Skip to main content

Vibronic Coupling Effects in Spectroscopy and Non-adiabatic Transitions in Molecular Photodynamics

  • Chapter
  • First Online:
Molecular Quantum Dynamics

Part of the book series: Physical Chemistry in Action ((PCIA))

Abstract

A brief historic and systematic survey is given of our efforts to elucidate important features of the nuclear motion on interacting potential energy surfaces (PESs). Starting with our early work in 1977, a variety of small to medium-sized polyatomic molecules have been treated by quantum-dynamical methods. As the key topological feature signalling the effects in question, conical intersections of PESs have been established. The associated strong nonadiabatic coupling effects manifest themselves as diffuse (at low resolution) or irregular (at high resolution) spectral structures upon electronic transitions. The concomitant fs electronic population decay governs the photophysical and photochemical properties of these systems. Representative examples with 2–5 strongly coupled electronic states are given, and the quantum nature of the phenomena is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Messiah A (1962) Quantum mechanics, vol 1. Wiley, New York

    Google Scholar 

  2. Cohen-Tannoudji C, Diu B, Laloe F (1992) Quantum mechanics. Wiley, New York

    Google Scholar 

  3. Basdevant J-L, Dalibard J (2005) Quantum mechanics. Springer, Heidelberg

    Google Scholar 

  4. Tannor DJ (2007) Introduction to Quantum Dynamics: A Time-Dependent Perspective. University Science Books, Sausalito, CA

    Google Scholar 

  5. Fox M (2006) Quantum optics: An introduction. Oxford University Press, Oxford

    Google Scholar 

  6. Cohen-Tannoudji C, Grynberg G, Aspect A, Fabre C (2010) Introduction to quantum optics: From the semi-classical approach to quantized light. Cambridge University Press, Cambridge

    Google Scholar 

  7. Haroche S, Raimond J-M (2006) Exploring the quantum: Atoms, cavities, and photons. Oxford University Press, Oxford

    Book  Google Scholar 

  8. Pauling L, Wilson EB (1985) Introduction to quantum mechanics with applications to chemistry. Dover Publications, New York

    Google Scholar 

  9. Marcus RA (1952) Unimolecular dissociations and free radical recombination reactions. J Chem Phys 20:359

    Article  CAS  Google Scholar 

  10. Marcus RA (1965) On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J Chem Phys 43:679

    Google Scholar 

  11. Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65:599

    Article  CAS  Google Scholar 

  12. Griebel M, Knapek S, Zumbusch G (2007) Numerical simulation in molecular dynamics. Springer, Heidelberg

    Google Scholar 

  13. Onuhic JN, Wolynes PG (1988) Classical and quantum pictures of reaction dynamics in condensed matter: Resonances, dephasing, and all that. J Phys Chem 92:6495

    Article  Google Scholar 

  14. Herzberg G (1992) Molecular spectra and molecular structure. Krieger, Malabar

    Google Scholar 

  15. Miller WH (2006) Including quantum effects in the dynamics of complex (i.e., large) molecular systems. J Chem Phys 125:132305

    Google Scholar 

  16. Zuev PS, Sheridan RS, Albu TV, Truhlar DG, Hrovat DA, Borden WT (2003) Carbon tunneling from a single quantum state. Science 299:867

    Article  CAS  Google Scholar 

  17. McMahon RJ (2003) Chemical reactions involving quantum tunneling. Science 299:833

    Article  CAS  Google Scholar 

  18. Espinosa-García J, Corchado JC, Truhlar DG (1997) The importance of quantum effects for C-H bond activation reactions. J Am Chem Soc 119:9891

    Article  Google Scholar 

  19. Wonchoba SE, Hu W-P, Truhlar DG (1995) Surface diffusion of H on Ni(100). Interpretation of the transition temperature. Phys Rev B 51:9985

    Google Scholar 

  20. Hiraoka K, Sato T, Takayama T (2001) Tunneling reactions in interstellar ices. Science 292:869

    Article  CAS  Google Scholar 

  21. Kohen A, Cannio R, Bartolucci S, Klinman JP (1999) Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase. Nature 399:496

