Skip to main content

On the Complexity of Fixed-Schedule Neighbourhood Learning in Wireless Ad Hoc Radio Networks

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 8243))

  • 1121 Accesses

Abstract

Consider a synchronous static radio network of \(n\) nodes represented by an undirected graph with maximum degree \(\varDelta \). Suppose that each node has a unique ID from \(\{1,\ldots ,N\}\), where \(N \gg n\). In the complete neighbourhood learning task, each node \(p\) must produce a set \(L_p\) of IDs such that ID \(i \in L_p\) if and only if \(p\) has a neighbour with ID \(i\). We study the complexity of this task when it is assumed that each node fixes its entire transmission schedule at the start of the algorithm. We prove a \(\varOmega (\frac{\varDelta ^2}{\log \varDelta }\log {N})\)-slot lower bound on schedule length that holds in very general models, e.g., when nodes possess collision detectors, messages can be of arbitrary size, and nodes know the schedules being followed by all other nodes. We also prove a similar result for the SINR model of radio networks. To prove these results, we introduce a new generalization of cover-free families of sets, which may be of independent interest. We also show a separation between the class of fixed-schedule algorithms and the class of algorithms where nodes can choose to leave out some transmissions from their schedule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaudhuri, S., Radhakrishnan, J.: Deterministic restrictions in circuit complexity. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (STOC ’96), pp. 30–36 (1996)

    Google Scholar 

  2. Chlebus, B., Gasieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic broadcasting in unknown radio networks. In: SODA, pp. 861–870 (2000)

    Google Scholar 

  3. Clementi, A., Monti, A., Silvestri, R.: Selective families, superimposed codes, and broadcasting on unknown radio networks. In: SODA, pp. 709–718 (2001)

    Google Scholar 

  4. De Bonis, A., Gasieniec, L., Vaccaro, U.: Generalized framework for selectors with applications in optimal group testing. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719. Springer, Heidelberg (2003)

    Google Scholar 

  5. De Bonis, A., Vaccaro, U.: Constructions of generalized superimposed codes with applications to group testing and conflict resolution in multiple access channels. Theor. Comput. Sci. 306(1–3), 223–243 (2003)

    Article  MATH  Google Scholar 

  6. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51, 161–166 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  7. Du, D., Hwang, F.: Combinatorial Group Testing and Its Applications. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  8. D’yachkov, A.G., Vilenkin, P., Torney, D., Macula, A.: Families of finite sets in which no intersection of sets is covered by the union of s others. J. Comb. Theor. Ser. A 99(2), 195–218 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dyachkov, A.G., Rykov, V.V.: Bounds on the length of disjunctive codes. Probl. Peredachi Informatsii 18(3), 7–13 (1982)

    MathSciNet  Google Scholar 

  10. Dyachkov, A.G., Rykov, V.V., Rashad, A.M.: Superimposed distance codes. Probl. Control. Inf. Theor. 18, 237–250 (1989)

    MATH  MathSciNet  Google Scholar 

  11. Engel, K.: Sperner Theory. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  12. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered by the union of \(r\) others. Israel J. Math. 51, 79–89 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Füredi, Z.: On \(r\)-cover-free families. J. Comb. Theor. Ser. A 73(1), 172–173 (1996)

    Article  MATH  Google Scholar 

  14. Gasieniec, L., Pagourtzis, A., Potapov, I., Radzik, T.: Deterministic communication in radio networks with large labels. Algorithmica 47(1), 97–117 (2007)

    Article  MathSciNet  Google Scholar 

  15. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. Theor. 46(2), 388–404 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jurdzinski, T., Kowalski, D.R.: Distributed backbone structure for algorithms in the SINR model of wireless networks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 106–120. Springer, Heidelberg (2012)

    Google Scholar 

  17. Kautz, W., Singleton, R.: Nonrandom binary superimposed codes. IEEE Trans. Inf. Theor. 10(4), 363–377 (1964)

    Article  MATH  Google Scholar 

  18. Komlós, J., Greenberg, A.: An asymptotically fast nonadaptive algorithm for conflict resolution in multiple-access channels. IEEE Trans. Inf. Theor. 31(2), 302–306 (1985)

    Article  MATH  Google Scholar 

  19. Krishnamurthy, S., Thoppian, M., Kuppa, S., Chandrasekaran, R., Mittal, N., Venkatesan, S., Prakash, R.: Time-efficient distributed layer-2 auto-configuration for cognitive radio networks. Comput. Netw. 52(4), 831–849 (2008)

    Article  MATH  Google Scholar 

  20. Mittal, N., Krishnamurthy, S., Chandrasekaran, R., Venkatesan, S., Zeng, Y.: On neighbor discovery in cognitive radio networks. J. Parallel Distrib. Comput. 69, 623–637 (2009)

    Article  Google Scholar 

  21. Porat, E., Rothschild, A.: Explicit non-adaptive combinatorial group testing schemes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 748–759. Springer, Heidelberg (2008)

    Google Scholar 

  22. Ruszinkó, M.: On the upper bound of the size of the r-cover-free families. J. Comb. Theor. Ser. A 66, 302–310 (1994)

    Article  MATH  Google Scholar 

  23. Sperner, E.: Ein satz über untermengen einer endlichen menge. Math. Z. 27(1), 544–548 (1928)

    Article  MATH  MathSciNet  Google Scholar 

  24. Stinson, D., Wei, R.: Generalized cover-free families. Discrete Math. 279(1–3), 463–477 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yu, D., Wang, Y., Hua, Q., Lau, F.: Distributed local broadcasting algorithms in the physical interference model. In: DCOSS, pp. 1–8 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avery Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miller, A. (2014). On the Complexity of Fixed-Schedule Neighbourhood Learning in Wireless Ad Hoc Radio Networks. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2013. Lecture Notes in Computer Science(), vol 8243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45346-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45346-5_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45345-8

  • Online ISBN: 978-3-642-45346-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics