Skip to main content

Inference of Optimized Control Strategies for Genetic Networks

  • Chapter
  • First Online:

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 8))

Abstract

In this chapter we present the application of control theoretical concepts to stochastic dynamical systems which are based on the current knowledge of genetic networks. We showcase the application of reinforcement learning algorithm inferring an optimized control strategy for a genetic switch reversal. The approach does not require precise knowledge of gene network mathematical equations and is therefore also applicable to experimentally obtained time traces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Csete, M.E., Doyle, J.C.: Reverse engineering of biological complexity. Science 295, 1664–1669 (2002)

    Article  Google Scholar 

  2. Ivanova, N., Dobrin, R., Lu, R., Kotenko, I., Levorse, J., et al.: Dissecting self-renewal in stem cells with rna interference. Nature 442, 533–538 (2006)

    Article  Google Scholar 

  3. Liu, Y., Asakura, M., Inoue, H., Nakamura, T., Sano, M., et al.: Sox17 is essential for the specification of cardiac mesoderm in embryonic stem cells. Proc. Natl. Acad. Sci. USA 104, 3859–3864 (2007)

    Article  Google Scholar 

  4. Mettetal, J.T., Muzzey, D., Gomez-Uribe, C., van Oudenaarden, A.: The frequency dependence of Osmo-adaptation in Saccharomyces cerevisiae. Science 319, 482–484 (2008)

    Article  Google Scholar 

  5. Shimizu-Sato, S., Huq, E., Tepperman, J.M., Quail, P.H.: A light-switchable gene promoter system. Nat. Biotech. 20, 1041–1044 (2002)

    Article  Google Scholar 

  6. Levskaya, A., Weiner, O.D., Lim, W.A., Voigt, C.A.: Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009)

    Article  Google Scholar 

  7. Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning. J. Mach. Learn. Res. 6, 503–556 (2005)

    MATH  MathSciNet  Google Scholar 

  8. Andrianantoandro, E., Basu, S., Karig, D.K., Weiss, R.: Synthetic biology: new engineering rules for an emerging discipline. Mol. Sys. Bio. 2(2006), 0028 (2006)

    Google Scholar 

  9. Waddington, C.H.: Organisers and Genes. Cambridge Univ Press, Cambridge, UK (1940)

    Google Scholar 

  10. Graf, T., Enver, T.: Forcing cells to change lineages. Nature 462, 587–594 (2009)

    Article  Google Scholar 

  11. Smith, H.: Oscillations and multiple steady states in a cyclic gene model with repression. J. Math. Biol. 25, 169–190 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Strelkowa, N., Barahona, M.: Switchable genetic oscillator operating in quasi-stable mode. J. R. Soc. Interface 7, 1071–1082 (2010)

    Article  Google Scholar 

  13. Strelkowa, N.: How Nature Works. Springer International Publishing, Switzerland (chapter Stochastic Complexity Analysis in Synthetic Biology. Emergence, Complexity and Computation, Vol. 5) (2013)

    Google Scholar 

  14. Gardner, T., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in escherichia coli. Nature 403, 339–342 (2000)

    Article  Google Scholar 

  15. Guantes, R., Poyatos, J.F.: Dynamical principles of two-component genetic oscillators. PLoS Comput. Biol. 2, e30 (2006)

    Article  Google Scholar 

  16. Swain, P.S., Elowitz, M.B., Siggia, E.D.: Intrinsic and extrinsic contributions to stochasticity in gene expression. Proceedings of the National Academy of Sciences of the United States of America, vol. 99, pp. 12795–12800 (2002)

    Google Scholar 

  17. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63, 3–42 (2006)

    Article  MATH  Google Scholar 

  18. Cai, L., Friedman, N., Xie, X.S.: Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362 (2006)

    Article  Google Scholar 

  19. Bennett, M.R., Hasty, J.: Microfluidic devices for measuring gene network dynamics in single cells. Nat. Rev. Genet. 10, 628–638 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalja Strelkowa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strelkowa, N. (2014). Inference of Optimized Control Strategies for Genetic Networks. In: Sanayei, A., Zelinka, I., Rössler, O. (eds) ISCS 2013: Interdisciplinary Symposium on Complex Systems. Emergence, Complexity and Computation, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45438-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45438-7_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45437-0

  • Online ISBN: 978-3-642-45438-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics