Skip to main content

Chitin Nanofibers: Preparations, Modifications, and Applications

  • Chapter
  • First Online:
Handbook of Polymer Nanocomposites. Processing, Performance and Application

Abstract

Chitin nanofibers of 10–20 nm width and high aspect ratio were prepared using a series of chemical treatments followed by mechanical grinding treatment from exoskeletons of crabs and prawns and cell wall of mushrooms. The nanofibers obtained are uniform and have both linear and network structures. Mechanical treatment under acidic (pH 3–4) conditions facilitated nano-fibrillation. The cationization of amino groups on the fiber surface of chitin improved fibrillation by electrostatic repulsion. Nanofiber surface was modified by acetylation for increasing applications of nanofibers. The sheet of neat chitin nanofibers was opaque; however, it became transparent by blending nanofibers with different types of acrylic resins due to nano-sized structure of fibers. Young’s moduli and the tensile strengths increased significantly, while thermal expansion of acrylic resins decreased as a result of reinforcement of resins with chitin nanofibers. Chitin nanofiber showed chiral separation ability as well. Chitin nanofiber membrane transported the D-isomer of glutamic acid, phenylalanine, and lysine from the corresponding racemic amino acid mixtures faster than L-isomer. From the viewpoint of medical applications, chitin nanofibers improved clinical symptoms and suppressed ulcerative colitis in dextran sulfate sodium-induced mouse model of acute ulcerative colitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651

    Article  ADS  Google Scholar 

  2. Page DH, Elhosseiny F (1983) The mechanical properties of single wood pulp fibers. 6. fibril angle and the shape of the stess-strain curve. J Pulp Pap Can 84:99

    Google Scholar 

  3. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683

    Article  ADS  Google Scholar 

  4. Turbak AF, Synder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815

    Google Scholar 

  5. Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291

    Article  Google Scholar 

  6. Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A 81:1109

    Article  ADS  Google Scholar 

  7. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocryshing. Holzforschung 59:102

    Article  Google Scholar 

  8. Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259

    Article  Google Scholar 

  9. Zhao HP, Feng XQ, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90:073112

    Article  ADS  Google Scholar 

  10. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Rukolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934

    Article  Google Scholar 

  11. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276

    Article  Google Scholar 

  12. Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017

    Article  Google Scholar 

  13. Abe K, Yano H (2010) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 17:271

    Article  Google Scholar 

  14. Ifuku S, Adachi M, Morimoto M, Saimoto H (2011) Fabrication of cellulose nanofiber from parenchyma cells of pear and apple. Sei-i Gakkaishi 67:86

    Article  Google Scholar 

  15. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71

    Article  ADS  Google Scholar 

  16. Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687

    Article  Google Scholar 

  17. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485

    Article  Google Scholar 

  18. Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992

    Article  Google Scholar 

  19. Raabe D, Romano P, Sachs C, Fabritius H, Al-Sawalmih A, Yi SB, Servos G, Hartwig HG (2006) Microstructure and crystallographic texture of the chitin–protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Mater Sci Eng A 421:143

    Article  Google Scholar 

  20. Chen P, Lin AY, McKittrick J, Meyers MA (2008) Structure and mechanical properties of crab exoskeletons. Acta Biomater 4:587

    Article  Google Scholar 

  21. Giraud-guille MM (1984) Fine structure of the chitin-protein in the crab cuticle. Tissue Cell 16:75

    Article  Google Scholar 

  22. Raabe D, Sachs C, Romano P (2005) The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater 53:4281

    Article  Google Scholar 

  23. Ifuku S, Nogi M, Abe K, Yoshioka M, Morimoto M, Saimoto H, Yano H (2009) Preparation of chitin nanofibers with a uniform width as alpha-chitin from crab shells. Biomacromolecules 10:1584

    Article  Google Scholar 

  24. Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4:3308

    Article  ADS  Google Scholar 

  25. Shimahara K, Takiguchi Y (1998) Preparation of crustacean chitin. In: Wood WA, Kellogg ST (eds) Methods in enzymology, vol 6. Academic, California, p 417

    Google Scholar 

  26. BeMiller JN, Whistler RL (1962) Alkaline degradation of amino sugars. J Org Chem 27:1161

    Article  Google Scholar 

  27. Ifuku S, Nogi M, Abe K, Yoshioka M, Morimoto M, Saimoto H, Yano H (2011) Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Carbohyd Polym 84:762

    Article  Google Scholar 

  28. Ifuku S, Nomura R, Morimoto M, Saimoto H (2011) Preparation of chitin nanofibers from mushrooms. Materials 4:1417

    Article  ADS  Google Scholar 

  29. Ifuku S, Nogi M, Yoshioka M, Moromoto M, Yano H, Saimoto H (2010) Fibrillation of dried chitin into 10–20 nm nanofibers by a simple method under acidic conditions. Carbohyd Polym 81:134

    Article  Google Scholar 

  30. Fan Y, Saito T, Isogai A (2010) Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization. Carbohyd Polym 79:1046

    Article  Google Scholar 

  31. Kim DY, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9:361

    Article  Google Scholar 

  32. Ifuku S, Morooka S, Morimoto M, Saimoto H (2010) Acetylation of chitin nanofibers and their transparent nanocomposite films. Biomacromolecules 11:1326

    Article  Google Scholar 

  33. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153

    Article  Google Scholar 

  34. Ifuku S, Morooka S, Nakagaito AN, Morimoto M, Saimoto H (2011) Preparation and characterization of optically transparent chitin nanofiber/(meth)acrylic resin composites. Green Chem 13:1708

    Article  Google Scholar 

  35. Sueyoshi Y, Hashimoto T, Yoshikawa M, Ifuku S (2011) Chitin nanofiber membranes for chiral separation. Sust Agric Res 1:42

    Google Scholar 

  36. Melgar S, Karlsson A, Michaelsson E (2005) Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. Am J Physiol-Gastr L 288:G1328

    Google Scholar 

  37. Azuma K, Osaki T, Wakuda T, Ifuku S, Saimoto H, Tsuka T, Imagawa T, Okamoto Y, Minami S (2012) Beneficial and preventive effect of chitin nanofibrils in a dextran sulfate sodium-induced acute ulcerative colitis model. Carbohyd Polym 87:1399

    Article  Google Scholar 

  38. Azuma K, Osaki T, Wakuda T, Ifuku S, Saimoto H, Tsuka T, Imagawa T, Okamoto Y, Minami S (2012) α–Chitin nanofibrils improve inflammatory and fibrosis responses in inflammatory bowel disease mice model. Carbohyd Polym 90:197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Ifuku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ifuku, S. (2015). Chitin Nanofibers: Preparations, Modifications, and Applications. In: Pandey, J., Takagi, H., Nakagaito, A., Kim, HJ. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45232-1_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45232-1_73

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45231-4

  • Online ISBN: 978-3-642-45232-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics