Skip to main content

Locally Optimal Designs

  • Chapter
  • First Online:
Optimal Experimental Design for Non-Linear Models

Part of the book series: SpringerBriefs in Statistics ((BRIEFSSTATIST))

  • 1601 Accesses

Abstract

The locally optical design is discussed and the alphabetic optimal designs are introduced, and the Geometrical insight is discussed. The canonical form for a binary response problem is introduced, and its “affine” character is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson AC, Hunter WG (1968) The design of experiments for parameter estimation. Technometrics 10:271–289

    Article  MATH  MathSciNet  Google Scholar 

  • Begg CB, Kalish LA (1984) Treatment allocation for nonlinear models in clinical trials: the logistic model. Biometrics 40:409–420

    Article  Google Scholar 

  • Box MJ (1968) The occurrence of replications in optimal designs of experiments to estimate parameters in non-linear models. J Roy Stat Soc: B 30:290–302

    MATH  MathSciNet  Google Scholar 

  • Box GEP, Lucas HL (1959) Design of experiments in nonlinear situation. Biometrika 49:77–90

    MathSciNet  Google Scholar 

  • Breslow NE, Day NE (1980) Statistical methods in cancer research. IARC, No 32. Lyon

    Google Scholar 

  • Dette H, Haines ML (1994) E-optimal designs for linear and nonlinear models with two parameters. Biometrika 81:739–754

    MATH  MathSciNet  Google Scholar 

  • Dette H, Studden WJ (1993) Geometry of E-optimality. Ann Stat 21:416–433

    Article  MATH  MathSciNet  Google Scholar 

  • Elfving G (1952) Optimum allocation in linear regression theory. Ann Math Stat 23:255–262

    Article  MATH  MathSciNet  Google Scholar 

  • Fang K-T, Kotz S, Ng KW (1990) Symmetric multivariate and related distributions. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Fedorov VV (1972) Theory of optimal experiments. Academic Press, London

    Google Scholar 

  • Fisher RA (1922) On the mathematical foundation of theoretical statistics. Phil Trans Roy Soc Lond Ser A 22:309–368

    Article  Google Scholar 

  • Ford I, Silvey SD (1980) A sequentially constructed design for estimating a nonlinear parameter function. Biometrlka 67:381–388

    Article  MATH  MathSciNet  Google Scholar 

  • Ford I, Kitsos CP, Titterington DM (1989) Recent advances in nonlinear experimental design. Technometrics 31:49–60

    Article  MATH  MathSciNet  Google Scholar 

  • Ford I, Torsney B, Wu CFJ (1992) The use of canonical form in the construction of locally optimal designs for nonlinear problems. J Roy Stat Soc: B 54:569–583

    MATH  MathSciNet  Google Scholar 

  • Fornius FE (2008) Optimal design of experiments for the quadratic logistic model. Ph.D. Thesis, Stockholm University, Stockholm

    Google Scholar 

  • Hill PDH (1980) D-optimal designs for partially nonlinear regression models. Technometrics 22:275–276

    Article  MATH  MathSciNet  Google Scholar 

  • Karlin S, Studden WJ (1966) Optimal experimental designs. Ann Math Stat 37:783–815

    Article  MATH  MathSciNet  Google Scholar 

  • Khuri AI (1984) A note on D-optimal designs for partially nonlinear regression models. Technometrics 26:59–61

    MATH  MathSciNet  Google Scholar 

  • Kiefer J, Wolfowitz J (1960) The equivalence of two extreme problems. Canadian J Math 12:363–366

    Article  MATH  MathSciNet  Google Scholar 

  • Kitsos CP (1986) Design and inference in nonlinear problems. Ph.D. Thesis, University of Glasgow, UK

    Google Scholar 

  • Kitsos CP (2010) Adopting hypergeometric functions for sequential statistical methods. Bull Greek Math Soc 57:251–264

    Google Scholar 

  • Kitsos CP (2011a) Invariant canonical form for the multiple logistic regression. Math Eng Sci Aerosp (MESA) 2(3):267–275

    MATH  Google Scholar 

  • Kitsos CP (2011b) On Fisher’s information measures. In: e-Proceedings of digital technologies 2011, 10–11 Nov 2011, Zilina, Slovakia, pp 178–183

    Google Scholar 

  • Kitsos CP, Kolovos KG (2010) An optimal calibration design for pH meters. Instrum Sci Technol 38(6):436–447

    Article  Google Scholar 

  • Mathew T, Sinha BK (2001) Optimal designs for binary data under logistic regression. J Stat Plan Infer 93:295–307

    Article  MATH  MathSciNet  Google Scholar 

  • McCullagh P, Nedler JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Muller CH, Kitsos CP (2004) Optimal design criteria based on tolerance regions. In: Di Bucchianno A, Lauter H, Wynn H (eds) MODA7-advances in model-oriented design and analysis. Physica, Heidelberg, pp 107–115

    Chapter  Google Scholar 

  • Pukeisheim F, Titterington DM (1983) General differential and Lagrangian theory for optimal experiment design. Ann Stat 11:1060–1068

    Google Scholar 

  • Pukelsheim F (1993) Optimal design of experiments. Wiley, New York

    MATH  Google Scholar 

  • Sibson R (1972) Discussion of paper by HP Wynn. J Roy Stat Soc: B 34:181–183

    Google Scholar 

  • Silvey SD (1972) Discussion of paper by HP Wynn. J Roy Stat Soc: B 34:174–175

    Google Scholar 

  • Silvey SD (1980) Optimal design. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Silvey SD, Tittertington DM (1973) A geometric approach to optimal design theory. Biometrika 60:21–32

    Article  MATH  MathSciNet  Google Scholar 

  • Sitter RR, Torsney B (1995a) D-optimal deigns for generalized linear models. In: Kitsos CP, Muller WG (eds) MODA4-advances in model-oriented data analysis. Springer, Berlin, pp 87–102

    Chapter  Google Scholar 

  • Sitter R, Torsney B (1995b) Optimal design for binary response experiments with two design variables. Stat Sinica 5:405–419

    MATH  MathSciNet  Google Scholar 

  • Smith K (1918) On the standard deviation of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations. Biometrika 12:1–85

    Google Scholar 

  • Studden WJ (1971) Elfving’s theorem and optimal designs for quadratic loss. Ann Math Stat 42:1613–1621

    Article  MATH  MathSciNet  Google Scholar 

  • Titterington DM (1975) Optimal design: some geometrical aspects of D-optimality. Biometrika 62:313–320

    MATH  MathSciNet  Google Scholar 

  • Titterington DM (1980a) Aspects of optimal design in dynamic systems. Technometrics 22:287–299

    Article  MATH  MathSciNet  Google Scholar 

  • Titterington DM (1980b) Geometric approaches to design of experiment. Math Oper Stat 11:151–163

    MATH  MathSciNet  Google Scholar 

  • White LV (1973) An extension to the general equivalence theorem for nonlinear models. Biometrika 60:345–348

    Article  MATH  MathSciNet  Google Scholar 

  • Wu CFJ, Wynn HP (1978) The convergence of general step-length algorithms for regular optimum design criteria. Ann Stat 6:1273–1285

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos P. Kitsos .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Kitsos, C.P. (2013). Locally Optimal Designs. In: Optimal Experimental Design for Non-Linear Models. SpringerBriefs in Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45287-1_3

Download citation

Publish with us

Policies and ethics