Skip to main content

Electrical and Optical Properties of Nanocellulose Films and Its Nanocomposites

  • Chapter
  • First Online:
Handbook of Polymer Nanocomposites. Processing, Performance and Application

Abstract

Cellulose is one of the most abundant and common natural resources around us. The production of nanoscaled cellulose fibers and their application in composite materials have gradually got increasing attention during the last decades because nanocellulose has many advantages (i.e., high crystallinity, high tensile strength, high melting temperature, 200 times more surface area, finer weblike network, stiffness combined with low weight, and biodegradability). Nanocomposites with cellulosic nanofibers as reinforcing material appeared 15 years ago [1]. Due to these advantages, nanocelluloses were applied in various fields of technologies [2]. Nanocellulose can be classified into four kinds according to production method and material source. Figure 21.1 shows categories of nanocellulose.

Book Chapter in, “The potential of nanocomposites composed of nanocellulose in various applications requiring optical transparency and electrical conductivity”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eichhorn SJ, Aranguren A, Marcovich NE, Dufresne A, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1

    Article  ADS  Google Scholar 

  2. Byoung-Ho Lee (2011) Preparation and characterization of bacterial cellulose nanofiber-based nanocomposite films. Doctoral dissertation, Seoul National University

    Google Scholar 

  3. Klemm D, Kramer F, Moritz S, Lindstrm T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438

    Article  Google Scholar 

  4. Nakagaito AN, Nogi M, Yano H (2010) Displays from transparent films of natural nanofibers. MRS Bull 35:214

    Article  Google Scholar 

  5. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153

    Article  Google Scholar 

  6. Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849

    Article  Google Scholar 

  7. Okahisa Y, Abe K, Nogi M, Nakagaito AN, Nakatani T, Yano H (2011) Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Compos Sci Technol 71:1342

    Article  Google Scholar 

  8. Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32:876

    Article  Google Scholar 

  9. Lee BH, Kim HJ, Yang HS (2012) Polymerization of aniline on bacterial cellulose and characterization of bacterial cellulose/polyaniline nanocomposite films. Curr Appl Phys 12:75

    Article  ADS  Google Scholar 

  10. Lee HJ, Chung TJ, Kwon HJ, Kim HJ, Tze WTY (2012) Fabrication and evaluation of bacterial cellulose-polyaniline composites by interfacial polymerization. Cellulose 19:1251

    Article  Google Scholar 

  11. Lee HJ (2012) Aminosilane treatment of bacterial cellulose and its application to improve electrical conductivity. Master thesis. Seoul National University

    Google Scholar 

  12. Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776

    Article  Google Scholar 

  13. Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conducting polymer composites films prepared by bacterial celluloses and carbon nanotubes. Biomacromolecules 7:1280

    Article  Google Scholar 

  14. Chen P, Cho SY, Jin HJ (2010) Modification and applications of bacterial celluloses in polymer science. Macromol Res 18:309

    Article  Google Scholar 

  15. Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365

    Article  ADS  Google Scholar 

  16. Khalil HPSA, Bhat AH, Yusra AFI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963

    Article  Google Scholar 

  17. Liu D, Yuan X, Bhattacharyya D (2012) The effects of cellulose nanowhiskers on electrospun poly (lactic acid) nanofibres. J Mater Sci 47:3159

    Article  ADS  Google Scholar 

  18. Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76:94

    Article  Google Scholar 

  19. Herrick FW, Casabier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797

    Google Scholar 

  20. Carrasco GC (2011) Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res Lett 6:1

    ADS  MathSciNet  Google Scholar 

  21. Gilberto S, Bras J, Dufresne A (2010) Review cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728

    Article  Google Scholar 

  22. Syverud K, Carrasco GC, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr Polym 84:1033

    Article  Google Scholar 

  23. Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fiber for the processing of transparent nanocomposites. Appl Phys A Mater Sci Process 89:461

    Article  ADS  Google Scholar 

  24. http://www.oled-display.net/oled-revenues-forecast

  25. Jeong DY (2007) Industry report: OLED, next-generation display, heat up. http://seriworld. org/

  26. Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911

    Article  ADS  Google Scholar 

  27. Reuss RH, Chalamala BR, Moussessian A, Kane MG, Kumar A, Zhang DC, Rogers JA, Hatalis M, Temple D, Moddel G, Eliasson BJ, Estes MJ, Kunze J, Handy ES, Harmon ES, Salzman DB, Woodall JM, Alam MA, Murthy JY, Jacobsen SC, Olivier M, Markus D, Campbell PM, Snow E (2005) Macroelectronics: perspectives on technology and applications. P IEEE 93:1239

    Article  Google Scholar 

  28. MacDonald WA (2004) Engineered films for display technologies. J Mater Chem 14:4

    Article  Google Scholar 

  29. Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A Mater Sci Process 81:1109

    Article  ADS  Google Scholar 

  30. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162

    Article  Google Scholar 

  31. Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973

    Article  Google Scholar 

  32. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595

    Article  Google Scholar 

  33. Barud HS, Caiut JMA, Dexpert-Ghys J, Messaddeq Y, Ribeiro SJL (2012) Transparent bacterial cellulose-boehmite-epoxi-siloxane nanocomposites. Composites 43:973, Part A

    Article  Google Scholar 

  34. Gea S, Bilotti E, Reynolds CT, Soykeabkeaw N, Peijs T (2010) Bacterial cellulose–poly(vinyl alcohol) nanocomposites prepared by an in-situ process. Mater Lett 64:901

    Article  Google Scholar 

  35. Shirakawa H, Louis EJ, Macdiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene. J Chem Soc Chem Commun 16:570

    Google Scholar 

  36. Collier JH et al (2000) Synthesis and characterization of polypyrrole-hyaluronic acid composite biomaterials for tissue engineering applications. J Biomed Mater Res 50:574, Part A

    Article  Google Scholar 

  37. Norden B, Krutmeijer E (2000) Conductive polymers: The Royal Swedish Academy of Sciences, Information Department, Stockholm, Sweden

    Google Scholar 

  38. Lee BH (2011) Preparation and characterization of bacterial cellulose nanofiber-based nanocomposite films. Doctoral dissertation, Seoul National University

    Google Scholar 

  39. Hu WL, Chen SY, Yang ZH, Liu LT, Wang HP (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453

    Article  Google Scholar 

  40. Marins JA, Soares BG, Dahmouche K, Ribeiro SJL, Barud H, Bonemer D (2011) Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose 18:1285

    Article  Google Scholar 

  41. Stafström S, Brédas JL, Epstein AJ, Woo HS, Tanner DB, Huang WS, MacDiarmid AG (1987) Polaron lattice in highly conducting polyaniline: Theoretical and optical studies. Phys Rev Lett 59:1464

    Article  ADS  Google Scholar 

  42. Zhang Z, Wei Z, Wan M (2002) Nanostructures of Polyaniline Doped with Inorganic Acids. Macromolecules 35:5937

    Article  ADS  Google Scholar 

  43. Abdiryim T, Jamal R, Nurulla I (2007) Doping effect of organic sulphonic acids on the solid-state synthesized polyaniline. J Appl Polym Sci 105:576

    Article  Google Scholar 

  44. Kelly FM, Johnston JH, Borrmann T, Richardson MJ (2007) Functionalised hybrid materials of conducting polymers with individual fibres of cellulose. Eur J Inorg Chem 2007:5571

    Article  Google Scholar 

  45. Huang J, Virji S, Weiller BH, Kaner RB (2003) Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors. J Am Chem Soc 125:314

    Article  Google Scholar 

  46. Huang J, Kaner RB (2004) A General Chemical Route to Polyaniline Nanofibers. J Am Chem Soc 126:851

    Article  Google Scholar 

  47. Huang J, Kaner RB (2004) Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. Angew Chem 116:5941

    Article  Google Scholar 

  48. Huang J, Virji S, Weiller BH, Kaner RB (2004) Nanostructured polyaniline sensors. Chem Eur J 10:1314

    Article  Google Scholar 

  49. Huang J, Kaner R (2004) A general chemical route to poly-aniline nanofibers. J Am Chem Soc 126:851

    Article  Google Scholar 

  50. Lee K, Cho S, Park SH, Heeger AJ, Lee CW, Lee SH (2006) Metallic transporting polyaniline. Nature 441:65

    Article  ADS  Google Scholar 

  51. Koh WC, Chandra P, Kim DM, Shim YB (2011) Electropolymerized self-assembled layer on gold nanoparticles: detection of inducible nitric oxide synthase in neuronal cell culture. Anal Chem 83:6177

    Article  Google Scholar 

  52. McGehee DG, Topinka MA (2006) Solar cells: pictures form the blended zone. Nat Mater 5:675

    Article  ADS  Google Scholar 

  53. Yoon JH, Kim DM, Yoon SS, Won MS, Shim YB (2011) Comparison of solar cell performance of conducting polymer dyes with different functional groups. J Power Sources 196

    Google Scholar 

  54. Shiddiky MJA, Rahman MA, Shim YB (2007) Hydrazine-catalyzed ultrasensitive detection of DNA and proteins. Anal Chem 79:6886

    Article  Google Scholar 

  55. Bandaru PR (2007) Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 7:1239

    Article  Google Scholar 

  56. http://blog.naver.com/HUD_KIA

  57. http://www.ent.mrt.ac.lk/Oled

  58. http://linepic.blogspot.kr/Flexible_display_by_Jang,H

  59. Okahisa Y, Yoshida A, Miyaguchi S, Yano H (2009) Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol 69:1958

    Article  Google Scholar 

  60. Tammelin T (2012) Transparent plastic-like packaging material from birch fibril pulp

    Google Scholar 

  61. Hong SY, Marynick DS (1992) Understanding the conformational stability and electronic structures of modified polymers based on polythiophene. Macromolecules 25(18), pp 4652–4657

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Joong Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, HJ., Kwon, HJ., Jeon, S., Park, JW., Sunthornvarabhas, J., Sriroth, K. (2015). Electrical and Optical Properties of Nanocellulose Films and Its Nanocomposites. In: Pandey, J., Takagi, H., Nakagaito, A., Kim, HJ. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45232-1_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45232-1_74

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45231-4

  • Online ISBN: 978-3-642-45232-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics