Skip to main content

Changes in Wood Properties and Those in Structures of Cellulose Microfibrils in Wood Cell Walls After the Chemical Treatments

  • Chapter
  • First Online:
Handbook of Polymer Nanocomposites. Processing, Performance and Application
  • 2939 Accesses

Abstract

Wood is a natural porous material, obtained from trees, whose cell walls consist of cellulose micrifibrils, lignin and hemicelluloses. Cellulose microfibrils in wood cell walls, whose crystalline regions have high Young’s modulus and strength in the direction parallel to the molecular chain axis, play an important rule in mechanical and physical properties of wood. Chemical treatments that cause the transformation of cellulose crystals have been used to improve the mechanical and physical properties of cellulose fibers for a long time. These treatments also cause the changes in cell wall structures of wood and alter the properties of wood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bodig J, Jayne BA (1993) I. Characteristics of wood composites. In: Bodig J, Jayne BA (ed) Mechanics of wood and wood composites, (reprint edition) Krieger Publishing Company Krieger Drive, Malabar, p 1

    Google Scholar 

  2. Saiki H, Harada H (1994) II. Sinyoujyuzai no saibou. In: Shimaji K, Saiki H, Harada H, Shiokura T, Ishida S, Shigematsu Y, Sudou S (eds) Mokuzai no kouzo, 5th edn. Buneido, Tokyo, p 20

    Google Scholar 

  3. Saiki H, Harada H (1994) III. Kouyoujyuzai no saibou. In: Shimaji K, Saiki H, Harada H, Shiokura T, Ishida S, Shigematsu Y, Sudou S (eds) Mokuzai no kouzo, 5th edn. Buneido, Tokyo, p 49

    Google Scholar 

  4. Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651

    Article  ADS  Google Scholar 

  5. Matsuo M, Sawatari C, Iwai Y, Ozaki F (1990) Effect of orientation distribution and crystalliniy on the measurement by x-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 23:3266

    Article  ADS  Google Scholar 

  6. Tashiro K, Kobyashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516

    Article  Google Scholar 

  7. Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Part B Polym Phys 33:1647

    Article  ADS  Google Scholar 

  8. Saiki H, Harada H (1994) V. Saibouheki. In: Shimaji K, Saiki H, Harada H, Shiokura T, Ishida S, Shigematsu Y, Sudou S (eds) Mokuzai no kouzo, 5th edn. Buneido, Tokyo, p 125

    Google Scholar 

  9. Page DH, El-Hosseiny F (1983) The mechanical properties of single wood pulp fibres. Part 5. Fibril angle and the shape of the stress–strain curve. J Pulp Pap Sci 9:99

    Google Scholar 

  10. Reiterer A, Lichtenegger H, Tschegg S, Fratzl P (1999) Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philos Mag A 79:2173

    Article  ADS  Google Scholar 

  11. Reiterer A, Lichtenegger H, Fratzl P, Tschegg S (2001) Deformation and energy absorption of wood cell walls with different nanostructure under tensile loading. J Mater Sci 36:4681

    Article  ADS  Google Scholar 

  12. Okano T, Sarko A (1984) Mercerization of cellulose. I. X-ray diffraction evidence for intermediate structures. J Appl Polym Sci 29:4175

    Article  Google Scholar 

  13. Fink HP, Phillip B (1985) Models of cellulose physical structure from the viewpoint of the cellulose I→II transition. J Appl Polym Sci 30:3779

    Article  Google Scholar 

  14. Okano T, Sarko A (1985) Mercerization of cellulose. II. Alkali–cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325

    Article  Google Scholar 

  15. Sao KP, Samantary BK, Bhattacherjee S (1994) X-ray study of crystallinity and disorder in ramie fiber. J Appl Polym Sci 52:1687

    Article  Google Scholar 

  16. Fengel D, Jakob H, Strobel C (1995) Influence of the alkali concentration on the formation of cellulose II. Study by X-ray diffraction and FTIR spectroscopy. Holzforschung 49:505

    Article  Google Scholar 

  17. Rollins ML (1954) Some Aspects of Microscopy in Cellulose Research. Anal Chem 26:718

    Article  Google Scholar 

  18. Warwicker JO, Jefferies R, Colban RL, Robinson RN (1966) A review of the literature on the effect of caustic soda and other swelling agents on the fine structure of cotton. Shirley Institute Pamphlet No. 93, Shirey Institute Disbury, Manchester

    Google Scholar 

  19. Okano K, Nishiyama Y (1995) Behavior of alkali-swollen cellulose fibers and the crystal structure. Cell Commun 2:2

    Google Scholar 

  20. Nishiyama Y, Okano T (1998) Morphological changes of ramie fiber during mercerization. J Wood Sci 44:310

    Article  Google Scholar 

  21. Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer 38:463

    Article  Google Scholar 

  22. Loeb L, Segal L (1955) Studies of the ethylenediamine-cellulose complex. I. Decomposition of the complex by solvents. J Polym Sci 15:343

    Article  ADS  Google Scholar 

  23. Numata Y, Kono H, Kawano S, Erata T, Takai M (2003) Cross-polarization/magic-angle spinning 13C nuclear magnetic resonance study of cellulose I-ethylenediamine complex. J Biosci Bioeng 96:461

    Article  Google Scholar 

  24. Wada M, Kwon GJ, Nishiyama Y (2008) Structure and thermal behavior of a cellulose I-ethylenediamine complex. Biomacromolecules 9:2898

    Article  Google Scholar 

  25. Wada M, Heux L, Nishiyama Y, Langan P (2009) The structure of the complex of cellulose I with ethylenediamine by X-ray crystallography and cross-polarization/magic angle spinning 13C nuclear magnetic resonance. Cellulose 16:943

    Article  Google Scholar 

  26. Nishiyama Y, Wada M, Hanson BL, Langan P (2010) Time-resolved X-ray diffraction microprobe studies of the conversion of cellulose I to ethylenediamine-cellulose I. Cellulose 17:735

    Article  Google Scholar 

  27. Roche E, Chanzy H (1981) Electron microscopy study of the transformation of cellulose I into cellulose IIII in Valonia. Int J Biol Macromol 3:201

    Article  Google Scholar 

  28. Chanzy H, Henrissat B, Vuong R, Revol JF (1986) Structural changes of cellulose crystals during the reversible transformation cellulose I↔IIII in Valonia. Holzforschung 40(Suppl):25

    Google Scholar 

  29. Chanzy H, Henrissat B, Vincendon M, Tanner SF, Belton PS (1987) Solid-state 13C-N.M.R. and electron microscopy study on the reversible cellulose I→cellulose IIII transformation in Valonia. Carbohydr Res 160:1

    Article  Google Scholar 

  30. Sugiyama J, Harada H, Saiki H (1987) Crystalline morphology of Valonia macrophysa cellulose IIII revealed by direct lattice imaging. Int J Biol Macromol 9:122

    Article  Google Scholar 

  31. Ishikawa A, Kuga S, Okano T (1998) Determination of parameters in mechanical model for cellulose III fibre. Polymer 39:1875

    Article  Google Scholar 

  32. Gomes A, Goda K, Ohgi J (2004) Effects of Alkali Treatment to Reinforcement on Tensile Properties of Curaua Fiber Green Composites. JSME Int J Ser A 47:541

    Article  Google Scholar 

  33. Goda K, Sreekala MS, Gomes A, Kaji T, Ohgi J (2006) Improvement of plant based natural fibers for toughening green composites—Effect of load application during mercerization of ramie fibers. Compos A 37:2213

    Google Scholar 

  34. Gomes A, Matsuo T, Goda K, Ohgi J (2007) Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Compos A 38:1811

    Google Scholar 

  35. Nakagaito AN, Yano H (2008) Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers. Cellulose 15:323

    Article  Google Scholar 

  36. Haraguchi K, Suizu N, Uno T, Goda T, Noda J, Ohgi J (2009) Effectt of alkali treatment on the tensile and impact properties of ramie plied yarn-reinforced green composites. J Soc Mater Sci Japan 58:374

    Article  Google Scholar 

  37. Schuerch C (1964) Wood plasticization. For Prod J 14:377

    Google Scholar 

  38. Schuerch C, Burdick MP, Mahdalik M (1966) Liquid ammonia-solvent combinations in wood plasticization. I&EC Prod Res Dev 5:101

    Article  Google Scholar 

  39. Sadoh T, Yamaguchi E (1968) The swelling of wood in amines and the rigidity of wood swollen with amines. Bull Kyoto Univ Forests 40:276

    Google Scholar 

  40. Nakano T (1988) Plasticization of wood by alkali treatment. Effects of kind of alkali and concentration of alkaline aqueous solution on stress relaxation. Nihon Reoroji Gakkaishi 16:104

    Article  Google Scholar 

  41. Nakano T (1989) Plasticization of wood by alkali treatment: relationship between plasticization and the ultra-structure. Mokuzai Gakkaishi 35:431

    Google Scholar 

  42. Nakano T, Sugiyama J, Norimoto M (2000) Contractive force and transformation of microfibril with aqueous sodium hydroxide solution for wood. Holzforschung 54:315

    Article  Google Scholar 

  43. Stöckmann VE (1971) Effect of pulping on cellulose structure. Part I. A hypothesis of transformation of fibrils. Tappi 54:2033

    Google Scholar 

  44. Stöckmann VE (1971) Effect of pulping on cellulose structure. Part II. Fibrils contract longitudinally. Tappi 54:2038

    Google Scholar 

  45. Ishikura Y, Nakano T (2004) Changes of Young’s modulus of woods by alkali treatment. Mokuzai Gakkaishi 50:214

    Google Scholar 

  46. Fujimoto T, Nakano T (2000) The effect of mercerization on wood structural features. Mokuzai Gakkaishi 46:238

    Google Scholar 

  47. Ishikura Y, Nakano T (2005) Adsorption properties and structural features of alkali treated wood. Mokuzai Gakkaishi 51:364

    Article  Google Scholar 

  48. Ishikura Y, Abe K, Yano H (2010) Bending properties and cell wall structure of alkali-treated wood. Cellulose 17:47

    Article  Google Scholar 

  49. Revol JF, Goring DAI (1981) On the mechanism of the mercerization of cellulose in wood. J Appl Polym Sci 26:1275

    Article  Google Scholar 

  50. Shiraishi N, Moriwaki M, Lonikar SV, Yokota T (1984) Lattice conversion of cellulose in wood. J Wood Chem Technol 4:219

    Article  Google Scholar 

  51. Murase H, Sugiyama J, Saiki H, Harada H (1988) The effect of lignin on mercerization of cellulose in wood: an electron diffraction study on the transformation from cellulose I to cellulose II. Mokuzai Gakkaishi 34:965

    Google Scholar 

  52. Kim NH (2005) An investigation of mercerization in decayed oak wood by a white rot fungus (Lentinula edodes). J Wood Sci 51:290

    Article  Google Scholar 

  53. Kim NH, Imai T, Wada M, Sugiyama J (2006) Molecular directionality in cellulose polymorphs. Biomacromolecules 7:274

    Article  Google Scholar 

  54. Ishikura Y, Nakano T (2005) Shape changes with alkali treatments of woods. Mokuzai Gakkaishi 51:92

    Article  Google Scholar 

  55. Ishikura Y, Nakano T (2008) Compressive stress-strain properties of natural materials treated with aqueous NaOH. Holzforschung 62:448

    Article  Google Scholar 

  56. Ishikura Y, Nakano T (2007) Contraction of the microfibrils of wood treated with aqueous NaOH: evidence from changes in the anisotropy of the longitudinal and transverse swelling rates of wood. J Wood Sci 53:175

    Article  Google Scholar 

  57. Nakano T (2010) Mechanism of microfibril contraction and anisotropic dimensional changes for cells in wood treated with aqueous NaOH solution. Cellulose 17:711

    Article  Google Scholar 

  58. Ishikura Y (2011) Changes of wood properties treated with aqueous amine solution, bending tests and X-ray analysis of wood after amine treatment. J Mater Sci 46:3785

    Article  ADS  Google Scholar 

  59. Isogai A, Usuda M (1992) X-ray diffraction and solid-state 13C-NMR analyses of wood celluloses treated with ammonia. Mokuzai Gakkaishi 38:713

    Google Scholar 

  60. Sarko A, Southwick J, Hayashi J (1976) Packing analysis of carbohydrates and polysaccharides. 7. Crystal structure of cellulose IIII and its relationship to other cellulose polymorphs. Macromolecules 9:857

    Article  ADS  Google Scholar 

  61. Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37:8548

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Prof. Dr. H. Yano and Dr. K. Abe for their cooperation with X-ray diffraction measurements (Fig. 24.2), and also would like to express sincere gratitude to Prof. Dr. H. Yano for his guidance and advice in performing the study of alkali treatment. The author also would like to gratefully acknowledge the tuition and the support of Prof. Dr. T. Nakano in performing the study of alkali-treated wood.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukiko Ishikura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ishikura, Y. (2015). Changes in Wood Properties and Those in Structures of Cellulose Microfibrils in Wood Cell Walls After the Chemical Treatments. In: Pandey, J., Takagi, H., Nakagaito, A., Kim, HJ. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45232-1_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45232-1_67

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45231-4

  • Online ISBN: 978-3-642-45232-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics