Skip to main content

Tunneling in Unimolecular and Bimolecular Reactions

  • Chapter
  • First Online:
Book cover Molecular Quantum Dynamics

Part of the book series: Physical Chemistry in Action ((PCIA))

  • 2807 Accesses

Abstract

Tunneling is an important quantum phenomenon in reaction dynamics. In this chapter, the effects of tunneling on photodissociation and reactive scattering are discussed using two prototypical examples. The first deals with a unimolecular decomposition reaction, namely the photodissociation of NH3 in its first (A) absorption band and the second is concerned with an important bimolecular reaction in combustion: HO + CO → H + CO2. In the former case, the lifetimes of low-lying vibrational resonances in the predissociative excited state are influenced by tunneling through a small barrier in the dissociation (N–H) coordinate, which is also responsible for a strong H/D isotope effect. The latter, on the other hand, is affected by tunneling through a tight barrier in the exit channel primarily along the H–O dissociation coordinate, which is manifested by the non-Arrhenius rate constant at low temperatures, kinetic isotope effects, and vibrational mode selectivity. In addition, the photodetachment of HOCO produces metastable HOCO species, the decomposition of which is dominated by deep tunneling to the H + CO2 products. Since both systems are influenced by multidimensional tunneling, an accurate characterization of the dynamics requires a quantum mechanical (QM) treatment, preferably with full dimensionality. In this chapter, we review the recent advances in understanding the effects of tunneling in these two reactive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Messiah A (1962) Quantum mechanics, vol 1. Wiley, New York

    Google Scholar 

  2. Cohen-Tannoudji C, Diu B, Laloe F (1992) Quantum mechanics. Wiley, New York

    Google Scholar 

  3. Basdevant J-L, Dalibard J (2005) Quantum mechanics. Springer, Heidelberg

    Google Scholar 

  4. Tannor DJ (2007) Introduction to Quantum Dynamics: A Time-Dependent Perspective. University Science Books, Sausalito, CA

    Google Scholar 

  5. Cohen-Tannoudji C, Grynberg G, Aspect A, Fabre C (2010) Introduction to quantum optics: From the semi-classical approach to quantized light. Cambridge University Press, Cambridge

    Google Scholar 

  6. Haroche S, Raimond J-M (2006) Exploring the quantum: Atoms, cavities, and photons. Oxford University Press, Oxford

    Book  Google Scholar 

  7. Pauling L, Wilson EB (1985) Introduction to quantum mechanics with applications to chemistry. Dover Publications, New York

    Google Scholar 

  8. Smith VH, Schaefer HF, Morokuma K (eds) (1986) Applied quantum chemistry. Springer, Heidelberg

    Google Scholar 

  9. Marcus RA (1952) Unimolecular dissociations and free radical recombination reactions. J Chem Phys 20:359

    Article  CAS  Google Scholar 

  10. Marcus RA (1965) On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J Chem Phys 43:679

    Google Scholar 

  11. Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65:599

    Article  CAS  Google Scholar 

  12. Griebel M, Knapek S, Zumbusch G (2007) Numerical simulation in molecular dynamics. Springer, Heidelberg

    Google Scholar 

  13. Onuhic JN, Wolynes PG (1988) Classical and quantum pictures of reaction dynamics in condensed matter: Resonances, dephasing, and all that. J Phys Chem 92:6495

    Article  Google Scholar 

  14. Herzberg G (1992) Molecular spectra and molecular structure. Krieger, Malabar

    Google Scholar 

  15. Miller WH (2006) Including quantum effects in the dynamics of complex (i.e., large) molecular systems. J Chem Phys 125:132305

    Google Scholar 

  16. Zuev PS, Sheridan RS, Albu TV, Truhlar DG, Hrovat DA, Borden WT (2003) Carbon tunneling from a single quantum state. Science 299:867

    Article  CAS  Google Scholar 

  17. McMahon RJ (2003) Chemical reactions involving quantum tunneling. Science 299:833

    Article  CAS  Google Scholar 

  18. Espinosa-García J, Corchado JC, Truhlar DG (1997) The importance of quantum effects for C-H bond activation reactions. J Am Chem Soc 119:9891

    Article  Google Scholar 

  19. Cha Y, Murray CJ, Klinman JP (1989) Hydrogen tunneling in enzyme-reaction. Science 243:1325

    Article  CAS  Google Scholar 

  20. Truhlar DG, Gao J, Alhambra C, Garcia-Viloca M, Corchado J, Sánchez ML, Villà J (2002) The incorporation of quantum effects in enzyme kinetics modeling. Acc Chem Res 35:341

