Skip to main content

MgB2

  • Chapter
  • 1235 Accesses

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 178))

Abstract

Chapter 9 covers the critical current properties of MgB2 that has a critical temperature considerably higher than those of metallic superconductors and is not seriously influenced by weak links and flux creep as in high-temperature superconductors. It is shown that the critical current density strongly depends on the packing factor of the superconductor. This behavior is well described by the percolation theory. The flux pinning by grain boundaries dominates the critical current density at high magnetic fields. The flux pinning strength of grain boundaries in MgB2 is even stronger than that in Nb3Sn at 4.2 K because of the higher thermodynamic critical field. This strength can be enhanced by C-addition to the B sites, and this can be understood in terms of the electron scattering mechanism by the grain boundaries. In high magnetic fields, the packing factor appears again as an important parameter to determine the irreversibility field. It is necessary to enhance the packing factor to improve the critical current density at low and high fields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L. Lyard, P. Samuely, P. Szabo, T. Klein, C. Marcenat, L. Paulius, K.H.P. Kim, C.U. Jung, H.-S. Lee, B. Kang, S. Choi, S.-I. Lee, J. Marcus, S. Blanchard, A.G.M. Jansen, U. Welp, G. Karapetrov, W.K. Kwok, Phys. Rev. B 66, 180502 (2002)

    Article  ADS  Google Scholar 

  2. M. Fukuda, E.S. Otabe, T. Matsushita, Physica C 378–381, 239 (2002)

    Article  Google Scholar 

  3. J.M. Rowell, Supercond. Sci. Technol. 16, R17 (2003)

    Article  ADS  Google Scholar 

  4. A. Yamamoto, J. Shimoyama, K. Kishio, T. Matsushita, Supercond. Sci. Technol. 20, 658 (2007)

    Article  ADS  Google Scholar 

  5. J. Jiang, B.J. Senkowicz, D.C. Larbalestier, E.E. Hellstrom, Supercond. Sci. Technol. 19, L33 (2006)

    Article  ADS  Google Scholar 

  6. Y. Yamada, M. Nakatsuka, K. Tachikawa, H. Kumakura, Teion Kōgaku 40, 493 (2005)

    Article  Google Scholar 

  7. H. Yamada, M. Igarashi, Y. Nemoto, Y. Yamada, K. Tachikawa, H. Kitaguchi, A. Matsumoto, H. Kumakura, Supercond. Sci. Technol. 23, 045030 (2010)

    Article  ADS  Google Scholar 

  8. A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, S. Horii, K. Kishio, Supercond. Sci. Technol. 17, 921 (2004)

    Article  ADS  Google Scholar 

  9. K. Togano, T. Nakane, H. Fujii, H. Takeya, H. Kumakura, Supercond. Sci. Technol. 19, L17 (2006)

    Article  ADS  Google Scholar 

  10. I. Iwayama, S. Ueda, A. Yamamoto, Y. Katsura, J. Shimoyama, S. Horii, K. Kishio, Physica C 460–462, 581 (2007)

    Article  Google Scholar 

  11. W. Hässler, M. Herrmann, C. Rodig, M. Schubert, K. Nenkov, B. Holzapfel, Supercond. Sci. Technol. 21, 062001 (2008)

    Article  ADS  Google Scholar 

  12. K. Tachikawa, Y. Yamada, M. Enomoto, M. Aodai, H. Kumakura, Physica C 392–396, 1030 (2003)

    Article  Google Scholar 

  13. A. Yamamoto, H. Tanaka, J. Shimoyama, H. Ogino, K. Kishio, T. Matsushita, Jpn. J. Appl. Phys. 51, 010105 (2012)

    ADS  Google Scholar 

  14. H. Tanaka, A. Yamamoto, H. Ogino, J. Shimoyama, K. Kishio, Abstracts of CSSJ Conf., vol. 84 (2011) p. 43 [in Japanese]

    Google Scholar 

  15. H. Tanaka, A. Yamamoto, J. Shimoyama, H. Ogino, K. Kishio, Supercond. Sci. Technol. 25, 115022 (2012)

    Article  ADS  Google Scholar 

  16. R. Flükiger, M.S.A. Hossain, C. Senatore, Supercond. Sci. Technol. 22, 247002 (2009)

    Article  Google Scholar 

  17. S.X. Dou, A.V. Pan, S. Zhou, M. Ionescu, H.K. Liu, P.R. Munroe, Supercond. Sci. Technol. 15, 1587 (2002)

    Article  ADS  Google Scholar 

  18. H. Yamada, M. Hirakawa, H. Kumakura, H. Kitaguchi, Supercond. Sci. Technol. 19, 175 (2006)

    Article  ADS  Google Scholar 

  19. H. Kumakura, H. Kitaguchi, A. Matsumoto, H. Yamada, Supercond. Sci. Technol. 18, 1042 (2005)

    Article  ADS  Google Scholar 

  20. A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, I. Iwayama, S. Horii, K. Kishio, Appl. Phys. Lett. 86, 212502 (2005)

    Article  ADS  Google Scholar 

  21. W.K. Yeoh, J.H. Kim, J. Horvat, S.X. Dou, P. Munroe, Supercond. Sci. Technol. 19, L5 (2006)

    Article  ADS  Google Scholar 

  22. A. Yamamoto, J. Shimoyama, S. Ueda, I. Iwayama, S. Horii, K. Kishio, Supercond. Sci. Technol. 18, 1323 (2005)

    Article  ADS  Google Scholar 

  23. H. Yamada, M. Hirakawa, H. Kumakura, H. Kitaguchi, Supercond. Sci. Technol. 19, 175 (2006)

    Article  ADS  Google Scholar 

  24. A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, S. Horii, K. Kishio, Supercond. Sci. Technol. 18, 116 (2005)

    Article  ADS  Google Scholar 

  25. A. Yamamoto, J. Shimoyama, M. Ueda, I. Iwata, Y. Katsura, S. Horii, K. Kishio, Teion Kōgaku 40, 466 (2005)

    Article  Google Scholar 

  26. Y. Zhao, M. Ionescu, J. Horvat, S.X. Dou, Supercond. Sci. Technol. 17, S482 (2004)

    Article  ADS  Google Scholar 

  27. W.N. Kang, E.M. Choi, H.J. Kim, H.J. Kim, S.I. Lee, Physica C 385, 24 (2003)

    Article  ADS  Google Scholar 

  28. C.G. Zhuang, S. Meng, C.Y. Zhang, Q.R. Feng, Z.Z. Gan, H. Yang, Y. Jia, H.H. Wen, X.X. Xi, J. Appl. Phys. 104, 013924 (2008)

    Article  ADS  Google Scholar 

  29. H. Kitaguchi, A. Matsumoto, H. Kumakura, T. Doi, H. Yamamoto, K. Saitoh, H. Sosiati, S. Hata, Appl. Phys. Lett. 85, 2842 (2004)

    Article  ADS  Google Scholar 

  30. K. Togano, private communication

    Google Scholar 

  31. G. Zerweck, J. Low Temp. Phys. 42, 1 (1981)

    Article  ADS  Google Scholar 

  32. W.E. Yetter, D.A. Thomas, E.J. Kramer, Philos. Mag. B 46, 523 (1982)

    Article  ADS  Google Scholar 

  33. T. Matsushita, M. Kiuchi, A. Yamamoto, J. Shimoyama, K. Kishio, Supercond. Sci. Technol. 21, 015008 (2008)

    Article  ADS  Google Scholar 

  34. D.O. Welch, IEEE Trans. Magn. MAG-21, 827 (1985)

    Article  ADS  Google Scholar 

  35. R.M. Scanlan, W.A. Fietz, E.F. Koch, J. Appl. Phys. 46, 2244 (1975)

    Article  ADS  Google Scholar 

  36. Y. Katsura, A. Yamamoto, I. Iwayama, S. Ueda, J. Shimoyama, S. Horii, K. Kishio, J. Phys. Conf. Ser. 43, 119 (2005)

    Article  ADS  Google Scholar 

  37. T. Matsushita, J. Tanigawa, M. Kiuchi, A. Yamamoto, J. Shimoyama, K. Kishio, Jpn. J. Appl. Phys. 51, 123103 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matsushita, T. (2014). MgB2 . In: Flux Pinning in Superconductors. Springer Series in Solid-State Sciences, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45312-0_9

Download citation

Publish with us

Policies and ethics