Skip to main content

Musculoskeletal Imaging Strategies and Controlling Radiation Exposure

  • Chapter
  • First Online:

Abstract

The chapter begins by discussing the development of imaging techniques and then addresses the tremendous importance of clinical evaluation in selecting the “best” first imaging test. Issues of appropriateness based on indications and cost containment are reviewed. Imaging modalities are presented with their risks and benefits. Techniques for reducing radiation exposure and the risks of anesthesia in imaging are examined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Roberts RE. Our heritage. Br J Radiol. 1938;11(121):38–45.

    Article  Google Scholar 

  2. Brown P. American martyrs to radiology. Clarence Madison Dally (1865–1904). 1936. Am J Roentgenol. 1995;164(1):237–9.

    Article  CAS  Google Scholar 

  3. Berrington A, Darby SC, Weiss HA, Doll R. 100 years of observation on British radiologists: mortality from cancer and other causes 1897–1997. Br J Radiol. 2001;74(882):507–19.

    Article  CAS  PubMed  Google Scholar 

  4. Pierce DA, Preston DL. Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res. 2000;154(2):178–86.

    Article  CAS  PubMed  Google Scholar 

  5. Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 2007;168(1):1–64. PubMed PMID: 17722996. Epub 2007/08/29. eng.

    Article  CAS  PubMed  Google Scholar 

  6. Barkin RM, Barkin SZ, Barkin AZ. The limping child. J Emerg Med. 2000;18(3):331–9. PubMed PMID: 10729672. Epub 2000/03/24. eng.

    Article  CAS  PubMed  Google Scholar 

  7. Flynn JM, Widmann RF. The limping child: evaluation and diagnosis. J Am Acad Orthop Surg. 2001;9(2):89–98. PubMed PMID: 11281633. Epub 2001/04/03. eng.

    CAS  PubMed  Google Scholar 

  8. ACR Appropriateness Criteria® limping child: ages 0–5 years. [Internet]. American College of Radiology; 2012 [cited 27 Aug 2012]. Available from: http://www.acr.org/~/media/ACR/Documents/AppCriteria/Diagnostic/LimpingChildAges0To5Years.pdf.

  9. Guly HR. Diagnostic errors in an accident and emergency department. Emerg Med J. 2001;18(4):263–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Brand DA, Frazier WH, Kohlhepp WC, Shea KM, Hoefer AM, Ecker MD, et al. A protocol for selecting patients with injured extremities who need X-rays. N Engl J Med. 1982;306(6):333–9.

    Article  CAS  PubMed  Google Scholar 

  11. Dowling S, Spooner CH, Liang Y, Dryden DM, Friesen C, Klassen TP, et al. Accuracy of Ottawa Ankle Rules to exclude fractures of the ankle and midfoot in children: a meta-analysis. Acad Emerg Med. 2009;16(4):277–87. PubMed PMID: 19187397. Epub 2009/02/04. eng.

    Article  PubMed  Google Scholar 

  12. Bulloch B, Neto G, Plint A, Lim R, Lidman P, Reed M, et al. Validation of the Ottawa Knee Rule in children: a multicenter study. Ann Emerg Med. 2003;42(1):48–55. PubMed PMID: 12827123. Epub 2003/06/27. eng.

    Article  PubMed  Google Scholar 

  13. Berbaum KS, el-Khoury GY, Franken EA, Kathol M, Montgomery WJ, Hesson W. Impact of clinical history on fracture detection with radiography. Radiology. 1988;168(2):507–11.

    Article  CAS  PubMed  Google Scholar 

  14. Berbaum K, Franken E, el-Khoury G. Impact of clinical history on radiographic detection of fractures: a comparison of radiologists and orthopedists. Am J Roentgenol. 1989;153(6):1221–4.

    Article  CAS  Google Scholar 

  15. Coris EE, Zwygart K, Fletcher M, Pescasio M. Imaging in sports medicine: an overview. Sports Med Arthrosc Rev. 2009;17(1):2–12. PubMed PMID: 19204546. Epub 2009/02/11. eng.

    Article  Google Scholar 

  16. Lindley-Jones M, Finlayson BJ. Triage nurse requested x rays—are they worthwhile? J Accid Emerg Med. 2000;17(2):103–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Viccellio P, Simon H, Pressman BD, Shah MN, Mower WR, Hoffman JR, et al. A prospective multicenter study of cervical spine injury in children. Pediatrics. 2001;108(2):e20.

    Article  CAS  PubMed  Google Scholar 

  18. Stiell IG, Wells GA, Vandemheen KL, Clement CM, Lesiuk H, De Maio VJ, et al. The Canadian C-spine rule for radiography in alert and stable trauma patients. JAMA. 2001;286(15):1841–8.

    Article  CAS  PubMed  Google Scholar 

  19. Booth TN. Cervical spine evaluation in pediatric trauma. Am J Roentgenol. 2012;198(5):W417–25.

    Article  Google Scholar 

  20. Wong AT, Brady KB, Caldwell AM, Graber NM, Rubin DH, Listman DA. Low-risk criteria for pelvic radiography in pediatric blunt trauma patients. Pediatr Emerg Care. 2011;27(2):92–6.

    Article  PubMed  Google Scholar 

  21. Lagisetty J, Slovis T, Thomas R, Knazik S, Stankovic C. Are routine pelvic radiographs in major pediatric blunt trauma necessary? Pediatr Radiol. 2012;42(7):853–8.

    Article  PubMed  Google Scholar 

  22. ACR Appropriateness Criteria® chronic foot pain [Internet]. American College of Radiology; 2008 [cited 27 Aug 2012]. Available from: http://www.acr.org/~/media/ACR/Documents/AppCriteria/Diagnostic/ChronicFootPain.pdf.

  23. ACR Appropriateness Criteria® nontraumatic knee pain [Internet]. American College of Radiology; 2008 [cited 27 Aug 2012]. Available from: http://www.acr.org/~/media/ACR/Documents/AppCriteria/Diagnostic/NontraumaticKneePain.pdf.

  24. ACR Appropriateness Criteria® acute hand and wrist trauma [Internet]. American College of Radiology; 2008 [cited 27 Aug 2012]. Available from: http://www.acr.org/~/media/ACR/Documents/AppCriteria/Diagnostic/AcuteHandAndWristTrauma.pdf.

  25. ACR Appropriateness Criteria® developmental dysplasia of the hip—child [Internet]. American College of Radiology; 2010 [cited 27 Aug 2012]. Available from: http://www.acr.org/~/media/ACR/Documents/AppCriteria/Diagnostic/DevelopmentalDysplasiaOfHipChild.pdf.

  26. ACR Appropriateness Criteria® acute trauma to the knee [Internet]. American College of Radiology; 2011 [cited 27 Aug 2012]. Available from: http://www.acr.org/~/media/ACR/Documents/AppCriteria/Diagnostic/AcuteTraumaKnee.pdf.

  27. ACR Appropriateness Criteria® suspected physical abuse—child [Internet]. American College of Radiology; 2012 [cited 27 Aug 2012]. Available from: http://www.acr.org/~/media/ACR/Documents/AppCriteria/Diagnostic/SuspectedPhysicalAbuseChild.pdf.

  28. ACR Appropriateness Criteria® soft-tissue masses [Internet]. American College of Radiology; 2009 [cited 27 Aug 2012]. Available from: http://www.acr.org/~/media/ACR/Documents/AppCriteria/Diagnostic/SoftTissueMasses.pdf.

  29. McCauley RGK, Schwartz AM, Leonidas JC, Darling DB, Bankoff MS, Swan CS. Comparison views in extremity injury in children: an efficacy study. Radiology. 1979;131(1):95–7.

    Article  CAS  PubMed  Google Scholar 

  30. Merten DF. Comparison radiographs in extremity injuries of childhood: current application in radiological practice. Radiology. 1978;126(1):209–10.

    Article  CAS  PubMed  Google Scholar 

  31. Swischuk LE, Hernandez JA. Frequently missed fractures in children (value of comparative views). Emerg Radiol. 2004;11(1):22–8. PubMed PMID: 15278701. Epub 2004/07/28. eng.

    Article  PubMed  Google Scholar 

  32. Cho KH, Lee SM, Lee YH, Suh KJ. Ultrasound diagnosis of either an occult or missed fracture of an extremity in pediatric-aged children. Korean J Radiol. 2010;11(1):84–94. PubMed PMID: 20046499. Pubmed Central PMCID: 2799655. Epub 2010/01/05. eng.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Elbourne D, Dezateux C, Arthur R, Clarke NM, Gray A, King A, et al. Ultrasonography in the diagnosis and management of developmental hip dysplasia (UK hip trial): clinical and economic results of a multicentre randomised controlled trial. Lancet. 2002;360(9350):2009–17. PubMed PMID: 12504396. Epub 2002/12/31. eng.

    Article  PubMed  Google Scholar 

  34. Peng PD, Spain DA, Tataria M, Hellinger JC, Rubin GD, Brundage SI. CT angiography effectively evaluates extremity vascular trauma. Am Surg. 2008;74(2):103–7. PubMed PMID: 18306857. Epub 2008/03/01. eng.

    PubMed  Google Scholar 

  35. Mail J, Cohen M, Mirkin L, Provisor A. Response of osteosarcoma to preoperative intravenous high-dose methotrexate chemotherapy: CT evaluation. Am J Roentgenol. 1985;144(1):89–93.

    Article  CAS  Google Scholar 

  36. Darge K, Jaramillo D, Siegel MJ. Whole-body MRI in children: current status and future applications. Eur J Radiol. 2008;68(2):289–98.

    Article  PubMed  Google Scholar 

  37. Siegel MJ, Acharyya S, Hoffer FA, Wyly JB, Friedmann AM, Snyder BS, et al. Whole-body MR imaging for staging of malignant tumors in pediatric patients: results of the American College of Radiology Imaging Network 6660 Trial. Radiology. 2013;266(2):599–609. Epub 2013/2/1.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Karcaaltincaba M, Oguz B, Haliloglu M. Current status of contrast-induced nephropathy and nephrogenic systemic fibrosis in children. Pediatr Radiol. 2009;39 Suppl 3:S382–4.

    Article  Google Scholar 

  39. Treves ST, Baker A, Fahey FH, Cao X, Davis RT, Drubach LA, et al. Nuclear medicine in the first year of life. J Nucl Med. 2011;52(6):905–25.

    Article  PubMed  Google Scholar 

  40. Drubach LA, Johnston PR, Newton AW, Perez-Rossello JM, Grant FD, Kleinman PK. Skeletal trauma in child abuse: detection with 18F-NaF PET1. Radiology. 2010;255(1):173–81.

    Article  PubMed  Google Scholar 

  41. Bautista AB, Burgos A, Nickel BJ, Yoon JJ, Tilara AA, Amorosa JK. Do clinicians use the American College of Radiology Appropriateness Criteria in the management of their patients? Am J Roentgenol. 2009;192(6):1581–5.

    Article  Google Scholar 

  42. Tigges S, Sutherland D, Manaster BJ. Do radiologists use the American College of Radiology Musculoskeletal Appropriateness Criteria? Am J Roentgenol. 2000;175(2):545–7.

    Article  CAS  Google Scholar 

  43. Levy G, Blachar A, Goldstein L, Paz I, Olsha S, Atar E, et al. Nonradiologist utilization of American College of Radiology Appropriateness Criteria in a preauthorization center for MRI requests: applicability and effects. Am J Roentgenol. 2006;187(4):855–8.

    Article  Google Scholar 

  44. Studdert D, Mello MM, Sage WM, et al. Defensive medicine among high-risk specialist physicians in a volatile malpractice environment. JAMA. 2005;293(21):2609–17.

    Article  CAS  PubMed  Google Scholar 

  45. Parker L, Nazarian LN, Carrino JA, Morrison WB, Grimaldi G, Frangos AJ, et al. Musculoskeletal imaging: Medicare use, costs, and potential for cost substitution. J Am Coll Radiol. 2008;5(3):182–8.

    Article  PubMed  Google Scholar 

  46. Kennedy S, Forman HP. Deficit reduction act: effects on utilization of noninvasive musculoskeletal imaging. Radiology. 2012;264(1):146–53.

    Article  PubMed  Google Scholar 

  47. Schauer DA, Linton OW. National Council on Radiation Protection and Measurements report shows substantial medical exposure increase. Radiology. 2009;253(2):293–6.

    Article  PubMed  Google Scholar 

  48. National Council on Radiation Protection and Measurements. Report no. 160 – Ionizing radiation exposure of the population of the United States. Bethesda; 2009.

    Google Scholar 

  49. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007;37(2–4):1–332.

    Google Scholar 

  50. Zarembo A. Hospital error leads to radiation overdoses after Cedars-Sinai reset a CT scan machine in February 2008, more than 200 brain scans on potential stroke patients were performed at eight times the normal dose of radiation, the hospital says. Los Angeles Times. 2009; 13 Oct 2009.

    Google Scholar 

  51. Ukisu R, Kushihashi T, Soh I. Skin injuries caused by fluoroscopically guided interventional procedures: case-based review and self-assessment module. Am J Roentgenol. 2009;193(6 Supplement):S59–69.

    Article  Google Scholar 

  52. National Research Council Committee to assess health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2. Washington, DC: The National Academies Press; 2006.

    Google Scholar 

  53. Hall EJ, Giaccia A. The physics and chemistry of radiation absorption. Radiobiology for the radiologist. 7th ed. Philadelphia: Lippincott Williams and Wilkins; 2012. p. 3–11.

    Google Scholar 

  54. Hall EJ, Session I. Helical CT and cancer risk. Introduction to session I. Pediatr Radiol. 2002;32:225–7.

    Article  PubMed  Google Scholar 

  55. Beir V. Health effects of exposure to low levels of ionizing radiation. Washington, DC: The National Academies Press; 1990.

    Google Scholar 

  56. Hall E, Giaccia A. Cancer biology. Radiobiology for the radiologist. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2012. p. 273–302.

    Google Scholar 

  57. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci. 2003;100(24):13761–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Stewart A, Webb J, Hewitt D. A survey of childhood malignancies. Br Med J. 1958;1(5086):1495–508.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Doll R, Wakeford R. Risk of childhood cancer from fetal irradiation. Br J Radiol. 1997;70(830):130–9.

    Article  CAS  PubMed  Google Scholar 

  60. Doody MM, Lonstein JE, Stovall M, Hacker DG, Luckyanov N, Land CE. Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine. 2000;25(16):2052–63.

    Article  CAS  PubMed  Google Scholar 

  61. Levy ARM, Goldberg MSP, Mayo NEP, Hanley JAP, Poitras BMDF. Reducing the lifetime risk of cancer from spinal radiographs among people with adolescent idiopathic scoliosis. Spine. 1996;21(13):1540–7.

    Article  CAS  PubMed  Google Scholar 

  62. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840):499–505. PubMed PMID: 22681860. Pubmed Central PMCID: 3418594. Epub 2012/06/12. eng.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. Br Med J. 2013;346:f2360. Pubmed Central PMCID: 3660619. Epub 2013/05/23. eng.

    Article  Google Scholar 

  64. Einstein AJ. Beyond the bombs: cancer risks of low-dose medical radiation. Lancet. 2012;380(9840):455–7. PubMed PMID: 22681861. Epub 2012/06/12. eng.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Gonzalez A, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 2004;363(9406):345–51. PubMed PMID: 15070562. Epub 2004/04/09. eng.

    Article  Google Scholar 

  66. Brenner DJ, Hall EJ. Computed tomography–an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84. PubMed PMID: 18046031. Epub 2007/11/30. eng.

    Article  CAS  PubMed  Google Scholar 

  67. AAPM position statement on radiation risks from medical imaging procedures. American Association of Physicists in Medicine; 2011 [cited 12 May 2012]. Available from: http://www.aapm.org/org/policies/details.asp?id=318&type=PP&current=true.

  68. Position statement of the Health Physics Society. Radiation risk in perspective. Health Physics Society; 2010 [cited 1 Aug 2012]. Available from: http://hps.org/documents/risk_ps010-2.pdf.

  69. Rehani MM, Frush DP. Patient exposure tracking: the IAEA smart card project. Radiat Prot Dosimetry. 2011;147(1–2):314–6. PubMed PMID: 21778155. Epub 2011/07/23. eng.

    Article  PubMed  Google Scholar 

  70. ACR Appropriateness Criteria® radiation dose assessment introduction [Internet]. American College of Radiology; 2007 [cited 27 Aug 2012]. Available from: http://www.acr.org/~/media/ACR/Documents/AppCriteria/RRLInformation.pdf.

  71. Mogaadi M, Ben Omrane L, Hammou A. Effective dose for scoliosis patients undergoing full spine radiography. Radiat Prot Dosimetry. 2011;7:2011.

    Google Scholar 

  72. Fahey FH. Dosimetry of pediatric PET/CT. J Nucl Med. 2009;50(9):1483–91.

    Article  CAS  PubMed  Google Scholar 

  73. Chawla S, Federman N, Nagata K, Zhang D, Nuthakki S, Angel E, et al. Estimated cumulative radiation dose from PET/CT in pediatric patients with malignancies: a 5-year retrospective review. Pediatr Radiol. 2008;38 Suppl 2:s338.

    Google Scholar 

  74. ACR Appropriateness Criteria® suspected spine trauma. Reston: American College of Radiology; 2012 [cited 27 Aug 2012]. Available from: http://www.acr.org/~/media/ACR/Documents/AppCriteria/Diagnostic/SuspectedSpineTrauma.pdf.

  75. Dorfman AL, Fazel R, Einstein AJ, Applegate KE, Krumholz HM, Wang Y, et al. Use of medical imaging procedures with ionizing radiation in children: a population-based study. Arch Pediatr Adolesc Med. 2011;165(5):458–64. PubMed PMID: 21199972. Epub 2011/01/05. eng.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Korner M, Weber CH, Wirth S, Pfeifer KJ, Reiser MF, Treitl M. Advances in digital radiography: physical principles and system overview. Radiographics. 2007;27(3):675–86. PubMed PMID: 17495286. Epub 2007/05/15. eng.

    Article  PubMed  Google Scholar 

  77. Cohen M, Corea D, Wanner M, Karmazyn B, Gunderman R, Applegate K, et al. Evaluation of a new phosphor plate technology for neonatal portable chest radiographs. Acad Radiol. 2011;18(2):197–8. PubMed PMID: 21232684. Epub 2011/01/15. eng.

    Article  PubMed  Google Scholar 

  78. Willis C. Computed radiography: a higher dose? Pediatr Radiol. 2002;32(10):745–50.

    Article  PubMed  Google Scholar 

  79. Don S. Radiosensitivity of children: potential for overexposure in CR and DR and magnitude of doses in ordinary radiographic examinations. Pediatr Radiol. 2004;34 Suppl 3:S167–72. discussion S234–41. PubMed PMID: 15558258. Epub 2004/11/24. eng.

    Article  PubMed  Google Scholar 

  80. Willis CE. The ALARA concept in pediatric CR and DR: dose reduction in pediatric radiographic exams. Pediatr Radiol. 2004;34 Suppl 3:S159–247. PubMed PMID: 15558256. Epub 2004/11/24. eng.

    Google Scholar 

  81. Don S, Whiting BR, Rutz LJ, Apgar B. New exposure indicators for digital radiography simplified for radiologists and technologists. Am J Roentgenol. 2012;199(6):1337–41. PubMed PMID:23169727 Epub 2012/5/1.eng.

    Article  Google Scholar 

  82. McCollough CH, Schueler BA. Calculation of effective dose. Med Phys. 2000;27(5):828–37.

    Article  CAS  PubMed  Google Scholar 

  83. Le Heron JC. Estimation of effective dose to the patient during medical x-ray examinations from measurements of the dose-area product. Phys Med Biol. 1992;37(11):2117–26. PubMed PMID: 1438564. Epub 1992/11/01. eng.

    Article  PubMed  Google Scholar 

  84. Don S, Goske M, Uzenoff R, Rodriguez G, Mills T, Spelic D. Image gently: a survey of technique factors for CR-DR users. Pediatr Radiol. 2012;42 Suppl 2:s284.

    Google Scholar 

  85. Schneider K, Fendel H, Bakawski C, Stein E, Kohn M, Kellner M, et al. Results of a dosimetry study in the European community on frequent X ray examination in infants. Radiat Prot Dosimetry. 1992;43(1–4):31–6.

    Google Scholar 

  86. Billinger J, Nowotny R, Homolka P. Diagnostic reference levels in pediatric radiology in Austria. Eur Radiol. 2010;20(7):1572–9.

    Article  PubMed  Google Scholar 

  87. Back-to-basics Image Gently® campaign. The Alliance for Radiation Safety in Pediatric Imaging. Available from: http://www.pedrad.org/associations/5364/ig/?page=824.

  88. Cartlon RR, Adler AM. The grid. Principles of radiographic imaging: an art and a science. 4th ed. Clifton Park: Delmar Cengage Learning; 2013.

    Google Scholar 

  89. Morrison G, John SD, Goske MJ, Charkot E, Herrmann T, Smith SN, et al. Pediatric digital radiography education for radiologic technologists: current state. Pediatr Radiol. 2011;41(5):602–10. PubMed PMID: 21491200. Epub 2011/04/15. eng.

    Article  PubMed  Google Scholar 

  90. Larson DB, Johnson LW, Schnell BM, Goske MJ, Salisbury SR, Forman HP. Rising use of CT in child visits to the emergency department in the United States, 1995–2008. Radiology. 2011;259(3):793–801.

    Article  PubMed  Google Scholar 

  91. Townsend BA, Callahan MJ, Zurakowski D, Taylor GA. Has pediatric CT at children’s hospitals reached its peak? Am J Roentgenol. 2010;194(5):1194–6.

    Article  Google Scholar 

  92. Linton OW, Mettler Jr FA. National conference on dose reduction in CT, with an emphasis on pediatric patients. Am J Roentgenol. 2003;181(2):321–9.

    Article  Google Scholar 

  93. Frush DP, Slack CC, Hollingsworth CL, Bisset GS, Donnelly LF, Hsieh J, et al. Computer-simulated radiation dose reduction for abdominal multidetector CT of pediatric patients. Am J Roentgenol. 2002;179(5):1107–13.

    Article  Google Scholar 

  94. Li X, Samei E, DeLong DM, Jones RP, Gaca AM, Hollingsworth CL, et al. Pediatric MDCT: towards assessing the diagnostic influence of dose reduction on the detection of small lung nodules. Acad Radiol. 2009;16(7):872–80.

    Article  PubMed  Google Scholar 

  95. Image Gently®. Worksheet. The alliance for radiation safety in pediatric imaging. Available from: http://pedrad.org/associations/5364/ig/index.cfm?page=368.

  96. Strauss KJ, Goske MJ, Kaste SC, Bulas D, Frush DP, Butler P, et al. Image gently: ten steps you can take to optimize image quality and lower CT dose for pediatric patients. Am J Roentgenol. 2010;194(4):868–73. PubMed PMID: 20308484. Epub 2010/03/24. eng.

    Article  Google Scholar 

  97. Singh S, Kalra MK, Shenoy-Bhangle AS, Saini A, Gervais DA, Westra SJ, et al. Radiation dose reduction with hybrid iterative reconstruction for pediatric CT. Radiology. 2012;263(2):537–46.

    Article  PubMed  Google Scholar 

  98. Hohl C, Wildberger JE, Suss C, Thomas C, Muhlenbruch G, Schmidt T, et al. Radiation dose reduction to breast and thyroid during MDCT: effectiveness of an in-plane bismuth shield. Acta Radiol. 2006;47(6):562–7. PubMed PMID: 16875333. Epub 2006/08/01. eng.

    Article  CAS  PubMed  Google Scholar 

  99. Hopper KD, Neuman JD, King SH, Kunselman AR. Radioprotection to the eye during CT scanning. Am J Neuroradiol. 2001;22(6):1194–8. PubMed PMID: 11415918. Epub 2001/06/21. eng.

    CAS  PubMed  Google Scholar 

  100. Leswick DA, Hunt MM, Webster ST, Fladeland DA. Thyroid shields versus z-axis automatic tube current modulation for dose reduction at neck CT. Radiology. 2008;249(2):572–80. PubMed PMID: 18780826. Epub 2008/09/11. eng.

    Article  PubMed  Google Scholar 

  101. Mukundan Jr S, Wang PI, Frush DP, Yoshizumi T, Marcus J, Kloeblen E, et al. MOSFET dosimetry for radiation dose assessment of bismuth shielding of the eye in children. Am J Roentgenol. 2007;188(6):1648–50. PubMed PMID: 17515389. Epub 2007/05/23. eng.

    Article  Google Scholar 

  102. AAPM Position Statement on the use of bismuth shielding for the purpose of dose reduction in CT scanning. American Association of Physicists in Medicine; 2012 [cited 12 May 2012]. Available from: http://www.aapm.org/org/policies/details.asp?id=319&type=PP&current=true.

  103. Boone J, Strauss K, Cody D, McCollogh C, McNitt-Gray M, Toth T. Size-Specific Dose Estimates (SSDE) in pediatric and adult body CT examinations. AAPM report no. 204; 2011.

    Google Scholar 

  104. McCollough CH, Chen GH, Kalender W, Leng S, Samei E, Taguchi K, et al. Achieving routine submillisievert CT scanning: report from the summit on management of radiation dose in CT. Radiology. 2012;264(2):567–80.

    Article  PubMed Central  PubMed  Google Scholar 

  105. Goske MJ, Strauss KJ, Coombs LP, Mandel KE, Towbin AJ, Larson DB, et al. Diagnostic reference ranges for pediatric abdominal CT. Radiology. 2013;268(1):208–18. PubMed PMID:23513245. Epub 2013/03/21. Eng.

    Article  PubMed  Google Scholar 

  106. Ul Haque M, Shufflebarger HL, O’Brien M, Macagno A. Radiation exposure during pedicle screw placement in adolescent idiopathic scoliosis: is fluoroscopy safe? Spine. 2006;31(21):2516–20.

    Article  PubMed  Google Scholar 

  107. Mehlman CT, DiPasquale TG. Radiation exposure to the orthopaedic surgical team during fluoroscopy: “how far away is far enough?”. J Orthop Trauma. 1997;11(6):392–8.

    Article  CAS  PubMed  Google Scholar 

  108. Hernanz-Schulman M, Goske MJ, Bercha IH, Strauss KJ. Pause and pulse: ten steps that help manage radiation dose during pediatric fluoroscopy. Am J Roentgenol. 2011;197(2):475–81. PubMed PMID: 21785097. Epub 2011/07/26. eng.

    Article  Google Scholar 

  109. Strauss K. Pediatric interventional radiography equipment: safety considerations. Pediatr Radiol. 2006;36 Suppl 2:126–35.

    Article  PubMed Central  PubMed  Google Scholar 

  110. Brown PH, Thomas RD, Silberberg PJ, Johnson LM. Optimization of a fluoroscope to reduce radiation exposure in pediatric imaging. Pediatr Radiol. 2000;30(4):229–35.

    Article  CAS  PubMed  Google Scholar 

  111. Fahey FH, Treves ST, Adelstein SJ. Minimizing and communicating radiation risk in pediatric nuclear medicine. J Nucl Med. 2011;52(8):1240–51. PubMed PMID: 21764783. Epub 2011/07/19. eng.

    PubMed  Google Scholar 

  112. Treves ST, Davis RT, Fahey FH. Administered radiopharmaceutical doses in children: a survey of 13 pediatric hospitals in North America. J Nucl Med. 2008;49(6):1024–7. PubMed PMID: 18483096. Epub 2008/05/17. eng.

    Article  PubMed  Google Scholar 

  113. Gelfand MJ, Parisi MT, Treves ST. Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med. 2011;52(2):318–22.

    Article  PubMed  Google Scholar 

  114. Lassmann M, Biassoni L, Monsieurs M, Franzius C, Dosimetry E, Paediatrics C. The new EANM paediatric dosage card: additional notes with respect to F-18. Eur J Nucl Med Mol Imaging. 2008;35(9):1666–8. PubMed PMID: 18574583. Epub 2008/06/25. eng.

    Article  CAS  PubMed  Google Scholar 

  115. Lassmann M, Biassoni L, Monsieurs M, Franzius C, Dosimetry E, Paediatrics C. The new EANM paediatric dosage card: additional notes with respect to F-18. Eur J Nucl Med Mol Imaging. 2008;35(11):2141.

    Article  Google Scholar 

  116. Lassmann M, Biassoni L, Monsieurs M, Franzius C, Jacobs F, Dosimetry E, et al. The new EANM paediatric dosage card. Eur J Nucl Med Mol Imaging. 2007;34(5):796–8. PubMed PMID: 17406866. Epub 2007/04/05. eng.

    Article  CAS  PubMed  Google Scholar 

  117. Williams J, Treves ST. PET/CT imaging in children: current techniques and indications. Appl Radiol. 2012;June:8–13.

    Google Scholar 

  118. Gelfand MJ, Lemen LC. PET/CT and SPECT/CT dosimetry in children: the challenge to the pediatric imager. Semin Nucl Med. 2007;37(5):391–8.

    Article  PubMed  Google Scholar 

  119. Girshin M, Shapiro V, Rhee A, Ginsberg S, Inchiosa Jr MA. Increased risk of general anesthesia for high-risk patients undergoing magnetic resonance imaging. J Comput Assist Tomogr. 2009;33(2):312–5. PubMed PMID: 19346867. Epub 2009/04/07. eng.

    Article  PubMed  Google Scholar 

  120. Cauldwell C. Anesthesia risks associated with pediatric imaging. Pediatr Radiol. 2011;41(8):949–50.

    Article  PubMed  Google Scholar 

  121. Greenberg S. Rebalancing the risks of computed tomography and magnetic resonance imaging. Pediatr Radiol. 2011;41(8):951–2.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Don M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Don, S., Slovis, T.L. (2015). Musculoskeletal Imaging Strategies and Controlling Radiation Exposure. In: Stein-Wexler, R., Wootton-Gorges, S., Ozonoff, M. (eds) Pediatric Orthopedic Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45381-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45381-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45380-9

  • Online ISBN: 978-3-642-45381-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics