Skip to main content

Bone Density

  • Chapter
  • First Online:
Pediatric Orthopedic Imaging

Abstract

This chapter presents several noninvasive imaging techniques for measuring bone properties in children and adolescents. Dual-energy x-ray absorptiometry (DXA) is the most widely used but has several major limitations because it depends on two-dimensional projections. Quantitative computed tomography (QCT) allows for three-dimensional imaging, but it is more costly and delivers more radiation. Peripheral QCT (pQCT) delivers less radiation but has lower resolution and applies only to peripheral sites. High-resolution pQCT and magnetic resonance imaging (HR-MRI) help estimate bone microarchitectural parameters but require further development before clinical use. Quantitative ultrasound (QUS) is simple and inexpensive but can only measure bone quality at a single peripheral site. Clinical interpretation of bone measurements is challenging.

Portions of this chapter are reprinted with kind permission from Springer Science + Business Media: Current Osteoporosis Reports, Assessing bone mass in children and adolescents, Volume 4, 2006, pages 153–158, TAL Wren and V Gilsanz, copyright © 2006 by Current Science Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NIH Consensus Development Panel on Osteoporosis Prevention. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95. PubMed PMID: 11176917, Epub 2001/02/15. eng.

    Article  Google Scholar 

  2. Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr. 2001;139(4):509–15. PubMed PMID: 11598596, Epub 2001/10/13. eng.

    Article  CAS  PubMed  Google Scholar 

  3. Skaggs DL, Loro ML, Pitukcheewanont P, Tolo V, Gilsanz V. Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures. J Bone Miner Res. 2001;16(7):1337–42. PubMed PMID: 11450710.

    Article  CAS  PubMed  Google Scholar 

  4. Clark EM, Tobias JH, Ness AR. Association between bone density and fractures in children: a systematic review and meta-analysis. Pediatrics. 2006;117(2):e291–7. PubMed PMID: 16452336, Pubmed Central PMCID: 2742730, Epub 2006/02/03. eng.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Goulding A, Grant AM, Williams SM. Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Miner Res. 2005;20(12):2090–6. PubMed PMID: 16294262, Epub 2005/11/19. eng.

    Article  PubMed  Google Scholar 

  6. Ferrari S, Rizzoli R, Slosman D, Bonjour JP. Familial resemblance for bone mineral mass is expressed before puberty. J Clin Endocrinol Metab. 1998;83:358–61.

    CAS  PubMed  Google Scholar 

  7. Ferrari S, Rizzoli R, Chevalley T, Slosman D, Eisman JA, Bonjour JP. Vitamin-D-receptor-gene polymorphisms and change in lumbar-spine bone mineral density. Lancet. 1995;345:423–4.

    Article  CAS  PubMed  Google Scholar 

  8. Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, Hangartner TN, et al. Tracking of bone mass and density during childhood and adolescence. J Clin Endocrinol Metab. 2010;95(4):1690–8. PubMed PMID: 20194709, Epub 2010/03/03. eng.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Loro ML, Sayre J, Roe TF, Goran MI, Kaufman FR, Gilsanz V. Early identification of children predisposed to low peak bone mass and osteoporosis later in life. J Clin Endocrinol Metab. 2000;85(10):3908–18. PubMed PMID: 11061556.

    CAS  PubMed  Google Scholar 

  10. Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, et al. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab. 2011;96(10):3160–9. PubMed PMID: 21917867, Epub 2011/09/16. eng.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wren TA, Shepherd JA, Kalkwarf HJ, Zemel BS, Lappe JM, Oberfield S, et al. Racial disparity in fracture risk between white and nonwhite children in the United States. J Pediatr. 2012;161(6):1035–40 e2. PubMed PMID: 22974572. Pubmed Central PMCID: 3504618. Epub 2012/09/15. eng.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Clark EM, Ness AR, Bishop NJ, Tobias JH. Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res. 2006;21(9):1489–95. PubMed PMID: 16939408, Pubmed Central PMCID: 2742714, Epub 2006/08/31. eng.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Harcke HT, Taylor A, Bachrach S, Miller F, Henderson RC. Lateral femoral scan: an alternative method for assessing bone mineral density in children with cerebral palsy. Pediatr Radiol. 1998;28(4):241–6. PubMed PMID: 9545479, Epub 1998/06/20. eng.

    Article  CAS  PubMed  Google Scholar 

  14. Henderson RC, Berglund LM, May R, Zemel BS, Grossberg RI, Johnson J, et al. The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J Bone Miner Res. 2010;25(3):520–6. PubMed PMID: 19821773, Pubmed Central PMCID: 3153393, Epub 2009/10/14. eng.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Szalay EA, Harriman D. Adapting pediatric DXA scanning to clinical orthopaedics. J Pediatr Orthop. 2006;26(5):686–90. PubMed PMID: 16932112. Epub 2006/08/26. eng.

    Article  PubMed  Google Scholar 

  16. Zemel BS, Stallings VA, Leonard MB, Paulhamus DR, Kecskemethy HH, Harcke HT, et al. Revised pediatric reference data for the lateral distal femur measured by Hologic discovery/Delphi dual-energy X-ray absorptiometry. J Clin Densitom. 2009;12(2):207–18. PubMed PMID: 19321369. Epub 2009/03/27. eng.

    Article  PubMed  Google Scholar 

  17. Wren TA, Liu X, Pitukcheewanont P, Gilsanz V. Bone acquisition in healthy children and adolescents: comparisons of dual-energy x-ray absorptiometry and computed tomography measures. J Clin Endocrinol Metab. 2005;90(4):1925–8. PubMed PMID: 15634720.

    Article  CAS  PubMed  Google Scholar 

  18. Zemel BS, Leonard MB, Kelly A, Lappe JM, Gilsanz V, Oberfield S, et al. Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab. 2010;95(3):1265–73. PubMed PMID: 20103654, Pubmed Central PMCID: 2841534, Epub 2010/01/28. eng.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Tothill P, Pye DW. Errors due to non-uniform distribution of fat in dual X-ray absorptiometry of the lumbar spine. Br J Radiol. 1992;65(777):807–13. PubMed PMID: 1393420.

    Article  CAS  PubMed  Google Scholar 

  20. Lee DC. Optimizations in the assessment of pediatric bone [Dissertation]. Los Angeles: University of Southern California; 2009 [updated May 2009; cited Doctor of Philosophy].

    Google Scholar 

  21. Tothill P, Hannan WJ, Cowen S, Freeman CP. Anomalies in the measurement of changes in total-body bone mineral by dual-energy X-ray absorptiometry during weight change. J Bone Miner Res. 1997;12(11):1908–21. PubMed PMID: 9383696, Epub 1998/02/07. eng.

    Article  CAS  PubMed  Google Scholar 

  22. Lee DC, Campbell PP, Gilsanz V, Wren TA. Contribution of the vertebral posterior elements in anterior-posterior DXA spine scans in young subjects. J Bone Miner Res. 2009;24(8):1398–403. PubMed PMID: 19257831, Epub 2009/03/05. eng.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Hui SL, Gao S, Zhou XH, Johnston Jr CC, Lu Y, Gluer CC, et al. Universal standardization of bone density measurements: a method with optimal properties for calibration among several instruments. J Bone Miner Res. 1997;12(9):1463–70. PubMed PMID: 9286763.

    Article  CAS  PubMed  Google Scholar 

  24. Zanchetta JR, Plotkin H, Alvarez Filgueira ML. Bone mass in children: normative values for the 2–20-year-old population. Bone. 1995;16(4 Suppl):393S–9. PubMed PMID: 7626329.

    CAS  PubMed  Google Scholar 

  25. Koo WW, Massom LR, Walters J. Validation of accuracy and precision of dual energy X-ray absorptiometry for infants. J Bone Miner Res. 1995;10(7):1111–5. PubMed PMID: 7484287.

    Article  CAS  PubMed  Google Scholar 

  26. Hangartner TN, Gilsanz V. Evaluation of cortical bone by computed tomography. J Bone Miner Res. 1996;11(10):1518–25. PubMed PMID: 8889852.

    Article  CAS  PubMed  Google Scholar 

  27. Genant HK, Engelke K, Fuerst T, Gluer CC, Grampp S, Harris ST, et al. Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res. 1996;11(6):707–30. PubMed PMID: 8725168.

    Article  CAS  PubMed  Google Scholar 

  28. Link TM. Osteoporosis imaging: state of the art and advanced imaging. Radiology. 2012;263(1):3–17. PubMed PMID: 22438439, Pubmed Central PMCID: 3309802, Epub 2012/03/23. eng.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Lee DC, Gilsanz V, Wren TA. Limitations of peripheral quantitative computed tomography metaphyseal bone density measurements. J Clin Endocrinol Metab. 2007;92(11):4248–53. PubMed PMID: 17684050, Epub 2007/08/09. eng.

    Article  CAS  PubMed  Google Scholar 

  30. Kalender WA. Effective dose values in bone mineral measurements by photon absorptiometry and computed tomography. Osteoporos Int. 1992;2(2):82–7. PubMed PMID: 1536984.

    Article  CAS  PubMed  Google Scholar 

  31. Cann CE. Why, when and how to measure bone mass: a guide for the beginning user. In: Frey GD, Yester MV, editors. Expanding the role of medical physics in nuclear medicine. Washington DC: American Physics Institute; 1991. p. 250–79.

    Google Scholar 

  32. Krug R, Burghardt AJ, Majumdar S, Link TM. High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin North Am. 2010;48(3):601–21. PubMed PMID: 20609895, Pubmed Central PMCID: 2901255, Epub 2010/07/09. eng.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Burrows M, Liu D, McKay H. High-resolution peripheral QCT imaging of bone micro-structure in adolescents. Osteoporos Int. 2010;21(3):515–20. PubMed PMID: 19322507, Epub 2009/03/27. eng.

    Article  CAS  PubMed  Google Scholar 

  34. Link TM, Majumdar S, Grampp S, Guglielmi G, van Kuijk C, Imhof H, et al. Imaging of trabecular bone structure in osteoporosis. Eur Radiol. 1999;9(9):1781–8. PubMed PMID: 10602950.

    Article  CAS  PubMed  Google Scholar 

  35. Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S. Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int. 2005;16(11):1307–14. PubMed PMID: 15999292.

    Article  PubMed  Google Scholar 

  36. Kazakia GJ, Hyun B, Burghardt AJ, Krug R, Newitt DC, de Papp AE, et al. In vivo determination of bone structure in postmenopausal women: a comparison of HR-pQCT and high-field MR imaging. J Bone Miner Res. 2008;23(4):463–74. PubMed PMID: 18052756. Epub 2007/12/07. eng.

    Article  PubMed  Google Scholar 

  37. Phan CM, Matsuura M, Bauer JS, Dunn TC, Newitt D, Lochmueller EM, et al. Trabecular bone structure of the calcaneus: comparison of MR imaging at 3.0 and 1.5 T with micro-CT as the standard of reference. Radiology. 2006;239(2):488–96.

    Article  PubMed  Google Scholar 

  38. Gomberg BR, Wehrli FW, Vasilic B, Weening RH, Saha PK, Song HK, et al. Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone. 2004;35(1):266–76. PubMed PMID: 15207767.

    Article  CAS  PubMed  Google Scholar 

  39. Baroncelli GI, Federico G, Bertelloni S, de Terlizzi F, Cadossi R, Saggese G. Bone quality assessment by quantitative ultrasound of proximal phalanxes of the hand in healthy subjects aged 3–21 years. Pediatr Res. 2001;49(5):713–8. PubMed PMID: 11328957.

    Article  CAS  PubMed  Google Scholar 

  40. Fricke O, Tutlewski B, Schwahn B, Schoenau E. Speed of sound: relation to geometric characteristics of bone in children, adolescents, and adults. J Pediatr. 2005;146(6):764–8. PubMed PMID: 15973315.

    Article  PubMed  Google Scholar 

  41. Fogelman I, Blake GM. Different approaches to bone densitometry. J Nucl Med. 2000;41(12):2015–25. PubMed PMID: 11138687.

    CAS  PubMed  Google Scholar 

  42. Schonau E, Radermacher A, Wentzlik U, Klein K, Michalk D. The determination of ultrasound velocity in the os calcis, thumb and patella during childhood. Eur J Pediatr. 1994;153(4):252–6. PubMed PMID: 8194557.

    Article  CAS  PubMed  Google Scholar 

  43. Jaworski M, Lebiedowski M, Lorenc RS, Trempe J. Ultrasound bone measurement in pediatric subjects. Calcif Tissue Int. 1995;56(5):368–71. PubMed PMID: 7621343.

    Article  CAS  PubMed  Google Scholar 

  44. Mughal MZ, Langton CM, Utretch G, Morrison J, Specker BL. Comparison between broad-band ultrasound attenuation of the calcaneum and total body bone mineral density in children. Acta Paediatr. 1996;85(6):663–5. PubMed PMID: 8816199.

    Article  CAS  PubMed  Google Scholar 

  45. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20(7):1185–94. PubMed PMID: 15940371.

    Article  PubMed  Google Scholar 

  46. Wren TA, Liu X, Pitukcheewanont P, Gilsanz V. Bone densitometry in pediatric populations: discrepancies in the diagnosis of osteoporosis by DXA and CT. J Pediatr. 2005;146:776–9.

    Article  PubMed  Google Scholar 

  47. Ma DQ, Jones G. Clinical risk factors but not bone density are associated with prevalent fractures in prepubertal children. J Paediatr Child Health. 2002;38(5):497–500. PubMed PMID: 12354268.

    Article  CAS  PubMed  Google Scholar 

  48. Kovanlikaya A, Loro ML, Hangartner TN, et al. Osteopenia in children: CT assessment. Radiology. 1996;198:781–4.

    Article  CAS  PubMed  Google Scholar 

  49. Gilsanz V, Perez FJ, Campbell PP, Dorey FJ, Lee DC, Wren TA. Quantitative CT reference values for vertebral trabecular bone density in children and young adults. Radiology. 2009;250(1):222–7.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Keaveny TM, McClung MR, Wan X, Kopperdahl DL, Mitlak BH, Krohn K. Femoral strength in osteoporotic women treated with teriparatide or alendronate. Bone. 2012;50(1):165–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Gilsanz MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wren, T.A.L., Gilsanz, V. (2015). Bone Density. In: Stein-Wexler, R., Wootton-Gorges, S., Ozonoff, M. (eds) Pediatric Orthopedic Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45381-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45381-6_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45380-9

  • Online ISBN: 978-3-642-45381-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics