptomycin. J. Pharmacol. exp. Ther. 120, 452–459 (1957).PubMedGoogle Scholar
  874. Vital Brazil, O., Excell, B.F.: Action of crotoxin and crotactin from the venom of Crotalus durissus terrificus (South American rattlesnake) on the frog neuromuscular junction. J. Physiol. (Lond.) 212, 34–35P (1971).Google Scholar
  875. Vital Brazil, O., Prado-Franceschi, J.: The nature of neuromuscular block produced by neomycin and gentamycin. Arch. int. Pharmacodyn. 179, 78–85 (1969).Google Scholar
  876. Vizi, E. S.: The inhibitory action of noradrenaline and adrenaline on release of acetylcholine from guinea-pig ileum longitudinal strips. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 259, 199–200 (1968).Google Scholar
  877. Vizi, E.S.: Stimulation, by inhibition of (Na+-K+-Mg2+)-activated ATP-ase, of acetylcholine release in cortical slices from rat brain. J. Physiol. (Lond.) 226, 95–118 (1972).Google Scholar
  878. Vizi, E.S., Knoll, J.: The effects of sympathetic nerve stimulation and guanethidine on parasympathetic neuroeffector transmission; the inhibition of acetylcholine release. J. Physiol. (Lond.) 23, 918–925 (1971).Google Scholar
  879. Vogel, J.R., Leaf, R.C.: Initiation of mouse killing in non-killer rats by repeated pilocarpine treatment. Physiol. Behav. 8, 421–424 (1972).PubMedGoogle Scholar
  880. Volle, R.L.: Modification by drugs of synpatic mechanisms in autonomic ganglia. Pharmacol. Rev. 18, 839–869 (1966).Google Scholar
  881. Von Hungen, K., Mahler, H.R., Moore, W.J.: Turnover of protein and ribonucleic acid in synaptic subcellular fractions from rat brain. J. biol. Chem. 243, 1415–1423 (1968).Google Scholar
  882. Vos, J., Kuriyama, K., Roberts, E.: Electrophoretic mobilities of brain subcellular particles and binding of γ-aminobutyric acid, acetylcholine, norepinephrine and 5-hydroxytryptamine. Brain Res. 9, 224–230 (1968).PubMedGoogle Scholar
  883. Wall, P.D.: Habituation and post-tetanic potentiation in the spinal cord. In: Horn, G., Hinde, R.A. (Eds.): Short-term Changes in Neural Activity and Behaviour, pp.181–210. Cambridge: University Press 1970.Google Scholar
  884. Waser, P.G., Lüthi, V.: Autoradiographische Lokalisation von 14C-Calebassen-Curarin I und 14C-Decamethonium in der motorischen Endplatte. Arch. int. Pharmacodyn. 112, 272–296 (1957).PubMedGoogle Scholar
  885. Watkins, J.C.: Metabolic regulation in the release and action of excitatory and inhibitory amino acids in the central nervous system. Biochem. Soc. Symp. 36, 33–47 (1972).PubMedGoogle Scholar
  886. Watson, W.E.: Cellular responses to axotomy and to related procedures. Brit. med. Bull. 30, 112–115 (1974a).PubMedGoogle Scholar
  887. Watson, W.E.: Physiology of neuroglia. Physiol. Rev. 54, 245–271 (1974b).PubMedGoogle Scholar
  888. Weiss, P., Hiscoe, H.B.: Experiments on the mechanism of nerve growth. J. exp. Zool. 107, 315–396 (1948).PubMedGoogle Scholar
  889. Weiss, P., Taylor, A.C., Pillai, P. A.: The nerve fiber as a system in continuous low microcinematographic and electronmicroscopic demonstration. Science 136, 330 (1962).PubMedGoogle Scholar
  890. Wellington, B.S., Livett, B.G., Jeffrey, P.L., Austin, L.: Neurostenin: isolation, biochemical characterization and histochemical localization in chick brain. Abstr. 4 th int. Meet. Neurochem. 170 (1973).Google Scholar
  891. Welsh, J.H., Hyde, J.E.: The distribution of acetylcholine in brains of rats of different ages. J. Neurophysiol. 7, 41–49 (1944).Google Scholar
  892. Welsh, J.H., Taub, R.: The action of choline and related compounds on the heart of Venus mercenaria. Biol. Bull. Marine Biol. Lab. Woods Hole 95, 346–353 (1948).Google Scholar
  893. Werner, I., Peterson, G.R., Shuster, L.: Choline acetyltransferase and acetylcholinesterase in cultured brain cells from chick embryos. J. Neurochem. 18, 141–151 (1971).PubMedGoogle Scholar
  894. Wessells, N.K., Spooner, B.S., Ash, J.F., Bradley, M.O., Luduena, M.A., Taylor, E.L., Wrenn, J.T., Yamada, K.M.: Microfilaments in cellular and developmental processes. Science 171, 135–143 (1971).PubMedGoogle Scholar
  895. White, H.L., Cavallito, C.J.: Inhibition of bacterial and mammalian choline acetyltransferases by styrylpyridine analogues. J. Neurochem. 17, 1579–1589 (1970a).PubMedGoogle Scholar
  896. White, H.L., Cavallito, C.J.: Choline acetyltransferase. Enzyme mechanism and mode of inhibition by a styrylpyridine analogue. Biochim. biophys. Acta (Amst.) 206, 343–358 (1970b).Google Scholar
  897. White, H.L., Wu, J.C.: Kinetics of choline acetyltransferases (E.C. 2.3.1.6) from human and other mammalian central and peripheral nervous tissues. J. Neurochem. 20, 297–307 (1973a).PubMedGoogle Scholar
  898. White, H.L., Wu, J.C.: Separation of apparent multiple forms of human brain choline acetyltransferase by isoelectric focussing. J. Neurochem. 21, 939–948 (1973b).PubMedGoogle Scholar
  899. Whittaker, V.P.: The isolation and characterization of acetylcholine containing particles from brain. Biochem. J. 72, 694–706 (1959).PubMedGoogle Scholar
  900. Whittaker, V.P.: Identification of acetylcholine and related esters of biological origin. In: Koelle, G.B. (Ed.): Handbuch der experimentellen Pharmakologie, Ergänzungswerk XV, Cholinesterase and Anticholinesterase Agents, pp. 1–39. Berlin-Heidelberg-New York: Springer 1963.Google Scholar
  901. Whittaker, V.P.: The application of subcellular fractionation techniques to the study of brain function. Progr. Biophys. molec. Biol. 15, 39–96 (1965).Google Scholar
  902. Whittaker, V.P.: Some properties of synaptic membranes isolated from the central nervous system. Ann. N. Y. Acad. Sci. 137, 982–998 (1966).PubMedGoogle Scholar
  903. Whittaker, V.P.: The nature of the acetylcholine pools in tissue. Progr. Brain Res. 31, 211–222 (1969).Google Scholar
  904. Whittaker, V.P.: The vesicle hypothesis. In: Andersen, P., Jansen, J.K.S. (Eds.): Excitatory Synaptic Mechanisms, pp.67–76. Oslo: Universitets Forlaget 1970.Google Scholar
  905. Whittaker, V.P.: Origin and function of synaptic vesicles. Ann. N.Y. Acad. Sci. 183, 21–32 (1971).PubMedGoogle Scholar
  906. Whittaker, V.P., Sheridan, M.N.: The morphology and acetylcholine content of isolated cerebral cortical synaptic vesicles. J. Neurochem. 12, 363–372 (1965).PubMedGoogle Scholar
  907. Whittakter, V.P., Dowdall, M.J., Boyne, A.F.: The storage and release of acetylcholine by cholinergic nerve terminals: recent results with non-mammalian preparations. Biochem. Soc. Symp. 36, 49–68 (1972b).Google Scholar
  908. Whittaker, V.P., Dowdall, M.J., Dowe, G.H.C., Facino, R.M., Scotto, J.: Proteins of cholinergic synaptic vesicles from the electric organ of Torpedo: characterization of a low molecular weight acidic protein. Brain Res. 75, 115–131 (1974).PubMedGoogle Scholar
  909. Whittaker, V.P., Essman, W.B., Dowe, G.H.C.: The isolation of pure cholinergic synaptic vesicles from the electric organs of elasmobranch fish of the family Torpedinidae. Biochem. J. 128, 833–846 (1972a).PubMedGoogle Scholar
  910. Whittaker, V.P., Michaelson, J.A., Kirkland, R.J.: The separation of synaptic vesicles from nerve-endings particles (“synaptosomes”). Biochem. J. 90, 293–303 (1964).PubMedGoogle Scholar
  911. Wiegandt, H.: The subcellular localization of gangliosides in the brain. J. Neurochem. 14, 671–674 (1967).PubMedGoogle Scholar
  912. Wiener, N.I., Messer, J.: Hemicholinium-3 induced amnesia: some temporal properties. Psychonomic Sci. 26, 129–130 (1972).Google Scholar
  913. Wilson, H., Long, J.P.: The effect of hemicholinium (HC-3) at various peripheral cholinergic transmitting sites. Arch. int. Pharmacodyn. 120, 343–352 (1959).PubMedGoogle Scholar
  914. Wilson, P.F.: The effects of dibutyryl-3’, 5’-cyclic adenosine monophosphate, theophylline and aminophylline on neuromuscular transmission in the rat. J. Pharmacol. exp. Ther. 188, 447–452 (1974).PubMedGoogle Scholar
  915. Wilson, W.S., Cooper, J.R.: The preparation of cholinergic synaptosomes from brain superior cervical ganglia. J. Neurochem. 19, 2779–2790 (1972).PubMedGoogle Scholar
  916. Wilson, W.S., Schulz, R.A., Cooper, J.R.: The isolation of cholinergic synaptic vesicles from brain superior cervical ganglion and estimation of their acetylcholine content. J. Neurochem. 20, 659–667 (1973).PubMedGoogle Scholar
  917. Winkler, H., Hörtnagl, H., Schöpf, J.A.L., Hörtnagl, H., Zur Nedden, G.: Bovine adrenal medulla: synthesis and secretion of radioactively labelled catecholamines and chromogranins. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 271, 193–203 (1971).Google Scholar
  918. Wisniewski, H., Shelanski, M.L., Terry, R. D.: Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cells. J. Cell Biol. 38, 224 (1968).PubMedGoogle Scholar
  919. Wolff, D.J., Siegel, F.L.: Purification of a calcium-binding phosphoprotein from pig brain. J. biol. Chem. 247, 4180–4185 (1972).PubMedGoogle Scholar
  920. Wooten, G.F., Coyle, J.T.: Axonal transport of catecholamine synthesizing and metabolizing enzymes. J. Neurochem. 20, 1361–1371 (1973).PubMedGoogle Scholar
  921. Yamamura, H. I., Snyder, S. H.: Choline: high-affinity uptake by rat brain synaptosomes. Science 178, 626–628 (1972).PubMedGoogle Scholar
  922. Yamamura, H.I., Snyder, S.H.: Affinity transport of choline into synaptosomes of rat brain. J. Neurochem. 21, 1355–1374 (1973).PubMedGoogle Scholar
  923. Zablocka-Esplin, B., Esplin, D.W.: Persistent changes in transmission in spinal monosynaptic pathway after prolonged tetanization. J. Neurophysiol. 34, 860–867 (1971).PubMedGoogle Scholar
  924. Zacks, S.I., Metzger, J.F., Smith, C.W., Blumberg, J.M.: Localization of ferritin-labelled botulinum toxin in the neuromuscular junction of the mouse. J. Neuropath, exp. Neurol. 21, 610–633 (1962).Google Scholar
  925. Zimmermann, H., Whittaker, V.P.: Effect of electrical stimulation on the yield and composition of synaptic vesicle from the cholinergic synapses of the electric organ of Torpedo: a combined biochemical, electrophysiological and morphological study. J. Neurochem. 22, 435–450 (1974a).PubMedGoogle Scholar
  926. Zimmermann, H., Whittaker, V.P.: Different recovery rates of the electrophysiological, biochemical and morphological parameters in the cholinergic synapses of the Torpedo electric organ after stimulation. J. Neurochem. 22, 1109–1114 (1974b).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • F. C. MacIntosh
  • B. Collier

There are no affiliations available

Personalised recommendations