Skip to main content

Relation Extraction

  • Chapter
  • First Online:
Natural Language Processing of Semitic Languages
  • 2533 Accesses

Abstract

We discuss the problem of extracting semantic relations between entities from text. We concentrate on types of relations that belong to predefined classes, and we specifically address how to detect relations explicitly described in the text. We describe three main approaches to relation extraction: using supervised (statistical) feature-based classifiers, using supervised kernel-based classifiers, and using semi-supervised methods. Supervised methods need a large collection of manually labeled examples to learn how to detect relations, while semi-supervised methods need a moderately large collection of manually labeled examples as well as a large number of unlabeled examples. We then address the language-specific difficulties that arise when extracting relations from semitic languages, and discuss the impact of the lact of diacritics as well as the challenges posed by complex morphology. Finally, we analyze in detail a specific system specifically trained to detect relations in Arabic text, and review its performance on the 2004 ACE relation detection task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abney S (1991) Parsing by chunks. In: Principle-based parsing. Kluwer, Dordrecht

    Google Scholar 

  2. Berger A, Della Pietra S, Della Pietra V (1996) A maximum entropy approach to natural language processing. Comput Linguist 22(1):39–71

    Google Scholar 

  3. Bollacker K, Cook R, Tufts P (2007) Freebase: a shared database of structured general human knowledge. In: Proceedings of the 22nd national conference on artificial intelligence – volume 2, AAAI’07, Vancouver. AAAI, pp 1962–1963. http://dl.acm.org/citation.cfm?id=1619797.1619981

  4. Bunescu RC, Mooney RJ (2005) A shortest path dependency kernel for relation extraction. In: Proceedings of the conference on human language technology and empirical methods in natural language processing, HLT’05, Vancouver. Association for Computational Linguistics, Stroudsburg, pp 724–731. doi:10.3115/1220575.1220666, http://dx.doi.org/10.3115/1220575.1220666

  5. Bunescu RC, Mooney RJ (2006) Subsequence kernels for relation extraction. In: Weiss Y, Schölkopf B, Platt J (eds) Advances in neural information processing systems 18. MIT Press, London/Cambridge

    Google Scholar 

  6. Bunescu RC, Mooney RJ (2007) Learning to extract relations from the web using minimal supervision. In: Proceedings of the 45th annual meeting of the Association for Computational Linguistics (ACL’07), Prague. http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=126761

  7. Caruana R (1997) Multitask learning. Mach Learn 28(1):41–75. doi:10.1023/A: 1007379606734, http://dx.doi.org/10.1023/A:1007379606734

    Google Scholar 

  8. Chieu HL, Lee WS, Jiang J (2011) Transfer learning for adaptive relation extraction. Technical report, DSO National Laboratories, Singapore

    Google Scholar 

  9. Collins M, Duffy N (2001) Convolution kernels for natural language. In: Advances in neural information processing systems 14. MIT Press, London/Cambridge, pp 625–632

    Google Scholar 

  10. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    MATH  Google Scholar 

  11. Culotta A, Sorensen J (2004) Dependency tree kernels for relation extraction. In: Proceedings of the 42nd annual meeting on Association for Computational Linguistics, ACL’04, Barcelona. Association for Computational Linguistics, Stroudsburg. doi:10.3115/1218955.1219009, http://dx.doi.org/10.3115/1218955.1219009

  12. Dietterich TG, Lathrop RH, Lozano-Pérez T (1997) Solving the multiple instance problem with axis-parallel rectangles. Artif Intell 89(1–2):31–71. doi:10.1016/S0004-3702(96)00034-3, http://dx.doi.org/10.1016/S0004-3702(96)00034-3

    Google Scholar 

  13. Freund Y, Schapire R (1998) Large margin classification using the perceptron algorithm. Mach Learn 37(3):277–296

    Article  Google Scholar 

  14. Gildea D, Jurafsky D (2002) Automatic labeling of semantic roles. Comput Linguist 28(3):245–288. doi:10.1162/089120102760275983, http://dx.doi.org/10.1162/089120102760275983

    Google Scholar 

  15. Glass M, Barker K (2011) Bootstrapping relation extraction using parallel news articles. In: Proceedings of the IJCAI workshop on learning by reading and its applications in intelligent question-answering, Barcelona

    Google Scholar 

  16. Hachey B (2006) Comparison of similarity models for the relation discovery task. In: Proceedings of the workshop on linguistic distances, LD’06, Sydney. Association for Computational Linguistics, Stroudsburg, pp 25–34. http://dl.acm.org/citation.cfm?id=1641976.1641981

  17. Haussler D (1999) Convolution kernels on discrete structures. Technical report, UCSC-CRL-99-10, University of California at Santa Cruz

    Google Scholar 

  18. Hirano T, Matsuo Y, Kikui G (2007) Detecting semantic relations between named entities in text using contextual features. In: Proceedings of the 45th annual meeting of the ACL on interactive poster and demonstration sessions, ACL’07, Prague. Association for Computational Linguistics, Stroudsburg, pp 157–160. http://dl.acm.org/citation.cfm?id=1557769.1557815

  19. Hoffmann R, Zhang C, Weld DS (2010) Learning 5000 relational extractors. In: Proceedings of the 48th annual meeting of the Association for Computational Linguistics, ACL’10, Uppsala. Association for Computational Linguistics, Stroudsburg, pp 286–295. http://dl.acm.org/citation.cfm?id=1858681.1858711

  20. Jiang J (2009) Multi-task transfer learning for weakly-supervised relation extraction. In: Proceedings of the joint conference of the 47th annual meeting of the ACL and the 4th international joint conference on natural language processing of the AFNLP: vol 2, ACL’09, Singapore. Association for Computational Linguistics, Stroudsburg, pp 1012–1020. http://dl.acm.org/citation.cfm?id=1690219.1690288

  21. Jiang J, Zhai C (2007) A systematic exploration of the feature space for relation extraction. In: Proceedings of human language technologies: the conference of the North American chapter of the Association for Computational Linguistics (NAACL-HLT’07), Rochester, pp 113–120

    Google Scholar 

  22. Jing H, Florian R, Luo X, Zhang T, Ittycheriah A (2003) HowtogetaChineseName(Entity): segmentation and combination issues. In: Collins M, Steedman M (eds) Proceedings of the 2003 conference on empirical methods in natural language processing, Sapporo, pp 200–207. http://www.aclweb.org/anthology/W03-1026.pdf

  23. Kambhatla N (2004) Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations. In: Proceedings of the ACL 2004 on interactive poster and demonstration sessions, Barcelona. Association for Computational Linguistics, Morristown, p 22. http://dx.doi.org/10.3115/1219044.1219066

  24. Kambhatla N (2006) Minority vote: at-least-N voting improves recall for extracting relations. In: Proceedings of the COLING/ACL on main conference poster sessions, COLING-ACL’06, Sydney. Association for Computational Linguistics, Stroudsburg, pp 460–466. http://dl.acm.org/citation.cfm?id=1273073.1273133

  25. Khayyamian M, Mirroshandel SA, Abolhassani H (2009) Syntactic tree-based relation extraction using a generalization of Collins and Duffy convolution tree kernel. In: Sarkar A, Rose CP, Stoyanchev S, Germann U, Shah C (eds) HLT-NAACL (student research workshop and doctoral consortium), Boulder. Association for Computational Linguistics, pp 66–71. http://dblp.uni-trier.de/db/conf/naacl/naacl2009d.html#KhayyamianMA09

  26. Lafferty J, McCallum A, Pereira F (2001) Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of ICML2001, Williamstown

    Google Scholar 

  27. Luo X, Zitouni I (2005) Multi-lingual coreference resolution with syntactic features. In: Proceedings of the conference on human language technology and empirical methods in natural language processing, HLT’05, Vancouver. Association for Computational Linguistics, Stroudsburg, pp 660–667. doi:10.3115/1220575.1220658. http://dx.doi.org/10.3115/1220575.1220658

  28. McCallum A, Freitag D, Pereira FCN (2000) Maximum entropy Markov models for information extraction and segmentation. In: Proceedings of the seventeenth international conference on machine learning, ICML’00, Stanford. Morgan Kaufmann, San Francisco, pp 591–598. http://dl.acm.org/citation.cfm?id=645529.658277

  29. Mintz M, Bills S, Snow R, Jurafsky D (2009) Distant supervision for relation extraction without labeled data. In: Proceedings of the joint conference of the 47th annual meeting of the ACL and the 4th international joint conference on natural language processing of the AFNLP: volume 2, ACL’09, Singapore. Association for Computational Linguistics, Stroudsburg, pp 1003–1011. http://dl.acm.org/citation.cfm?id=1690219.1690287

  30. Nguyen TVT, Moschitti A (2011) Joint distant and direct supervision for relation extraction. In: Proceedings of 5th international joint conference on natural language processing, Asian federation of natural language processing, Chiang Mai, pp 732–740. http://www.aclweb.org/anthology/I11-1082

  31. NIST (2008) ACE (automatic content extraction) English annotation guidelines for relations. http://projects.ldc.upenn.edu/ace/docs/English-Relations-Guidelines_v6.2.pdf

  32. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359. doi:10.1109/TKDE.2009.191. http://dx.doi.org/10.1109/TKDE.2009.191

    Google Scholar 

  33. Rosenblatt F (1988) The perception: a probabilistic model for information storage and organization in the brain. In: Anderson JA, Rosenfeld E (eds) Neurocomputing: foundations of research. MIT, Cambridge, pp 89–114. http://dl.acm.org/citation.cfm?id=65669.104386

  34. Thrun S (1996) Is learning the n-th thing any easier than learning the first? In: Advances in neural information processing systems. MIT Press, London/Cambridge, pp 640–646

    Google Scholar 

  35. Wu F, Weld DS (2010) Open information extraction using Wikipedia. In: Proceedings of the 48th annual meeting of the Association for Computational Linguistics, ACL’10, Uppsala. Association for Computational Linguistics, Stroudsburg, pp 118–127. http://dl.acm.org/citation.cfm?id=1858681.1858694

  36. Zelenko D, Aone C, Richardella A (2003) Kernel methods for relation extraction. J Mach Learn Res 3:1083–1106. http://dl.acm.org/citation.cfm?id=944919.944964

    Google Scholar 

  37. Zhang M, Zhang J, Su J (2006) Exploring syntactic features for relation extraction using a convolution tree kernel. In: Proceedings of the main conference on human language technology conference of the North American chapter of the Association of Computational Linguistics, HLT-NAACL’06, New York. Association for Computational Linguistics, Stroudsburg, pp 288–295. doi:10.3115/1220835.1220872. http://dx.doi.org/10.3115/1220835.1220872

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Castelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Castelli, V., Zitouni, I. (2014). Relation Extraction. In: Zitouni, I. (eds) Natural Language Processing of Semitic Languages. Theory and Applications of Natural Language Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45358-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45358-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45357-1

  • Online ISBN: 978-3-642-45358-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics