Skip to main content

The Dynamics of Quantum Computing in Molecules

  • Chapter
  • First Online:
Molecular Quantum Dynamics

Part of the book series: Physical Chemistry in Action ((PCIA))

  • 2797 Accesses

Abstract

A brief introduction to quantum computing is provided and the potential use of molecules as the platform is discussed. The basic building blocks (quantum bits, quantum gates, and quantum algorithms) are described in order to emphasize the requirements for realizing a quantum computer, and, the advantages quantum computation has over its classical counterpart. We outline the three key steps to quantum computation: (1) initialization, (2) manipulation, and (3) readout. The possible use of internal molecular states as quantum bits and shaped laser fields to implement the quantum gates is introduced. The application to molecular quantum computing is connected to the more general problem of the control of quantum dynamics using tailored laser fields determined theoretically with optimal control theory or genetic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Messiah A (1962) Quantum mechanics, vol 1. Wiley, New York

    Google Scholar 

  2. Cohen-Tannoudji C, Diu B, Laloe F (1992) Quantum mechanics. Wiley, New York

    Google Scholar 

  3. Basdevant J-L, Dalibard J (2005) Quantum mechanics. Springer, Heidelberg

    Google Scholar 

  4. Tannor DJ (2007) Introduction to Quantum Dynamics: A Time-Dependent Perspective. University Science Books, Sausalito, CA

    Google Scholar 

  5. Fox M (2006) Quantum optics: An introduction. Oxford University Press, Oxford

    Google Scholar 

  6. Cohen-Tannoudji C, Grynberg G, Aspect A, Fabre C (2010) Introduction to quantum optics: From the semi-classical approach to quantized light. Cambridge University Press, Cambridge

    Google Scholar 

  7. Pauling L, Wilson EB (1985) Introduction to quantum mechanics with applications to chemistry. Dover Publications, New York

    Google Scholar 

  8. Smith VH, Schaefer HF, Morokuma K (eds) (1986) Applied quantum chemistry. Springer, Heidelberg

    Google Scholar 

  9. Marcus RA (1965) On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J Chem Phys 43:679

    Google Scholar 

  10. Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65:599

    Article  CAS  Google Scholar 

  11. Onuhic JN, Wolynes PG (1988) Classical and quantum pictures of reaction dynamics in condensed matter: Resonances, dephasing, and all that. J Phys Chem 92:6495

    Article  Google Scholar 

  12. Herzberg G (1992) Molecular spectra and molecular structure. Krieger, Malabar

    Google Scholar 

  13. Zuev PS, Sheridan RS, Albu TV, Truhlar DG, Hrovat DA, Borden WT (2003) Carbon tunneling from a single quantum state. Science 299:867

    Article  CAS  Google Scholar 

  14. McMahon RJ (2003) Chemical reactions involving quantum tunneling. Science 299:833

    Article  CAS  Google Scholar 

  15. Espinosa-García J, Corchado JC, Truhlar DG (1997) The importance of quantum effects for C-H bond activation reactions. J Am Chem Soc 119:9891

    Article  Google Scholar 

  16. Wonchoba SE, Hu W-P, Truhlar DG (1995) Surface diffusion of H on Ni(100). Interpretation of the transition temperature. Phys Rev B 51:9985

    Google Scholar 

  17. Hiraoka K, Sato T, Takayama T (2001) Tunneling reactions in interstellar ices. Science 292:869

    Article  CAS  Google Scholar 

  18. Cha Y, Murray CJ, Klinman JP (1989) Hydrogen tunneling in enzyme-reaction. Science 243:1325

    Article  CAS  Google Scholar 

  19. Kohen A, Cannio R, Bartolucci S, Klinman JP (1999) Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase. Nature 399:496

    Article  CAS  Google Scholar 

  20. Truhlar DG, Gao J, Alhambra C, Garcia-Viloca M, Corchado J, Sánchez ML, Villà J (2002) The incorporation of quantum effects in enzyme kinetics modeling. Acc Chem Res 35:341

    Article  CAS  Google Scholar 

  21. Truhlar DG, Gao J, Alhambra C, Garcia-Viloca M, Corchado J, Sánchez ML, Villà J (2004) Ensemble-averaged variational transition state theory with optimized multidimensional tunneling for enzyme kinetics and other condensed-phase reactions. Int J Quant Chem 100:1136

    Article  CAS  Google Scholar 

  22. Hammer-Schiffer S (2002) Impact of enzyme motion on activity. Biochemistry 41:13335

    Article  Google Scholar 

  23. Antoniou D, Caratzoulas S, Mincer J, Schwartz SD (2002) Barrier passage and protein dynamics in enzymatically catalyzed reactions. Eur J Biochem 269:3103

    Article  CAS  Google Scholar 

  24. Ball P (2012) The dawn of quantum biology. Nature 474:272

    Article  Google Scholar 

  25. Domcke W, Yarkony DR, Köppel H (eds) (2004) Conical intersections, electronic strucutre, dynamics and spectroscopy. World Scientific, New Jersey

    Google Scholar 

  26. Domcke W, Yarkony DR, Köppel H (eds) (2004) Conical intersections, theory, computation and experiment. World Scientific, New Jersey

    Google Scholar 

  27. Worth GA, Cederbaum LS (2001) Mediation of ultrafast electron transfer in biological systems by conical intersections. Chem Phys Lett 338:219–223

    Article  CAS  Google Scholar 

  28. González-Luque M, Garavelli M, Bernardi F, Mechán M, Robb MA, Olivucci M (2010) Computational. Proc Natl Acad Sci USA 97:9379

    Article  Google Scholar 

  29. Polli D, Altoè P, Weingart O, Spillane KM, Manzoni C, Brida D, Tomasello G, Orlandi G, Kukura P, Mathies RA, Garavelli M, Cerullo G (2010) Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467:440

    Article  CAS  Google Scholar 

  30. Lan Z, Frutos LM, Sobolewski AL, Domcke W (2008) Photochemistry of hydrogen-bonded aromatic pairs: quantum dynamical calculations for the pyrrole-pyridine complex. Proc Natl Acad Sci USA 105:12707

    Article  CAS  Google Scholar 

  31. Schultz T, Samoylova E, Radloff W, Hertel IV, Sobolewski AL, Domcke W (2004) Efficient deactivation of a model base pair via excited-state hydrogen transfer. Science 306:1765

    Article  CAS  Google Scholar 

  32. Wolynes PG (2009) Some quantum weirdness in physiology. Proc Natl Acad Sci USA 106:17247–17248

    Article  CAS  Google Scholar 

  33. Engel GS, Calhoun TR, Read EL, Ahn T-K, Mancal T, Cheng Y-C, Blankenship RE, Fleming GR (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–786

    Article  CAS  Google Scholar 

  34. Lee H, Cheng Y-C, Fleming GR (2007) Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science 316:1462

    Article  CAS  Google Scholar 

  35. Collini E, Wong CY, Wilk KE, Curmi PMG, Brumer P, Scholes GD (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463:644

    Article  CAS  Google Scholar 

  36. Wang Q, Schoenlein RW, Peteanu LA, Shank RA (1994) Vibrationnaly coherent photochemistry in the femtosecond primary event of vision. Science 266:422–424

    Article  CAS  Google Scholar 

  37. Brumer P, Shapiro M (2012) Molecular response in one-photon absorption via natural thermal light vs. pulsed laser excitation. Proc Natl Acad Sci USA 109:19575

    Google Scholar 

  38. Gross A, Scheffer M (1998) Ab initio quantum and molecular dynamics of the dissociative adsorption on Pd(100). Phys Rev B 57:2493

    Article  CAS  Google Scholar 

  39. Marx D, Parrinello M (1996) The effect of quantum and thermal fluctuations on the structure of the floppy molecule C2H3 +. Science 271:179

    Article  CAS  Google Scholar 

  40. Arndt M, Nairz O, Voss-Andreae J, Keller C, van der Zouw G, Zeillinger A (1999) Wave-particle duality of c60 molecules. Nature 401:680

    Article  CAS  Google Scholar 

  41. Gerlich S, Eibenberger S, Tomand M, Nimmrichter S, Hornberger K, Fagan PJ, Tüxen J, Mayor M, Arndt M (2011) Quantum interference of large organic molecules. Nat Phys 2:263

    Google Scholar 

  42. Chatzidimitriou-Dreismann A, Arndt M (2004) Quantum mechanics and chemistry: The relevance of nonlocality and entanglement for molecules. Angew Chem Int Ed 335:144

    Article  Google Scholar 

  43. Chergui M (ed) (1996) Femtochemistry. World Scientific, Singapore

    Google Scholar 

  44. Zewail AH (1994) Femtochemistry: ultrafast dynamics of the chemical bond. World Scientific, Singapore

    Google Scholar 

  45. Ihee H, Lobastov V, Gomez U, Goodson B, Srinivasan R, Ruan C-Y, Zewail AH (2001) Science 291:385

    Article  Google Scholar 

  46. Drescher M, Hentschel M, Kienberger R, Uiberacker M, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F (2002) Time-resolved atomic inner-shell spectroscopy. Nature 419:803

    Article  CAS  Google Scholar 

  47. Goulielmakis E, Loh Z-H, Wirth A, Santra R, Rohringer N, Yakovlev VS, Zherebtsov S, Pfeifero T, Azzeer AM, Kling MF, Leone SR, Krausz F (2010) Real-time observation of valence electron motion. Nature 466:739

    Article  CAS  Google Scholar 

  48. Krausz F, Ivanov M (2009) Attosecond physics. Rev Mod Phys 81:163–234

    Article  Google Scholar 

  49. Kling MF, Siedschlag C, Verhoef AJ, Khan JI, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking MJJ (2006) Control of electron localization in molecular dissociation. Science 312:246

    Article  CAS  Google Scholar 

  50. Stolow A, Jonas DM (2004) Muldimensional snapshots of chemical dynamics. Science 305:1575

    Article  CAS  Google Scholar 

  51. Kahra S, Leschhorn G, Kowalewski M, Schiffrin A, Bothschafter E, Fuss W, de Vivie-Riedle R, Ernstorfer R, Krausz F, Kienberger R, Schaetz T (2012) Controlled delivery of single molecules into ultra-short laser pulses: a molecular conveyor belt. Nat Phys 8:238

    Article  CAS  Google Scholar 

  52. Asssion A, Baumert T, Bergt M, Brixner T, Kiefer B, Seyfried V, Strehle M, Gerber G (1998) Control of chemical reactions by feedback-optimized phase-shaped femtocecond laser pulses. Science 282:919

    Article  Google Scholar 

  53. Brixner T, Damreuer NH, Niklaus P, Gerber G (2001) Photoselective adaptative femtosecond quantum control in the liquid phase. Nature 414:57

    Article  CAS  Google Scholar 

  54. Herek JL, Wohlleben W, Cogdell RJ, Zeidler D, Motzus M (2002) Quantum control of energy flow in light harvesting. Nature 417:533

    Article  CAS  Google Scholar 

  55. Levis RJ, Menkir GM, Rabitz H (2001) Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292:709

    Article  CAS  Google Scholar 

  56. Daems D, Guérin S, Hertz E, Jauslin HR, Lavorel B, Faucher O (2005) Field-free two-direction alignement alternation of linear molecules by elliptic laser pulses. Phys Rev Lett 95:063005

    Article  CAS  Google Scholar 

  57. Madsen CB, Madsen LB, Viftrup SS, Johansson MP, Poulsen TB, Holmegaard L, Kumarappan V, Jorgensen KA, Stapelfeldt H (2009) Manipulating the torsion of molecules by strong laser pulses. Phys Rev Lett 102:073007

    Article  CAS  Google Scholar 

  58. Holmegaard L, Hansen JL, Kalhøj L, Kragh SL, Stapelfeldt H, Filsinger F, Küpper J, Meijer G, Dimitrovski D, Martiny C, Madsen LB (2010) Photoelectron angular distributions from strong-field ionization of oriented molecules. Nat Phys 6:428

    Article  CAS  Google Scholar 

  59. Bisgaard CZ, Clarkin OJ, Wu G, Lee AMD, Gessner O, Hayden CC, Stolow A (2009) Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules. Science 323:1464

    Article  CAS  Google Scholar 

  60. Bethlem HL, Berden G, Crompvoets FM, Jongma RT, van Roij AJA, Meijer G (2000) Electrostatic trapping of ammonia molecules. Nature 406:491

    Article  CAS  Google Scholar 

  61. Clary DC (1998) Quantum theory of chemical reaction dynamics. Science 279:1879

    Article  CAS  Google Scholar 

  62. Schnieder L, Seekamp-Rahn K, Borkowski J, Wrede E, Welge KH, Aoiz FJ, Bañares L, D’Mello MJ, Herrero VJ, Rábanos VS, Wyatt RE (1995) Experimental studies and theoretical predictions for the H + D2 → HD + D reaction. Science 269:207

    Article  CAS  Google Scholar 

  63. Qui M, Ren Z, Che L, Dai D, Harich SA, Wang X, Yang X, Xu C, Xie D, Gustafsson M, Skodje RT, Sun Z, Zhang DH (2006) Observation of Feshbach resonances in the F + H2 → HF + H reaction. Science 311:1440

    Article  Google Scholar 

  64. Dong W, Xiao C, Wang T, Dai D, Yang X, Zhang DH (2010) Transition-state spectroscopy of partial wave resonances in the F + HD. Science 327:1501

    Article  CAS  Google Scholar 

  65. Dyke TR, Howard BJ, Klemperer W. Radiofrequency and microwave spectrum of the hydrogen fluoride dimer; a nonrigid molecule. J Chem Phys 56:2442

    Google Scholar 

  66. Howard BJ, Dyke TR, Klemperer W (1984) The molecular beam spectrum and the structure of the hydrogen fluoride dimer. J Chem Phys 81:5417

    Article  CAS  Google Scholar 

  67. Fellers RS, Leforestier C, Braly LB, Brown MG, Saykally RJ (1999) Spectroscopic Determination of the Water Pair Potential. Science 284:945

    Article  CAS  Google Scholar 

  68. Saykally RJ, Blake GA (1993) Molecular interactions and hydrogen bond tunneling dynamics: Some new perspectives. Science 259:1570

    Article  CAS  Google Scholar 

  69. Miller WH (1974) Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants. J Chem Phys 61:1823–1834

    Article  CAS  Google Scholar 

  70. Miller WH (1993) Beyond transition-state theory: a rigorous quantum theory of chemical reaction rates. Acc Chem Res 26(4):174

    Article  CAS  Google Scholar 

  71. Thoss M, Miller WH, Stock G (2000) Semiclassical description of nonadiabatic quantum dynamics: Application to the S1 – S2 conical intersection in pyrazine. J Chem Phys 112:10282–10292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Alberta Ingenuity Fund (New Faculty Award) and the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant) for financial support. We thank the Canadian Foundation for Innovation (New Opportunities Fund) for support of the computational infrastructure on which this work was carried out. R.R.Z. acknowledges financial support of NSERC via a PGS-D2 scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brown, A., Zaari, R.R. (2014). The Dynamics of Quantum Computing in Molecules. In: Gatti, F. (eds) Molecular Quantum Dynamics. Physical Chemistry in Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45290-1_9

Download citation

Publish with us

Policies and ethics