    Article  CAS  Google Scholar 

  22. Truhlar DG, Gao J, Alhambra C, Garcia-Viloca M, Corchado J, Sánchez ML, Villà J (2002) The incorporation of quantum effects in enzyme kinetics modeling. Acc Chem Res 35:341

    Article  CAS  Google Scholar 

  23. Truhlar DG, Gao J, Alhambra C, Garcia-Viloca M, Corchado J, Sánchez ML, Villà J (2004) Ensemble-averaged variational transition state theory with optimized multidimensional tunneling for enzyme kinetics and other condensed-phase reactions. Int J Quant Chem 100:1136

    Article  CAS  Google Scholar 

  24. Hammer-Schiffer S (2002) Impact of enzyme motion on activity. Biochemistry 41:13335

    Article  CAS  Google Scholar 

  25. Antoniou D, Caratzoulas S, Mincer J, Schwartz SD (2002) Barrier passage and protein dynamics in enzymatically catalyzed reactions. Eur J Biochem 269:3103

    Article  CAS  Google Scholar 

  26. Ball P (2012) The dawn of quantum biology. Nature 474:272

    Article  CAS  Google Scholar 

  27. Domcke W, Yarkony DR, Köppel H (eds) (2004) Conical intersections, electronic strucutre, dynamics and spectroscopy. World Scientific, New Jersey

    Google Scholar 

  28. Domcke W, Yarkony DR, Köppel H (eds) (2004) Conical intersections, theory, computation and experiment. World Scientific, New Jersey

    Google Scholar 

  29. Worth GA, Cederbaum LS (2001) Mediation of ultrafast electron transfer in biological systems by conical intersections. Chem Phys Lett 338:219–223

    Article  CAS  Google Scholar 

  30. González-Luque M, Garavelli M, Bernardi F, Mechán M, Robb MA, Olivucci M (2010) Computational. Proc Natl Acad Sci USA 97:9379

    Article  Google Scholar 

  31. Polli D, Altoè P, Weingart O, Spillane KM, Manzoni C, Brida D, Tomasello G, Orlandi G, Kukura P, Mathies RA, Garavelli M, Cerullo G (2010) Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467:440

    Article  CAS  Google Scholar 

  32. Lan Z, Frutos LM, Sobolewski AL, Domcke W (2008) Photochemistry of hydrogen-bonded aromatic pairs: quantum dynamical calculations for the pyrrole-pyridine complex. Proc Natl Acad Sci USA 105:12707

    Article  Google Scholar 

  33. Schultz T, Samoylova E, Radloff W, Hertel IV, Sobolewski AL, Domcke W (2004) Efficient deactivation of a model base pair via excited-state hydrogen transfer. Science 306:1765

    Article  CAS  Google Scholar 

  34. Wolynes PG (2009) Some quantum weirdness in physiology. Proc Natl Acad Sci USA 106:17247–17248

    Article  Google Scholar 

  35. Engel GS, Calhoun TR, Read EL, Ahn T-K, Mancal T, Cheng Y-C, Blankenship RE, Fleming GR (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–786

    Article  CAS  Google Scholar 

  36. Lee H, Cheng Y-C, Fleming GR (2007) Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science 316:1462

    Article  CAS  Google Scholar 

  37. Collini E, Wong CY, Wilk KE, Curmi PMG, Brumer P, Scholes GD (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463:644

    Article  CAS  Google Scholar 

  38. Wang Q, Schoenlein RW, Peteanu LA, Shank RA (1994) Vibrationnaly coherent photochemistry in the femtosecond primary event of vision. Science 266:422–424

    Article  CAS  Google Scholar 

  39. Brumer P, Shapiro M (2012) Molecular response in one-photon absorption via natural thermal light vs. pulsed laser excitation. Proc Natl Acad Sci USA 109:19575

    Google Scholar 

  40. Gross A, Scheffer M (1998) Ab initio quantum and molecular dynamics of the dissociative adsorption on Pd(100). Phys Rev B 57:2493

    Article  CAS  Google Scholar 

  41. Marx D, Parrinello M (1996) The effect of quantum and thermal fluctuations on the structure of the floppy molecule C2H3 +. Science 271:179

    Article  CAS  Google Scholar 

  42. Arndt M, Nairz O, Voss-Andreae J, Keller C, van der Zouw G, Zeillinger A (1999) Wave-particle duality of c60 molecules. Nature 401:680

    Article  CAS  Google Scholar 

  43. Gerlich S, Eibenberger S, Tomand M, Nimmrichter S, Hornberger K, Fagan PJ, Tüxen J, Mayor M, Arndt M (2011) Quantum interference of large organic molecules. Nat Phys 2:263

    Google Scholar 

  44. Chatzidimitriou-Dreismann A, Arndt M (2004) Quantum mechanics and chemistry: The relevance of nonlocality and entanglement for molecules. Angew Chem Int Ed 335:144

    Article  Google Scholar 

  45. Chergui M (ed) (1996) Femtochemistry. World Scientific, Singapore

    Google Scholar 

  46. Zewail AH (1994) Femtochemistry: ultrafast dynamics of the chemical bond. World Scientific, Singapore

    Google Scholar 

  47. Ihee H, Lobastov V, Gomez U, Goodson B, Srinivasan R, Ruan C-Y, Zewail AH (2001) Science 291:385

    Article  Google Scholar 

  48. Drescher M, Hentschel M, Kienberger R, Uiberacker M, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F (2002) Time-resolved atomic inner-shell spectroscopy. Nature 419:803

    Article  CAS  Google Scholar 

  49. Goulielmakis E, Loh Z-H, Wirth A, Santra R, Rohringer N, Yakovlev VS, Zherebtsov S, Pfeifero T, Azzeer AM, Kling MF, Leone SR, Krausz F (2010) Real-time observation of valence electron motion. Nature 466:739

    Article  CAS  Google Scholar 

  50. Krausz F, Ivanov M (2009) Attosecond physics. Rev Mod Phys 81:163–234

    Article  Google Scholar 

  51. Kling MF, Siedschlag C, Verhoef AJ, Khan JI, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking MJJ (2006) Control of electron localization in molecular dissociation. Science 312:246

    Article  CAS  Google Scholar 

  52. Niikura H, Légaré F, Hasbani R, Bandrauk AD, Ivanov MY, Villeneuve DM, Corkum PB (2002) Sub-laser-cycle electron pulse for probing molecular dynamics. Nature 417:917

    Article  CAS  Google Scholar 

  53. Stolow A, Jonas DM (2004) Muldimensional snapshots of chemical dynamics. Science 305:1575

    Article  CAS  Google Scholar 

  54. Kahra S, Leschhorn G, Kowalewski M, Schiffrin A, Bothschafter E, Fuss W, de Vivie-Riedle R, Ernstorfer R, Krausz F, Kienberger R, Schaetz T (2012) Controlled delivery of single molecules into ultra-short laser pulses: a molecular conveyor belt. Nat Phys 8:238

    Article  CAS  Google Scholar 

  55. Brixner T, Damreuer NH, Niklaus P, Gerber G (2001) Photoselective adaptative femtosecond quantum control in the liquid phase. Nature 414:57

    Article  CAS  Google Scholar 

  56. Herek JL, Wohlleben W, Cogdell RJ, Zeidler D, Motzus M (2002) Quantum control of energy flow in light harvesting. Nature 417:533

    Article  CAS  Google Scholar 

  57. Daems D, Guérin S, Hertz E, Jauslin HR, Lavorel B, Faucher O (2005) Field-free two-direction alignement alternation of linear molecules by elliptic laser pulses. Phys Rev Lett 95:063005

    Article  CAS  Google Scholar 

  58. Madsen CB, Madsen LB, Viftrup SS, Johansson MP, Poulsen TB, Holmegaard L, Kumarappan V, Jorgensen KA, Stapelfeldt H (2009) Manipulating the torsion of molecules by strong laser pulses. Phys Rev Lett 102:073007

    Article  CAS  Google Scholar 

  59. Holmegaard L, Hansen JL, Kalhøj L, Kragh SL, Stapelfeldt H, Filsinger F, Küpper J, Meijer G, Dimitrovski D, Martiny C, Madsen LB (2010) Photoelectron angular distributions from strong-field ionization of oriented molecules. Nat Phys 6:428

    Article  CAS  Google Scholar 

  60. Bisgaard CZ, Clarkin OJ, Wu G, Lee AMD, Gessner O, Hayden CC, Stolow A (2009) Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules. Science 323:1464

    Article  CAS  Google Scholar 

  61. Bethlem HL, Berden G, Crompvoets FM, Jongma RT, van Roij AJA, Meijer G (2000) Electrostatic trapping of ammonia molecules. Nature 406:491

    Article  CAS  Google Scholar 

  62. Kreckel H, Bruhns H, M, Glover SCO, Miller KA, Urbain X, Savin DW (2010) Experimental results for H2 formation from H and H and implications for first star formation. Science 329:69

    Google Scholar 

  63. Clary DC (1998) Quantum theory of chemical reaction dynamics. Science 279:1879

    Article  CAS  Google Scholar 

  64. Schnieder L, Seekamp-Rahn K, Borkowski J, Wrede E, Welge KH, Aoiz FJ, Bañares L, D’Mello MJ, Herrero VJ, Rábanos VS, Wyatt RE (1995) Experimental studies and theoretical predictions for the H + D2 → HD + D reaction. Science 269:207

    Article  CAS  Google Scholar 

  65. Qui M, Ren Z, Che L, Dai D, Harich SA, Wang X, Yang X, Xu C, Xie D, Gustafsson M, Skodje RT, Sun Z, Zhang DH (2006) Observation of Feshbach resonances in the F + H2 → HF + H reaction. Science 311:1440

    Article  CAS  Google Scholar 

  66. Dong W, Xiao C, Wang T, Dai D, Yang X, Zhang DH (2010) Transition-state spectroscopy of partial wave resonances in the F + HD. Science 327:1501

    Article  CAS  Google Scholar 

  67. Dyke TR, Howard BJ, Klemperer W. Radiofrequency and microwave spectrum of the hydrogen fluoride dimer; a nonrigid molecule. J Chem Phys 56:2442

    Google Scholar 

  68. Howard BJ, Dyke TR, Klemperer W (1984) The molecular beam spectrum and the structure of the hydrogen fluoride dimer. J Chem Phys 81:5417

    Article  CAS  Google Scholar 

  69. Fellers RS, Leforestier C, Braly LB, Brown MG, Saykally RJ (1999) Spectroscopic Determination of the Water Pair Potential. Science 284:945

    Article  CAS  Google Scholar 

  70. Saykally RJ, Blake GA (1993) Molecular interactions and hydrogen bond tunneling dynamics: Some new perspectives. Science 259:1570

    Article  CAS  Google Scholar 

  71. Miller WH (1974) Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants. J Chem Phys 61:1823–1834

    Article  CAS  Google Scholar 

  72. Bowman JM, Carrington Jr. T, Meyer H-D (2008) Variational quantum approaches for computing vibrational energies of polyatomic molecules. Mol Phys 106:2145–2182

    Article  CAS  Google Scholar 

  73. Zhang JZH (1999) Theory and application of uantum molecular dynamics. World Scientific, Singapore

    Google Scholar 

  74. McCullough EA, Wyatt RE (1969) Quantum dynamics of the collinear (H,H2) reaction. J Chem Phys 51:1253

    Article  CAS  Google Scholar 

  75. McCullough EA, Wyatt RE (1971) Dynamics of the collinear (H,H2) reaction. I. Probability density and flux. J Chem Phys 54:3578

    Google Scholar 

  76. Whitehead RJ, Handy NC (1975) J Mol Spec 55:356

    Article  CAS  Google Scholar 

  77. Schatz GC, Kuppermann A (1976) Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. I. Theory. J Chem Phys 65:4642

    Article  CAS  Google Scholar 

  78. Schatz GC, Kuppermann A (1976) Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. II. Accurate cross sections for H + H2. J Chem Phys 65:4668–4692

    Article  CAS  Google Scholar 

  79. Z, Light JC (1986) Highly excited vibrational levels of “floppy” triatomic molecules: A discrete variable representation – Distributed Gaussian approach. J Chem Phys 85:4594

    Google Scholar 

  80. Z, Light JC (1987) Accurate localized and delocalized vibrational states of HCN/HNC. J Chem Phys 86:3065

    Google Scholar 

  81. Köppel H, Cederbaum LS, Domcke W (1982) Strong nonadiabatic effects and conical intersections in molecular spectroscopy and unimolecular decay: C2H4 +. J Chem Phys 77:2014

    Article  Google Scholar 

  82. Nauts A, Wyatt RE (1983) New approach to many-state quantum dynamics: the recursive-residue-generation method. Phys Rev Lett 51:2238

    Article  CAS  Google Scholar 

  83. Sibert EL (1990) Variational and perturbative descriptions of highly vibrationally excited molecules. Int Rev Phys Chem 9:1

    Article  CAS  Google Scholar 

  84. Elkowitz AB, Wyatt RE (1975) Quantum-mechanical reaction cross-section for 3-dimensional hydrogen-exchange reaction. J Chem Phys 62:2504

    Article  CAS  Google Scholar 

  85. Heller EJ. Time-dependent approach to semiclassical dynamics. J Chem Phys 62:1544

    Google Scholar 

  86. Heller EJ. Time-dependent variational approach to semiclassical dynamics. J Chem Phys 64:63

    Google Scholar 

  87. Heller EJ () Wigner phase space method: Analysis for semiclassical applications. J Chem Phys 65:1289

    Google Scholar 

  88. Leforestier C, Bisseling RH, Cerjan C, Feit MD, Friesner R, Guldenberg A, Hammerich A, Jolicard G, Karrlein W, Meyer HD, Lipkin N, Roncero O, Kosloff R (1991) A comparison of different propagation schemes for the time dependent Schrödinger equation. J Comput Phys 94:59

    Article  Google Scholar 

  89. Kosloff R (1988) Time-dependent quantum-mechanical methods for molecular dynamics. J Phys Chem 92:2087

    Article  CAS  Google Scholar 

  90. Kosloff D, Kosloff R (1983) A Fourier-method solution for the time-dependent Schrödinger equation as a tool in molecular dynamics. J Comput Phys 52:35

    Article  CAS  Google Scholar 

  91. Wang X-G, Carrington Jr T (2003) A contracted basis-Lanczos calculation of vibrational levels of methane: Solving the Schrödinger equation in nine dimensions. J Chem Phys 119:101

    Article  CAS  Google Scholar 

  92. Wang X-G, Carrington Jr T (2004) Contracted basis lanczos methods for computing numerically exact rovibrational levels of methane. J Chem Phys 121(7):2937–2954

    Article  CAS  Google Scholar 

  93. Tremblay JC, Carrington Jr T (2006) Calculating vibrational energies and wave functions of vinylidene using a contracted basis with a locally reorthogonalized coupled two-term lanczos eigensolver. J Chem Phys 125:094311

    Article  CAS  Google Scholar 

  94. Norris LS, Ratner MA, Roitberg AE, Gerber RB (1996) Moller-plesset perturbation theory applied to vibrational problems. J Chem Phys 105:11261

    Article  CAS  Google Scholar 

  95. Christiansen O (2003) Moller-plesset perturbation theory for vibrational wave functions. J Chem Phys 119:5773

    Article  CAS  Google Scholar 

  96. Christiansen O, Luis J (2005) Beyond vibrational self-consistent-field methods: Benchmark calculations for the fundamental vibrations of ethylene. Int J Quant Chem 104:667

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is indebted to L.S. Cederbaum, W. Domcke and S. Mahapatra for a long-term collaboration on the vibronic coupling problem. It is also a pleasure to acknowledge a fruitful cooperation with E. Gromov, S. Kopec, C. Lévêque and A. Komainda on current problems in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Köppel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Köppel, H. (2014). Vibronic Coupling Effects in Spectroscopy and Non-adiabatic Transitions in Molecular Photodynamics. In: Gatti, F. (eds) Molecular Quantum Dynamics. Physical Chemistry in Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45290-1_6

Download citation

Publish with us

Policies and ethics