    Article  CAS  Google Scholar 

  21. Truhlar DG, Gao J, Alhambra C, Garcia-Viloca M, Corchado J, Sánchez ML, Villà J (2004) Ensemble-averaged variational transition state theory with optimized multidimensional tunneling for enzyme kinetics and other condensed-phase reactions. Int J Quant Chem 100:1136

    Article  CAS  Google Scholar 

  22. Hammer-Schiffer S (2002) Impact of enzyme motion on activity. Biochemistry 41:13335

    Article  CAS  Google Scholar 

  23. Antoniou D, Caratzoulas S, Mincer J, Schwartz SD (2002) Barrier passage and protein dynamics in enzymatically catalyzed reactions. Eur J Biochem 269:3103

    Article  CAS  Google Scholar 

  24. Domcke W, Yarkony DR, Köppel H (eds) (2004) Conical intersections, electronic strucutre, dynamics and spectroscopy. World Scientific, New Jersey

    Google Scholar 

  25. Domcke W, Yarkony DR, Köppel H (eds) (2004) Conical intersections, theory, computation and experiment. World Scientific, New Jersey

    Google Scholar 

  26. Polli D, Altoè P, Weingart O, Spillane KM, Manzoni C, Brida D, Tomasello G, Orlandi G, Kukura P, Mathies RA, Garavelli M, Cerullo G (2010) Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467:440

    Article  CAS  Google Scholar 

  27. Lan Z, Frutos LM, Sobolewski AL, Domcke W (2008) Photochemistry of hydrogen-bonded aromatic pairs: quantum dynamical calculations for the pyrrole-pyridine complex. Proc Natl Acad Sci USA 105:12707

    Article  Google Scholar 

  28. Schultz T, Samoylova E, Radloff W, Hertel IV, Sobolewski AL, Domcke W (2004) Efficient deactivation of a model base pair via excited-state hydrogen transfer. Science 306:1765

    Article  CAS  Google Scholar 

  29. Wolynes PG (2009) Some quantum weirdness in physiology. Proc Natl Acad Sci USA 106:17247–17248

    Article  Google Scholar 

  30. Engel GS, Calhoun TR, Read EL, Ahn T-K, Mancal T, Cheng Y-C, Blankenship RE, Fleming GR (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–786

    Article  CAS  Google Scholar 

  31. Lee H, Cheng Y-C, Fleming GR (2007) Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science 316:1462

    Article  CAS  Google Scholar 

  32. Collini E, Wong CY, Wilk KE, Curmi PMG, Brumer P, Scholes GD (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463:644

    Article  CAS  Google Scholar 

  33. Wang Q, Schoenlein RW, Peteanu LA, Shank RA (1994) Vibrationnaly coherent photochemistry in the femtosecond primary event of vision. Science 266:422–424

    Article  CAS  Google Scholar 

  34. Brumer P, Shapiro M (2012) Molecular response in one-photon absorption via natural thermal light vs. pulsed laser excitation. Proc Natl Acad Sci USA 109:19575

    Google Scholar 

  35. Gross A, Scheffer M (1998) Ab initio quantum and molecular dynamics of the dissociative adsorption on Pd(100). Phys Rev B 57:2493

    Article  CAS  Google Scholar 

  36. Marx D, Parrinello M (1996) The effect of quantum and thermal fluctuations on the structure of the floppy molecule C2H3 +. Science 271:179

    Article  CAS  Google Scholar 

  37. Arndt M, Nairz O, Voss-Andreae J, Keller C, van der Zouw G, Zeillinger A (1999) Wave-particle duality of c60 molecules. Nature 401:680

    Article  CAS  Google Scholar 

  38. Gerlich S, Eibenberger S, Tomand M, Nimmrichter S, Hornberger K, Fagan PJ, Tüxen J, Mayor M, Arndt M (2011) Quantum interference of large organic molecules. Nat Phys 2:263

    Google Scholar 

  39. Chatzidimitriou-Dreismann A, Arndt M (2004) Quantum mechanics and chemistry: The relevance of nonlocality and entanglement for molecules. Angew Chem Int Ed 335:144

    Article  Google Scholar 

  40. Chergui M (ed) (1996) Femtochemistry. World Scientific, Singapore

    Google Scholar 

  41. Zewail AH (1994) Femtochemistry: ultrafast dynamics of the chemical bond. World Scientific, Singapore

    Google Scholar 

  42. Ihee H, Lobastov V, Gomez U, Goodson B, Srinivasan R, Ruan C-Y, Zewail AH (2001) Science 291:385

    Article  Google Scholar 

  43. Drescher M, Hentschel M, Kienberger R, Uiberacker M, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F (2002) Time-resolved atomic inner-shell spectroscopy. Nature 419:803

    Article  CAS  Google Scholar 

  44. Goulielmakis E, Loh Z-H, Wirth A, Santra R, Rohringer N, Yakovlev VS, Zherebtsov S, Pfeifero T, Azzeer AM, Kling MF, Leone SR, Krausz F (2010) Real-time observation of valence electron motion. Nature 466:739

    Article  CAS  Google Scholar 

  45. Krausz F, Ivanov M (2009) Attosecond physics. Rev Mod Phys 81:163–234

    Article  Google Scholar 

  46. Kling MF, Siedschlag C, Verhoef AJ, Khan JI, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking MJJ (2006) Control of electron localization in molecular dissociation. Science 312:246

    Article  CAS  Google Scholar 

  47. Niikura H, Légaré F, Hasbani R, Bandrauk AD, Ivanov MY, Villeneuve DM, Corkum PB (2002) Sub-laser-cycle electron pulse for probing molecular dynamics. Nature 417:917

    Article  CAS  Google Scholar 

  48. Stolow A, Jonas DM (2004) Muldimensional snapshots of chemical dynamics. Science 305:1575

    Article  CAS  Google Scholar 

  49. Brixner T, Damreuer NH, Niklaus P, Gerber G (2001) Photoselective adaptative femtosecond quantum control in the liquid phase. Nature 414:57

    Article  CAS  Google Scholar 

  50. Herek JL, Wohlleben W, Cogdell RJ, Zeidler D, Motzus M (2002) Quantum control of energy flow in light harvesting. Nature 417:533

    Article  CAS  Google Scholar 

  51. Levis RJ, Menkir GM, Rabitz H (2001) Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292:709

    Article  CAS  Google Scholar 

  52. Daems D, Guérin S, Hertz E, Jauslin HR, Lavorel B, Faucher O (2005) Field-free two-direction alignement alternation of linear molecules by elliptic laser pulses. Phys Rev Lett 95:063005

    Article  CAS  Google Scholar 

  53. Madsen CB, Madsen LB, Viftrup SS, Johansson MP, Poulsen TB, Holmegaard L, Kumarappan V, Jorgensen KA, Stapelfeldt H (2009) Manipulating the torsion of molecules by strong laser pulses. Phys Rev Lett 102:073007

    Article  CAS  Google Scholar 

  54. Holmegaard L, Hansen JL, Kalhøj L, Kragh SL, Stapelfeldt H, Filsinger F, Küpper J, Meijer G, Dimitrovski D, Martiny C, Madsen LB (2010) Photoelectron angular distributions from strong-field ionization of oriented molecules. Nat Phys 6:428

    Article  CAS  Google Scholar 

  55. Bethlem HL, Berden G, Crompvoets FM, Jongma RT, van Roij AJA, Meijer G (2000) Electrostatic trapping of ammonia molecules. Nature 406:491

    Article  CAS  Google Scholar 

  56. Kreckel H, Bruhns H, M, Glover SCO, Miller KA, Urbain X, Savin DW (2010) Experimental results for H2 formation from H and H and implications for first star formation. Science 329:69

    Google Scholar 

  57. Clary DC (1998) Quantum theory of chemical reaction dynamics. Science 279:1879

    Article  CAS  Google Scholar 

  58. Schnieder L, Seekamp-Rahn K, Borkowski J, Wrede E, Welge KH, Aoiz FJ, Bañares L, D’Mello MJ, Herrero VJ, Rábanos VS, Wyatt RE (1995) Experimental studies and theoretical predictions for the H + D2 → HD + D reaction. Science 269:207

    Article  CAS  Google Scholar 

  59. Qui M, Ren Z, Che L, Dai D, Harich SA, Wang X, Yang X, Xu C, Xie D, Gustafsson M, Skodje RT, Sun Z, Zhang DH (2006) Observation of Feshbach resonances in the F + H2 → HF + H reaction. Science 311:1440

    Article  CAS  Google Scholar 

  60. Dong W, Xiao C, Wang T, Dai D, Yang X, Zhang DH (2010) Transition-state spectroscopy of partial wave resonances in the F + HD. Science 327:1501

    Article  CAS  Google Scholar 

  61. Dyke TR, Howard BJ, Klemperer W. Radiofrequency and microwave spectrum of the hydrogen fluoride dimer; a nonrigid molecule. J Chem Phys 56:2442

    Google Scholar 

  62. Howard BJ, Dyke TR, Klemperer W (1984) The molecular beam spectrum and the structure of the hydrogen fluoride dimer. J Chem Phys 81:5417

    Article  CAS  Google Scholar 

  63. Zhang JZH (1999) Theory and application of uantum molecular dynamics. World Scientific, Singapore

    Google Scholar 

  64. McCullough EA, Wyatt RE (1969) Quantum dynamics of the collinear (H,H2) reaction. J Chem Phys 51:1253

    Article  CAS  Google Scholar 

  65. McCullough EA, Wyatt RE (1971) Dynamics of the collinear (H,H2) reaction. I. Probability density and flux. J Chem Phys 54:3578

    Google Scholar 

  66. Heller EJ. Time-dependent approach to semiclassical dynamics. J Chem Phys 62:1544

    Google Scholar 

  67. Heller EJ. Time-dependent variational approach to semiclassical dynamics. J Chem Phys 64:63

    Google Scholar 

  68. Heller EJ () Wigner phase space method: Analysis for semiclassical applications. J Chem Phys 65:1289

    Google Scholar 

  69. Kosloff D, Kosloff R (1983) A Fourier-method solution for the time-dependent Schrödinger equation as a tool in molecular dynamics. J Comput Phys 52:35

    Article  CAS  Google Scholar 

  70. Wang X-G, Carrington Jr T (2003) A contracted basis-Lanczos calculation of vibrational levels of methane: Solving the Schrödinger equation in nine dimensions. J Chem Phys 119:101

    Article  CAS  Google Scholar 

  71. Wang X-G, Carrington Jr T (2004) Contracted basis lanczos methods for computing numerically exact rovibrational levels of methane. J Chem Phys 121(7):2937–2954

    Article  CAS  Google Scholar 

  72. Tremblay JC, Carrington Jr T (2006) Calculating vibrational energies and wave functions of vinylidene using a contracted basis with a locally reorthogonalized coupled two-term lanczos eigensolver. J Chem Phys 125:094311

    Article  CAS  Google Scholar 

  73. Wang X, Carrington Jr T (2008) Vibrational energy levels of CH5 +. J Chem Phys 129:234102

    Article  CAS  Google Scholar 

  74. Norris LS, Ratner MA, Roitberg AE, Gerber RB (1996) Moller-plesset perturbation theory applied to vibrational problems. J Chem Phys 105:11261

    Article  CAS  Google Scholar 

  75. Christiansen O (2003) Moller-plesset perturbation theory for vibrational wave functions. J Chem Phys 119:5773

    Article  CAS  Google Scholar 

  76. Christiansen O (2004) Vibrational coupled cluster theory. J Chem Phys 120:2149

    Article  CAS  Google Scholar 

  77. Christiansen O, Luis J (2005) Beyond vibrational self-consistent-field methods: Benchmark calculations for the fundamental vibrations of ethylene. Int J Quant Chem 104:667

    Article  CAS  Google Scholar 

  78. Scribano Y, Benoit D (2007) J Chem Phys 127:164118

    Article  CAS  Google Scholar 

  79. Barone V (2005) Anharmonic vibrational properties by a fully automated second-order perturbative aproach. J Chem Phys 122:014108

    Article  CAS  Google Scholar 

  80. Bowman J (1978) Self-consistent field energies and wavefunctions for coupled oscillators. J Chem Phys 68:608

    Article  CAS  Google Scholar 

  81. Bowman J, Christoffel K, Tobin F. Application of SCF-SI theory to vibrational motion in polyatomic molecules. J Phys Chem 83:905

    Google Scholar 

  82. Bégué D, Gohaud N, Pouchan C, Cassam-Chenaï P, Liévin J (2007) A comparison of two methods for selecting vibrational configuration interaction spaces on a heptatomic system: Ethylene oxide. J Chem Phys 127:164115

    Article  CAS  Google Scholar 

  83. Carter S, Bowman JM, Handy NC (1998) Extensions and tests of “multimodes”: a code to obtain accurate vibration/rotation energies of many-mode molecules. Theor Chem Acc 100:191

    Article  CAS  Google Scholar 

  84. Bowman JM (2000) Chemistry—beyond platonic molecules. Science 290:724

    Article  CAS  Google Scholar 

  85. Culot F, Laruelle F, Liévin J (1995) A vibrational CASSCF study of stretch-bend interactions and their influence on infrared intensities in the water molecule. Theor Chem Acc 92:211

    CAS  Google Scholar 

  86. Heislbetz S, Rauhut G (2010) Vibrational multiconfiguration self-consistent field theory: Implementation and test calculations. J Chem Phys 132:124102

    Article  CAS  Google Scholar 

  87. Meyer H-D, Le Quéré F, Léonard C, Gatti F (2006) Calculation and selective population of vibrational levels with the Multiconfiguration Time-Dependent Hartree (MCTDH) algorithm. Chem Phys 329:179–192

    Article  CAS  Google Scholar 

  88. Joubert Doriol L, Gatti F, Iung C, Meyer H-D (2008) Computation of vibrational energy levels and eigenstates of fluoroform using the multiconfiguration time-dependent Hartree method. J Chem Phys 129:224109

    Article  CAS  Google Scholar 

  89. Gerber RB, Buch V, Ratner MA (1982) Time-dependent self-consistent field approximation for intramolecular energy transfer. I. Formulation and application to dissociation of van der Waals molecules. J Chem Phys 77:3022

    Google Scholar 

  90. Gerber RB, Ratner MA (1988) Self-consistent-field methods for vibrational excitations in polyatomic systems. Adv Chem Phys 70:97

    CAS  Google Scholar 

  91. Makri N, Miller WH (1987) Time-dependent self-consistent (TDSCF) approximation for a reaction coordinate coupled to a harmonic bath: Single and multiconfiguration treatments. J Chem Phys 87:5781

    Article  CAS  Google Scholar 

  92. Kotler Z, Nitzan A, Kosloff R (1988) Multiconfiguration time-dependent self-consistent field approximation for curve crossing in presence of a bath. A Fast Fourier Transform study. Chem Phys Lett 153:483

    Google Scholar 

  93. Meyer H-D, Manthe U, Cederbaum LS (1990) The multi-configurational time-dependent Hartree approach. Chem Phys Lett 165:73–78

    Article  CAS  Google Scholar 

  94. Manthe U, Meyer H-D, Cederbaum LS (1992) Wave-packet dynamics within the multiconfiguration Hartree framework: General aspects and application to NOCl. J Chem Phys 97:3199–3213

    Article  CAS  Google Scholar 

  95. Beck MH, Jäckle A, Worth GA, Meyer H-D (2000) The multi-configuration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wave packets. Phys Rep 324:1–105

    Article  CAS  Google Scholar 

  96. Worth GA, Beck MH, Jäckle A, Meyer H-D (2007) The MCTDH Package, Version 8.2, (2000). Meyer HD, Version 8.3 (2002), Version 8.4 (2007). See http://mctdh.uni-hd.de/

  97. Jolicard G, Austin E (1985) Optical potential stabilisation method for predicting resonance level. Chem Phys Lett 121:106

    Article  CAS  Google Scholar 

  98. Jolicard G, Austin E (1986) Optical potential method of caculating resonance energies and widths. Chem Phys 103:295

    Article  CAS  Google Scholar 

  99. Riss UV, Meyer H-D (1993) Calculation of resonance energies and widths using the complex absorbing potential method. J Phys B 26:4503

    Article  CAS  Google Scholar 

  100. Riss UV, Meyer H-D (1996) Investigation on the reflection and transmission properties of complex absorbing potentials. J Chem Phys 105:1409

    Article  CAS  Google Scholar 

  101. Moiseyev N (1998) Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling. Phys Rep 302:211

    Article  CAS  Google Scholar 

  102. Moiseyev N (2011) Non-Hermitian quantum mechanics. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Department of Energy and National Science Foundation. We would also like to thank Joel Bowman, Fleming Crim, Richard Dawes, Evi Goldfield, Don Truhlar, Al Wagner, Daiqian Xie, David Yarkony, and Dong Hui Zhang for many stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guo, H., Ma, J., Li, J. (2014). Tunneling in Unimolecular and Bimolecular Reactions. In: Gatti, F. (eds) Molecular Quantum Dynamics. Physical Chemistry in Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45290-1_3

Download citation

Publish with us

Policies and ethics