Skip to main content

Autonomous Mobile Robots: A Distributed Computing Perspective

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2013)

Abstract

The distributed coordination and control of a team of autonomous mobile robots is a problem widely studied in a variety of fields, such as engineering, artificial intelligence, artificial life, robotics. Generally, in these areas, the problem is studied mostly from an empirical point of view.

Recently, the study of what can be computed by such team of robots has become increasingly popular in theoretical computer science and especially in distributed computing, where it is now an integral part of the investigations on computability by mobile entities [28]. In this paper we describe the current investigations on the algorithmic limitations of what autonomous mobile robots can do with respect to different coordination problems, and overview the main research topics that are gaining attention in this area.

This research is supported in part by MIUR of Italy under project ARS TechnoMedia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    e.g. because of limits to the robot’s motorial capabilities.

  2. 2.

    Note that this does not mean that the observing robot can distinguish a moving robot from a non moving one.

  3. 3.

    If the diameter is not fixed a priori, the problem becomes trivial, even in Async: each robot computes the smallest circle enclosing all the robots’ positions and moves on the circumference of such a circle.

  4. 4.

    Notice that Rendezvous has a trivial solution in Fsync: a robot moves to the halfway point to the other robot. In both Ssync  [57] and Async  [13], this move-to-half strategy guarantees only convergence.

  5. 5.

    The tilted compasses are said to be fully variable if the actual tilt of each compass may vary at any time (but always with no more than \(\phi \) from the global coordinate system); they are semi-variable if the tilt of each compass may vary (but no more than \(\phi \)) between successive cycles, but it does not change during a cycle.

References

  1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36, 56–82 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans. Robot. Autom. 15(5), 818–828 (1999)

    Article  Google Scholar 

  3. Balch, T., Arkin, R.C.: Behavior-based formation control for multi-robot teams. IEEE Trans. Robot. Autom. 14, 926–939 (1998)

    Article  Google Scholar 

  4. Beckers, R., Holland, O.E., Deneubourg, J.L.: From local actions to global tasks: stigmergy and collective robotics. In: Artificial Life IV, 4th International Workshop on the Synthesis and Simulation of Living Systems (1994)

    Google Scholar 

  5. Beni, G., Hackwood, S.: Coherent swarm motion under distributed control. In: Proceedings of the DARS’92, pp. 39–52 (1992)

    Google Scholar 

  6. Canepa, D., Potop-Butucaru, M.G.: Stabilizing flocking via leader election in robot networks. In: Masuzawa, T., Tixeuil, S. (eds.) SSS LNCS. 2007, vol. 4838, pp. 52–66. Springer, Heidelberg (2007)

    Google Scholar 

  7. Cao, Y.U., Fukunaga, A.S., Kahng, A.B., Meng, F.: Cooperative mobile robotics: antecedents and directions. In: International Conference on Intelligent Robots and System, pp. 226–234 (1995)

    Google Scholar 

  8. Chatzigiannakis, I., Markou, M., Nikoletseas, S.E.: Distributed circle formation for anonymous oblivious robots. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 159–174. Springer, Heidelberg (2004)

    Google Scholar 

  9. Chaudhuri, S.G., Mukhopadhyaya, K.: Gathering asynchronous transparent fat robots. In: Janowski, T., Mohanty, H. (eds.) ICDCIT 2010. LNCS, vol. 5966, pp. 170–175. Springer, Heidelberg (2010)

    Google Scholar 

  10. Chen, Q., Luh, J.Y.S.: Coordination and control of a group of small mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2315–2320 (1994)

    Google Scholar 

  11. Cieliebak, M., Gathering non-oblivious mobile robots. In: Proceedings of the 6th Latin American Symposium on Theoretical Informatics, pp. 577–588 (2004)

    Google Scholar 

  12. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34, 1516–1528 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 549–560. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems. Theor. Comput. Sci. 399, 71–82 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cord-Landwehr, A., et al.: Collisionless gathering of robots with an extent. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 178–189. Springer, Heidelberg (2011)

    Google Scholar 

  17. Cord-Landwehr, A., et al.: A new approach for analyzing convergence algorithms for mobile robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 650–661. Springer, Heidelberg (2011)

    Google Scholar 

  18. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theor. Comput. Sci. 410(6–7), 481–499 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita. M.: The power of lights: synchronizing asynchronous robots using visible bits. In: Proceedings of the 32nd International Conference on Distributed Computing Systems (ICDCS), pp. 506–515 (2012)

    Google Scholar 

  20. Debest, X.A.: Remark about self-stabilizing systems. Comm. ACM 238(2), 115–117 (1995)

    Google Scholar 

  21. Défago, X., Konagaya, A.: Circle formation for oblivious anonymous mobile robots with no common sense of orientation. In: Workshop on Principles of Mobile Computing, pp. 97–104 (2002)

    Google Scholar 

  22. Défago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile robots with convergence toward uniformity. Theor. Comput. Sci. 396(1–3), 97–112 (2008)

    Article  MATH  Google Scholar 

  23. Dieudonné, Y., Labbani-Igbida, O., Petit, F.: Circle formation of weak mobile robots. ACM Trans. Auton. Adapt. Syst. 3(4), 16:1–16:20 (2008)

    Google Scholar 

  24. Dieudonné, Y., Petit, F.: Circle formation of weak robots and Lyndon words. Inf. Process. Lett. 4(104), 156–162 (2007)

    Article  Google Scholar 

  25. Dieudonné, Y., Petit, F.: Self-stabilizing gathering with strong multiplicity detection. Theor. Comput. Sci. 428(13), 47–57 (2012)

    Article  MATH  Google Scholar 

  26. Donald, B.R., Jennings, J., Rus, D.: Information invariants for distributed manipulation. Int. J. Robot. Res. 16(5), 63–73 (1997)

    Google Scholar 

  27. Durfee, E.H.: Blissful ignorance: knowing just enough to coordinate well. In: ICMAS, pp. 406–413 (1995)

    Google Scholar 

  28. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Morgan & Claypool, San Rafeal (2012)

    Google Scholar 

  29. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard tasks for weak robots: the role of common knowledge in pattern formation by autonomous mobile robots. In: Proceedings of the 10th International Symposium on Algorithm and Computation, pp. 93–102 (1999)

    Google Scholar 

  30. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337, 147–168 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous oblivious robots. Theor. Comput. Sci. 407(1–3), 412–447 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Fukuda, T., Kawauchi, Y., Asama, H., Buss. M.: Structure decision method for self organizing robots based on cell structures-CEBOT. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol.2, pp. 695–700 (1989)

    Google Scholar 

  33. Ganguli, A., Cortés, J., Bullo, F.: Multirobot rendezvous with visibility sensors in nonconvex environments. IEEE Trans. Robot. 25(2), 340–352 (2009)

    Article  Google Scholar 

  34. Gervasi, V., Prencipe, G.: Robotic Cops: the intruder problem. In: Proceedings of the IEEE Conference on Systems, Man and Cybernetics, pp. 2284–2289 (2003)

    Google Scholar 

  35. Gervasi, V., Prencipe, G.: Coordination without communication: the case of the flocking problem. Discrete Appl. Math. 143, 203–223 (2004)

    MathSciNet  Google Scholar 

  36. Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: Gathering autonomous mobile robots with dynamic compasses: an optimal result. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 298–312. Springer, Heidelberg (2007)

    Google Scholar 

  37. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Defago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. Siam J. Comput. 41(1), 26–46 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  38. Jung, D., Cheng, G., Zelinsky, A.: Experiments in realising cooperation between autonomous mobile robots. In: ISER (1997)

    Google Scholar 

  39. Katreniak. B.: Biangular circle formation by asynchronous mobile robots. In: Proceedings of the 12th International Colloquium on Structural Information and Communication Complexity (2005)

    Google Scholar 

  40. Katreniak, B.: Convergence with limited visibility by asynchronous mobile robots. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 125–137. Springer, Heidelberg (2011)

    Google Scholar 

  41. Kawauchi, Y., Inaba, M., Fukuda, T.: A principle of decision making of cellular robotic system (CEBOT). In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 833–838 (1993)

    Google Scholar 

  42. Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem. Part 2: the asynchronous case. SIAM J. Control Optim. 46(6), 2120–2147 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Martínez, S.: Practical multiagent rendezvous through modified circumcenter algorithms. Automatica 45(9), 2010–2017 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  44. Matarić, M.J.: Interaction and intelligent behavior. Ph.D. thesis. MIT, May 1994

    Google Scholar 

  45. Miyamae, T., Ichikawa, S., Hara, F.: Emergent approach to circle formation by multiple autonomous modular robots. J. Robot. Mechatron. 21(1), 3–11 (2009)

    Google Scholar 

  46. Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 441–448 (1994)

    Google Scholar 

  47. Noreils, F.R.: Toward a robot architecture integrating cooperation between mobile robots: application to indoor environment. Int. J. Robot. Res. 12, 79–98 (1993)

    Article  Google Scholar 

  48. Pagli, L., Prencipe, G., Viglietta, G.: Getting close without touching. In: Even, G., Halldórsson, M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 315–326. Springer, Heidelberg (2012)

    Google Scholar 

  49. Parker, L.E.: On the design of behavior-based multi-robot teams. J. Adv. Robot. 10(6), 547–578 (1996)

    Article  Google Scholar 

  50. Prencipe, G.: The effect of synchronicity on the behavior of autonomous mobile robots. Theory Comput. Syst. 38, 539–558 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  51. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  52. Samia, S., Défago, X., Katayama, T.: Convergence of a uniform circle formation algorithm for distributed autonomous mobile robots. In: Journés Scientifiques Francophones (JSF), Tokio, Japan (2004)

    Google Scholar 

  53. Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses to gather memory-less mobile robots with limited visibility. ACM Trans. Auton. Adapt. Syst. 4(1), 1–27 (2009)

    Article  Google Scholar 

  54. Souissi, S., Yang, Y., Défago. X.: Fault-tolerant flocking in a k-bounded asynchronous system. In: Proceedings of 12th International Conference on Principles of Distributed Systems (OPODIS), pp. 145–163 (2008)

    Google Scholar 

  55. Souissi, S., Yang, Y., Défago, X., Takizawa, M.: Fault-tolerant flocking for a group of autonomous mobile robots. J. Syst. Softw. 84, 29–36 (2011)

    Article  Google Scholar 

  56. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns with many mobile robots. J. Robot. Syst. 13, 127–139 (1996)

    Article  MATH  Google Scholar 

  57. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. Siam J. Comput. 28(4), 1347–1363 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  58. Tanaka, O.: Forming a circle by distributed anonymous mobile robots. Technical report, Department of Electrical Engineering, Hiroshima University, Hiroshima, Japan (1992)

    Google Scholar 

  59. Volpi, V.: Sycamore: a 2D–3D simulation environment for autonomous mobile robots algorithms. https://code.google.com/p/sycamore/

  60. Wang, P.K.C.: Navigation strategies for multiple autonomous mobile robots moving in formation. J. Robot. Syst. 8(2), 177–195 (1991)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Paola Flocchini and Nicola Santoro for their help and suggestions in the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Prencipe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prencipe, G. (2014). Autonomous Mobile Robots: A Distributed Computing Perspective. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2013. Lecture Notes in Computer Science(), vol 8243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45346-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45346-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45345-8

  • Online ISBN: 978-3-642-45346-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics