Skip to main content

Abstract

This chapter deals with the structure, properties, and applications of electrospun-based cellulose composites. Extraction methods of cellulosic nanofibers from different sources are discussed in detail. Cellulose has the special advantage of high specific strength and sustainability, which make them ideal candidates for reinforcement in various polymeric matrices. Cellulose nanofibers find application in various fields, including construction, the automobile industry, and soil conservation. Cellulose, an eminent representative of nanomaterial obtained from various natural fibers, can be dissolved in various solvent systems, which are described in detail in this study. Thermoplastic-based electrospun cellulose nanocomposites and their applications are highlighted. This chapter describes current and future applications of electrospun cellulosic nanofibers in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott A, Bismarck A (2010) Self-reinforced cellulose nanocomposites. Cellulose 17:779. http://link.springer.com/article/10.1007/s10570-010-9427-5

  2. Abdel-Hady F, Alzahrany A, Hamed M (2011) Experimental validation of upward electrospinning process. ISRN Nanotechnol 2011:1

    Google Scholar 

  3. Abdul Khalil HPS, Issam AM, Ahmad Shakri MT, Suriani R, Awang AY (2007) Conventional agro-composites from chemically modified fibers. Ind Crop Prod 26:315

    Google Scholar 

  4. Abdul Khalil HPS, Siti Alwani M, Ridzuan R, Kamarudin H, Khairul A (2008) Chemical composition, morphological characteristics, and cell wall structure of Malaysian oil palm fibers. Polym Plast Technol Eng 47:273

    Google Scholar 

  5. Abdul Khalil HPS, Yusra AFI, Bhat AH, Jawaid M (2010) Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Ind Crop Prod 31:113

    Google Scholar 

  6. Abdul Khalil HPS, Bhat I, Ireana Yusra AF, Sanusi ZA, Hezri AA (2011) Broad perspective of palm oil for non- food applications for sustainable tomorrow. Nova Science, New York

    Google Scholar 

  7. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: A review. Carbohydr Polym 87:963

    Google Scholar 

  8. Abreu HS, Latorraca JVF, Pereira RPW, Monteiro MBO, Abreu FA, Amparado KF (2009) Supramolecular proposal of lignin in structure and its relation with the wood proprieties. An Acad Bras Cienc 81:137

    Google Scholar 

  9. Adomaviciute E, Milasius R, Levinskas R (2007) The influence of main technological parameters on the diameter of poly (vinyl alcohol)(PVA) nanofibre and morphology of manufactured mat. Mater Sci 13:152

    Google Scholar 

  10. Ago M, Okajima K, Jakes JE, Park S, Rojas OJ (2012) Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals. Biomacromolecules 13, pp 918–926

    Google Scholar 

  11. Ahn Y, Lee SH, Kim HJ, Yang YH, Hong JH, Kim YH, Kim H (2012) Electrospinning of lignocellulosic biomass using ionic liquid. Carbohydr Polym 88:395

    Google Scholar 

  12. Ahn Y, Hu DH, Hong JH, Lee SH, Kim HJ, Kim H (2012) Effect of co-solvent on the spinnability and properties of electrospun cellulose nanofiber. Carbohydr Polym 89:340. http://journals.ohiolink.edu/ejc/article.cgi?issn=01448617&issue=v89i0002&article=340_eocotsapoecn

  13. Aluigi A, Vineis C, Varesano A, Mazzuchetti G, Ferrero F, Tonin C (2008) Structure and properties of keratin/PEO blend nanofibres. Eur Polym J 44:2465

    Google Scholar 

  14. Amiraliyan N, Nouri M, Haghighat Kish M (2009) Electrospinning of silk nanofibers. I. An investigation of nanofiber morphology and process optimization using response surface methodology. Fiber Polym 10:167

    Google Scholar 

  15. Ando T (2009) The electronic properties of graphene and carbon nanotubes. NPG Asia Mater 1:17

    Google Scholar 

  16. Arranz-Andreś J, Blau WJ (2008) Enhanced device performance using different carbon nanotube types in polymer photovoltaic devices. Carbon 46:2067

    Google Scholar 

  17. Asakura T, Yamane T, Nakazawa Y, Kameda T, Ando K (2001) Structure of Bombyx mori silk fibroin before spinning in solid state studied with wide angle x‐ray scattering and 13C cross‐polarization/magic angle spinning NMR. Biopolymers 58:521

    Google Scholar 

  18. Ashammakhi N, Ndreu A, Nikkola L, Wimpenny I, Yang Y (2008) Advancing tissue engineering by using electrospun nanofibers. Regen Med 3:547

    Google Scholar 

  19. Ayaz O, Ucar N, Bahar E, Oksuz M, Ucar M, Onen A, Demir A, Wang Y (2011) Production and analysis of composite nanofiber and heat applied nanofiber. In: International congress of innovative textiles, İstanbul, pp. 20–22

    Google Scholar 

  20. Ayaz O, Ucar N, Bahar E, Ucar O, Oksuz M, Onen A, Ucar M, İşmar E, Demir A (2012) Properties of composite nanofiber produced by single and coaxial nozzle method used for electrospinning technique. WASET 61:345

    Google Scholar 

  21. Ayutsede J, Gandhi M, Sukigara S, Micklus M, Chen HE, Ko F (2005) Regeneration of Bombyx mori silk by electrospinning. Part3: characterization of electrospun nonwoven mat. Polymer 46:1625

    Google Scholar 

  22. Ayutsede J, Gandhi M, Sukigara S, Ye H, Hsu CM, Gogotsi Y, Ko F (2006) Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules 7:208

    Google Scholar 

  23. Baji A, Mai YW, Wong SC, Abtahi M, Chen P (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70:703

    Google Scholar 

  24. Balamurugan R, Sundarrajan S, Ramakrishna S (2011) Recent trends in nanofibrous membranes and their suitability for air and water filtrations. Membranes 1:232

    Google Scholar 

  25. Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos A 33:939

    Google Scholar 

  26. Baumgarten PK (1971) Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci 36:71

    Google Scholar 

  27. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048

    Google Scholar 

  28. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325

    Google Scholar 

  29. Bjorge D, Daels N, Vrieze SD, Dejans P, Camp TV, Audenaert W, Hogie J, Westbroek P, Clerck KD, Hulle SWHV (2009) Performance assessment of electrospun nanofibers for filter applications. Desalination 249:942

    Google Scholar 

  30. Blascu V (2010) Aramid fibers for technical textiles II. Forms, availability and applications. Bul Inst Polit Iasi t LVI (LX) f.1: 9

    Google Scholar 

  31. Bochek A, Petropavlovsky G, Kallistov O (1993) Dissolution of cellulose and its derivatives in the same solvent, methylmorpholine-N-oxide and the properties of the resulting solutions. Cellul Chem Technol 27:137

    Google Scholar 

  32. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff JH (2001) Nanostructured fibers via electrospinning. Adv Mater 13:70

    Google Scholar 

  33. Boss HL, Van Den Oever MJA, Peters OCJJ (2002) Tensile and compressive properties of flax fibres for natural fibre reinforced composites. J Mater Sci 37:1683

    ADS  Google Scholar 

  34. Cai ZX, Mo XM, Zhang KH, Fan LP, Yin AL, He CL, Wang HS (2010) Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. Int J Mol Sci 11:3529

    Google Scholar 

  35. Cao X, Habibi Y, Magalhães WLE, Rojas OJ, Lucia LA (2011) Cellulose nanocrystals-based nanocomposites: fruits of a novel biomass research and teaching platform. Curr Sci 100:1172

    Google Scholar 

  36. Castro C, Gargallo L, Leiva A, Radic D (2005) Interactions in blends containing chitosan with functionalized polymers. J Appl Polym Sci 97:1953

    Google Scholar 

  37. Celebioglu A, Uyar T (2010) Cyclodextrin nanofibers by electrospinning. Chem Commun 46:6903

    Google Scholar 

  38. Charlier JC (2002) Defects in carbon nanotubes. Acc Chem Res 35:1063

    Google Scholar 

  39. Chen L, Bromberg L, Hatton TA, Rutledge GC (2007) Catalytic hydrolysis of p-nitrophenyl acetate by electrospun polyacrylamidoxime nanofibers. Polymer 48:4675

    Google Scholar 

  40. Chen Z, Mo X, Qing F (2007) Electrospinning of collagen–chitosan complex. Mater Lett 61:3490

    Google Scholar 

  41. Chen P, Yun YS, Bak H, Cho SY, Jin HJ (2010) Multiwalled carbon nanotubes-embedded electrospun bacterial cellulose nanofibers. Mol Cryst Liq Cryst 519:169

    Google Scholar 

  42. Chowdhury M, Stylios G (2010) Effect of experimental parameters on the morphology of electrospun Nylon 6 fibres. Int J Basic Appl Sci 10:116

    Google Scholar 

  43. Chronakis IS (2005) Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process–a review. J Mater Process Technol 167:283

    Google Scholar 

  44. Chung S, Moghe AK, Montero GA, Kim SH, King MW (2009) Nanofibrous scaffolds electrospun from elastomeric biodegradable poly (L-lactide-co-ε-caprolactone) copolymer. Biomed Mater 4:1

    Google Scholar 

  45. Cozza ES, Bruzzo V, Carniato F, Marsano E, Monticelli O (2012) On a novel catalytic system based on electrospun nanofibers and M-POSS. Appl Mater Interfaces 4:604

    Google Scholar 

  46. Cui W, Li X, Zhou S, Weng J (2007) Investigation on process parameters of electrospinning system through orthogonal experimental design. J Appl Polym Sci 103:3105

    Google Scholar 

  47. Dahlin RL, Kasper FK, Mikos AG (2011) Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev 17:349

    Google Scholar 

  48. Dai H (2002) Carbon nanotubes: Synthesis, integration, and properties. Acc Chem Res 35:1035

    Google Scholar 

  49. Dallmeyer I, Ko F, Kadla JF (2010) Electrospinning of technical lignins for the production of fibrous networks. J Wood Chem Technol 30:315

    Google Scholar 

  50. Deng XL, Xu MM, Li D, Sui G, Hu XY, Yang XP (2007) Electrospun PLLA-MWNTs-HA hybrid nanofiber scaffolds and their potential in dental engineering. Key Eng Mater 330–332:393

    Google Scholar 

  51. Desai K, Kit K, Li J, Zivanovic S (2008) Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules 9:1000

    Google Scholar 

  52. Ding B, Li C, Hotta Y, Kim J, Kuwaki O, Shiratori S (2006) Conversion of an electrospun nanofibrous cellulose acetate mat from a super-hydrophilic to super-hydrophobic surface. Nanotechnology 17:4332

    ADS  Google Scholar 

  53. Ding B, Wang M, Yu J, Sun G (2009) Gas sensors based on electrospun nanofibers. Sensors 9:1609

    Google Scholar 

  54. Dong H, Strawhecker KE, Snyder JF, Orlicki JA, Reiner RS, Rudie AW (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly (methyl methacrylate) fibers: Formation, properties and nanomechanical characterization. Carbohydr Polym 87:2488

    Google Scholar 

  55. Drozin VG (1955) The electrical dispersion of liquids as aerosols. J Colloid Sci 10:158

    Google Scholar 

  56. Du J, Hsieh YL (2009) Cellulose/chitosan hybrid nanofibers from electrospinning of their ester derivatives. Cellulose 16:247

    Google Scholar 

  57. Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Can J Chem 86:484

    Google Scholar 

  58. Duran N, Lemes AP, Duran M, Freer J, Baeza J (2011) A minireview of cellulose nanocrystals and its potential integration as co-product in bioethanol production. J Chil Chem Soc 56, pp 672–677

    Google Scholar 

  59. El-Hefian EA, Nasef MM, Yahaya AH, Attakhan R (2010) Preparation and characterization of chitosan/agar blends: rheological and thermal studies. J Chil Chem Soc 55, pp 130–136

    Google Scholar 

  60. Evcin A, Kaya DA (2010) Effect of production parameters on the structure and morphology of aluminum titanate nanofibers produced using electrospinning technique. Sci Res Essays 5:3682

    Google Scholar 

  61. Fang X, Reneker DH (1997) DNA fibers by electrospinning. J Macromol Sci Phys 36:169

    Google Scholar 

  62. Feng H, Li J, Wang L (2010) Preparation of biodegradable flax shive cellulose-based superabsorbent polymer under microwave irradiation. BioResources 5:1484

    Google Scholar 

  63. Fink H-P, Weigel P, Purz H (2001) Structure formation from regenerated cellulose materials from NMMO solutions. Prog Polym Sci 26:1473

    Google Scholar 

  64. Fong H, Chun I, Reneker DH (1999) Beaded nanofibers formed during electrospinning. Polymer 40:4585

    Google Scholar 

  65. Formhals A (1934) US patent no 1,975,504

    Google Scholar 

  66. Freire MG, Teles ARR, Ferreira RAS, Carlos LD, Lopes-da-Silvac JA, Coutinho JAP (2011) Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chem 13:3173

    Google Scholar 

  67. Frenot A, Henriksson MW, Walkenstrom P (2007) Electrospinning of cellulose‐based nanofibers. J Appl Polym Sci 103:1473

    Google Scholar 

  68. Frey MW (2008) Electrospinning cellulose and cellulose derivatives. Polym Rev 48:378

    Google Scholar 

  69. Fukaya Y, Hayashi K, Wadab M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: Required factors for anions. Green Chem 10:44

    Google Scholar 

  70. Gardner DJ, Oporto GS, Mills R, Samir ASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545

    Google Scholar 

  71. Geng X, Kwon OH, Jinho Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427

    Google Scholar 

  72. Geng HZ, Lee DS, Kim KK, Bae JJ, Lee YH (2008) Ect of carbon nanotube types in fabricating flexible transparent conducting films. J Korean Phys Soc 53:979

    Google Scholar 

  73. George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41:1471

    Google Scholar 

  74. Gorji M, Jeddi AAA, Gharehaghaji AA (2012) Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications. J Appl Polym Sci 125, pp 4135–4141

    Google Scholar 

  75. Greiner A, Wendroff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670

    Google Scholar 

  76. Gupta P, Elkins C, Long TE, Wilkes GL (2005) Electrospinning of linear homopolymers of poly (methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46:4799

    Google Scholar 

  77. Gururajan G, Sullivan SP, Beebe TP, Chase DB, Rabolt JF (2011) Continuous electrospinning of polymer nanofibers of Nylon-6 using an atomic force microscope tip. Nanoscale 3:3300

    ADS  Google Scholar 

  78. Härdelin L, Thunberg J, Perzon E, Westman G, Walkenström P, Gatenholm P (2012) Electrospinning of cellulose nanofibers from ionic liquids: The effect of different cosolvents. J Appl Polym Sci 125, pp 1901–1909

    Google Scholar 

  79. Haghi AK, Akbari M (2007) Trends in electrospinning of natural nanofibers. Phys Stat Sol 204:1830

    ADS  Google Scholar 

  80. Han SO, Youk JH, Min KD, Kang YO, Park WH (2008) Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: Effects of solvent composition on the fiber diameter. Mater Lett 62:759

    Google Scholar 

  81. Hansen CM, Bjorkman A (1998) The ultrastructure of wood from a solubility parameter point of view. Holzforschung 52:335

    Google Scholar 

  82. Hardick O, Stevens B, Bracewell DG (2011) Nanofibre fabrication in a temperature and humidity controlled environment for improved fibre consistency. J Mater Sci 46:3890

    ADS  Google Scholar 

  83. He JH, Wan YQ, Yu JY (2004) Application of vibration technology to polymer electrospinning. Int J Nonlin Sci Num 5:243

    Google Scholar 

  84. He JH, Wu Y, Pan N (2005) A mathematical model for AC-electrospinning. Int J Nonlin Sci Num 6:243

    Google Scholar 

  85. Herrera MA, Mathew AP, Oksman K (2012) Novel biorefinery: A residue from wood bioethanol production converted into cellulose nanocrystals. In: 6th EEIGM international conference on advanced materials research IOP publishing IOP conference series: materials science and engineering, vol 31, Nancy France

    Google Scholar 

  86. Hohman MM, Shin M, Rutledge G, Brenner MP (2001) Electrospinning and electrically forced jets. I. Stability theory. Phys Fluids 13:2221

    MathSciNet  ADS  Google Scholar 

  87. Huang ZH, Kang FY, Zheng YP, Yang JB, Liang KM (2002) Adsorption of trace polar methy-ethyl-ketone and non-polar benzene vapors on viscose rayon-based activated carbon fibers. Carbon 40:1363

    Google Scholar 

  88. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223

    Google Scholar 

  89. Huang J, Liu L, Yao J (2011) Electrospinning of Bombyx mori silk fibroin nanofiber mats reinforced by cellulose nanowhiskers. Fiber Polym 12:1002

    Google Scholar 

  90. Hur S, Kim WD (2006) The electrospinning process and mechanical properties of nanofiber mats under vacuum conditions. Key Eng Mater 326–328:393

    Google Scholar 

  91. Ignatova M, Manolova N, Markova N, Rashkov I (2009) Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications. Macromol Biosci 9:102

    Google Scholar 

  92. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    ADS  Google Scholar 

  93. Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (2000) Silk fibroin of bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 275:40517

    Google Scholar 

  94. Islam MS, Ashaduzzaman M, Masum SM, Yeum JH (2012) Mechanical and electrical properties: electrospun alginate/carbon nanotube composite nanofiber. Dhaka Univ J Sci 60:125

    Google Scholar 

  95. Jacobs V, Anandjiwala RD, Maaza M (2010) The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. J Appl Polym Sci 115:3130

    Google Scholar 

  96. Jaeger R, Bergshoef MM, Batlle CMI, Schönherr H, Julius Vancso G (1998) Electrospinning of ultra-thin polymer fibres. Macromol Symp 127:141

    Google Scholar 

  97. Jahn A, Schroder MW, Futing M, Schenzel K, Diepenbrock W (2002) Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy. Spectrochim Acta Part A 58:2271

    ADS  Google Scholar 

  98. Jang JH, Castano O, Kim HW (2009) Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev 61:1065

    Google Scholar 

  99. Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr Polym 86:1

    Google Scholar 

  100. Jayaraman K, Kotaki M, Zhang Y, Mo X, Ramakrishna S (2004) Recent advances in polymer nanofibers. J Nanosci Nanotechnol 4(1–2):52

    Google Scholar 

  101. Jia YT, Kim HY, Gong J, Lee DR (2006) Electrospun nanofibers of block copolymer of trimethylene carbonate and ε-caprolactone. J Appl Polym Sci 99:1462

    Google Scholar 

  102. Jian F, Tao NH, Tong L, XunGai W (2008) Applications of electrospun nanofibers. Chin Sci Bull 53:2265

    Google Scholar 

  103. Johnson D (1969) US patent 3,447,956 (Eastman Kodak Co)

    Google Scholar 

  104. Kanani AG, Bahrami SH (2010) Review on electrospun nanofibers scaffold and biomedical applications. Trends Biomater ArtRif Org 24:93

    Google Scholar 

  105. Kang MS, Yoon SH, Jin HJ (2006) Preparation of electrospun protein nanofibers with multiwalled carbon nanotubes. Key Eng Mater 326–328:1737

    Google Scholar 

  106. Karmanov AP, Monakov YB (2003) Lignin structural organisation and fractal properties. Russ Chem Rev 72:715

    ADS  Google Scholar 

  107. Khan MA, Ganster J, Fink HP (2009) Hybrid composites of jute and man-made cellulose fibers with polypropylene by injection moulding. Compos Part A 40:846

    Google Scholar 

  108. Khenoussi N, Schacher L, Adolphe DC (2012) Nanofiber production: Study and development of electrospinning device. Exp Tech 36:32

    Google Scholar 

  109. Khil MS, Kim HY, Kang YS, Bang HJ, Lee DR, Doo JK (2005) Preparation of electrospun oxidized cellulose mats and theirin vitro degradation behavior. Macromol Res 13:62

    Google Scholar 

  110. Kilic A, Oruc F, Demir A (2007) Effects of polarity on electrospinning process. Text Res J 00:1

    Google Scholar 

  111. Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142

    Google Scholar 

  112. Kim CW, Frey MW, Marquez M, Joo YL (2005) Preparation of submicron‐scale, electrospun cellulose fibers via direct dissolution. J Polym Sci Part B Polym Phys 43:1673

    ADS  Google Scholar 

  113. Kim GM, Lach R, Michler GH, Chang YW (2005) The mechanical deformation process of electrospun polymer nanocomposite fibers. Macromol Rapid Commun 26:728

    Google Scholar 

  114. Kim CW, Kim DS, Kang SY, Marquez M, Joo YL (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47:5097

    Google Scholar 

  115. Kirecci A, Özkoc U, Icoglu HI (2012) Determination of optimal production parameters for polyacrylonitrile nanofibers. J Appl Polym Sci 124:4961

    Google Scholar 

  116. Kiselev P, Rosell-Llompart J (2012) Highly aligned electrospun nanofibers by elimination of the whipping motion. J Appl Polym Sci 125:2433

    Google Scholar 

  117. Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59

    Google Scholar 

  118. Kowalewski TA, Blonski S, Barral S (2005) Experiments and modelling of electrospinning process. Bull Pol Acad Sci Chem Tech Sci 53:385

    Google Scholar 

  119. Kriegel C, Arrechi A, Kit K, McClements DJ, Weiss J (2008) Fabrication, functionalization, and application of electrospun biopolymer nanofibers. Crit Rev Food Sci Nutr 48:775

    Google Scholar 

  120. Kuan CY, Yee-Fung W, Yuen KH, Liong MT (2012) Nanotech: propensity in foods and bioactives. Crit Rew Food Sci 52:55

    Google Scholar 

  121. Kulpinski P (2005) Cellulose nanofibers prepared by the N-methylmorpholine-N-oxide method. J Appl Polym Sci 98:1855–1859

    Google Scholar 

  122. Kumar S, Asce F, Kolay P, Asce M, Malla S, Mishra S (2012) Effect of multiwalled carbon nanotubes on mechanical strength of cement paste. J Mater Civ Eng 24(1):84

    Google Scholar 

  123. Kumbar SG, Nukavarapu SP, James R, Hogan MV, Laurencin CT (2008) Recent patents on electrospun biomedical nanostructures: an overview. Recent Pat Biomed Eng 1:68

    Google Scholar 

  124. Lamy B, Baley C (2000) Stiffness prediction of flax fibers-epoxy composite materials. J Mater Sci Lett 19:979

    Google Scholar 

  125. Larrondo L, Manley SJ (1981) Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci Polym Phys Ed 19:921

    Google Scholar 

  126. Laus G, Bentivoglio G, Schottenberger H, Kahlenberg V, Kopacka H, Röder T, Sixta H (2005) Ionic liquids: current developments, potential and drawbacks for industrial applications. Lenzinger Berichte 84:71

    Google Scholar 

  127. Lee S (2009) Developing UV-protective textiles based on electrospun zinc oxide nanocomposite fibers. Fibers Polym 10:295

    Google Scholar 

  128. Lee S, Obendorf SK (2007) Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration. Text Res J 77:696. http://scholar.google.com/citations?view_op=view_citation&hl=en&user=5W6EtHgAAAAJ&citation_for_view=5W6EtHgAAAAJ:u5HHmVD_uO8C

  129. Lee KH, Kim HY, Bang HJ, Jung YH, Lee SG (2003) The change of bead morphology formed on electrospun polystyrene fibers. Polymer 44:4029

    Google Scholar 

  130. Lee EH, Kim HM, Lim SK, Kim KS, Chin IJ (2009) Electro-active polymer actuator based on aligned cellulose nanofibrous membrane. Mol Cryst Liq Cryst 499:259[581]

    Google Scholar 

  131. Lee KY, Jeong L, Kang YO, Lee SJ, Park WH (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61:1020

    Google Scholar 

  132. Lewin M (2006) Handbook of fiber chemistry, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  133. Li P, Li Y, Ying B, Yang M (2009) Electrospun nanofibers of polymer composite as a promising humidity sensitive material. Sens Actuators B 141:390

    Google Scholar 

  134. Li Q, Zhou J, Zhang L (2009) Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J Polym Sci Part B Polym Phys 47:1069

    ADS  Google Scholar 

  135. Liao S, Li B, Ma Z, Wei H, Chan C, Ramakrishna S (2006) Biomimetic electrospun nanofibers for tissue regeneration. Biomed Mater 1:R45

    ADS  Google Scholar 

  136. Liebert T, Heinze T (2008) Interaction of ionic liquids with polysaccharides. 5. Solvents and reaction media for the modification of cellulose. BioResources 3:576

    Google Scholar 

  137. Lin Y-J, Cai Q, Li L, Li QF, Yang XP, Jin RG (2010) Co‐electrospun composite nanofibers of blends of poly [(amino acid ester) phosphazene] and gelatin. Polym Int 59:610

    Google Scholar 

  138. Lisperguer J, Perez P, Urizar S (2009) Structure and thermal properties of lignins: characterization by infrared spectroscopy and differential scanning calorimetry. J Chil Chem Soc 54:460

    Google Scholar 

  139. Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B Polym Phys 40:2119

    ADS  Google Scholar 

  140. Liu Y, He JH, Yu JY, Zeng HM (2008) Controlling numbers and sizes of beads in electrospun nanofibers. Polym Int 57:632

    Google Scholar 

  141. Liu D, Yuan X, Bhattacharyya D (2012) The effects of cellulose nanowhiskers on electrospun poly (lactic acid) nanofibres. J Mater Sci 47:3159

    ADS  Google Scholar 

  142. Lönnberg H, Zhou Q, Brumer H, Teeri TT, Malmstrom E, Hult A (2006) Grafting of cellulose fibers with poly (ε-caprolactone) and poly (L-lactic acid) via ring-opening polymerizations. Biomacromolecules 7:2178

    Google Scholar 

  143. Lu C, Chen P, Li J, Zhang Y (2006) Computer simulation of electrospinning. Part I. Effect of solvent in electrospinning. Polymer 47:915

    Google Scholar 

  144. Lyons J, Li C, Ko F (2004) Melt-electrospinning part I: processing parameters and geometric properties. Polymer 45:7597

    Google Scholar 

  145. Magalhães WLE, Cao X, Lucia LA (2009) Cellulose nanocrystals/cellulose core-in-shell nanocomposite assemblies. Langmuir 25:13250

    Google Scholar 

  146. Magalhãess WLE, Cao X, Ramires MA, Lucia LA (2011) Novel method for inducing the alignment of cellulose nanocrystals-reinforced cellulose nanofibers. Tappi J 10:19

    Google Scholar 

  147. Makar JM, Beaudoin JJ (2003) In: 1st international symposium on nanotechnology in construction, Paisley, Scotland

    Google Scholar 

  148. Marcovich NE, Auad ML, Bellesi NE, Nutt SR, Aranguren MI (2006) Cellulose micro/nanocrystals reinforced polyurethane. J Mater Res 21:870

    ADS  Google Scholar 

  149. Marsh KN, Boxall JA, Lichtenthaler R (2004) Room temperature ionic liquids and their mixtures–a review. Fluid Phase Equilib 219:93

    Google Scholar 

  150. Martel R, Schmidt T, Shea HR, Hertel T, Avourisa PH (1998) Single-and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73

    Google Scholar 

  151. Martínez-Hernández AL, Velasco-Santos C, Castaño VM (2010) Carbon nanotubes composites: processing, grafting and mechanical and thermal properties. Curr Nanosci 6:12. http://scholar.google.com.mx/citations?view_op=view_citation&hl=en&user=megg-bIAAAAJ&citation_for_view=megg-bIAAAAJ:2osOgNQ5qMEC

  152. Martínez-Sanz M, Olsson RT, Lopez-Rubio A, Lagaron JM (2011) Development of electrospun EVOH fibres reinforced with bacterial cellulose nanowhiskers. Part I: Characterization and method optimization. Cellulose 18:335

    Google Scholar 

  153. Martinová L, Lubasová D (2008) Electrospun chitosan based nanofibers. RJTA 12

    Google Scholar 

  154. Martins A, Reis RL, Neves NM (2008) Electrospinning: processing technique for tissue engineering scaffolding. Int Mater Rev 53:257

    Google Scholar 

  155. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232

    Google Scholar 

  156. Mazoochi T, Jabbari V (2011) Chitosan nanofibrous scaffold fabricated via electrospinning: The effect of processing parameters on the nanofiber morphology. Int J Polym Anal Charact 16:277. http://65.54.113.26/Publication/57595212/chitosan-nanofibrous-scaffold-fabricated-via-electrospinning-the-effect-of-processing-parameters

  157. Meli L, Miao J, Dordick JS, Linhardt RJ (2010) Electrospinning from room temperature ionic liquids for biopolymer fiber formation. Green Chem 12:1883

    Google Scholar 

  158. Mit-uppatham C, Nithitanakul M, Supaphol P (2004) Ultrafine electrospun polyamide‐6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromol Chem Phys 205:2327

    Google Scholar 

  159. Miyauchi M, Miao J, Simmons TJ, Dordick JS, Linhardt RJ (2011) Lexible electrospun cellulose fibers as an affinity packing material for the separation of bovine serum albumin. J Chromatogr Separat Tech 2:110

    Google Scholar 

  160. Mo XM, Xu CY, Kotaki M, Ramakrishna S (2004) Electrospun P (LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25:1883

    Google Scholar 

  161. Montano-Leyva B, Rodriguez-Felix F, Torres-Chavez P, Ramirez-Wong B, Lopez-Cervantes J, Sanchez-Machado D (2011) Preparation and characterization of durum wheat (Triticum durum) straw cellulose nanofibers by electrospinning. J Agric Food Chem 59:870

    Google Scholar 

  162. Mora-Pale M, Meli L, Doherty TV, Linhardt RJ, Dordick JS (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108:1229

    Google Scholar 

  163. Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A 80:93

    ADS  Google Scholar 

  164. Nevell TP, Zeronian SH (1985) Wiley, New York

    Google Scholar 

  165. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik R (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105

    Google Scholar 

  166. Nouri N, Ziaei-Rad S (2010) Mechanical property evaluation of carbon nanotube sheets. Trans F: Nanotechnol 17, pp 1600–1625

    Google Scholar 

  167. Ohkawa K, Cha D, Kim H, Nishida A, Yamamoto H (2004) Electrospinning of chitosan. Macromol Rapid Commun 25:1600

    Google Scholar 

  168. Ohkawa K, Hayashi S, Nishida A, Yamamoto H, Ducreux J (2009) Preparaiton of pure cellulose nanofiber via electrospinning. Text Res J 79:1396

    Google Scholar 

  169. Pankonian A, Ounaies Z, Yang C (2011) Electrospinning of cellulose and SWNT-cellulose nano fibers for smart applications. J Mech Sci Technol 25:2631

    Google Scholar 

  170. Park TJ, Jung YJ, Choi SW, Park H, Kim H, Kim E, Lee SH, Kim JH (2011) Native chitosan/cellulose composite fibers from an ionic liquid via electrospinning. Macromol Res 19:213

    Google Scholar 

  171. Peesan M, Rujiravanit R, Supaphol P (2006) Electrospinning of hexanoyl chitosan/polylactide blends. J Biomater Sci Polym Edn 17:547

    Google Scholar 

  172. Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191

    Google Scholar 

  173. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197

    Google Scholar 

  174. Phillips DM, Drummy LF, Conrady DG, Fox DM, Naik RR, Stone MO, Trulove PC, Long HCD, Mantz RA (2004) Dissolution and regeneration of bombyx mori silk fibroin using ionic liquids. J Am Chem Soc 126:14350

    Google Scholar 

  175. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712

    Google Scholar 

  176. Popa VI, Capraru AM, Grama S, Malutan T (2011) Nanoparticles based on modified lignins with biocide properties. Cellul Chem Technol 45:221

    Google Scholar 

  177. Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R 43:61

    Google Scholar 

  178. Pouteau C, Dole P, Cathala B, Averous L, Boquillon N (2003) Antioxidant properties of lignin in polypropylene. Polym Degrad Stab 81:9

    Google Scholar 

  179. Qiao B, Ding X, Hou X, Wu S (2011) Study on the electrospun CNTs/polyacrylonitrile based nanofiber composites. J Nanomater 2011, pp 1–7

    Google Scholar 

  180. Qin XH, Wang SY (2006) Filtration properties of electrospinning nanofibers. J Appl Polym Sci 102:1285

    Google Scholar 

  181. Quan SL, Kang SG, Chin IJ (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose 17:223

    Google Scholar 

  182. Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40

    Google Scholar 

  183. Rangkupan R, Reneker DH (2003) Electrospinning process of molten polypropylene in vacuum. J Met Mater Miner 12:81

    Google Scholar 

  184. Rayleigh L (1882) On the instability of jets. FRS Philos Mag Ser 5 14:184

    Google Scholar 

  185. Reddy CS, Arinstein A, Avrahami R, Zussman E (2009) Fabrication of thermoset polymer nanofibers by co-electrospinning of uniform core-shell structures. J Mater Chem 19:7198

    Google Scholar 

  186. Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun 12:1271

    Google Scholar 

  187. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216

    ADS  Google Scholar 

  188. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387

    Google Scholar 

  189. Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 87:4531

    ADS  Google Scholar 

  190. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6:1612

    Google Scholar 

  191. Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437

    Google Scholar 

  192. Saeed K, Park SY, Lee HJ, Baek JB, Huh WS (2006) Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. Polymer 47:8019

    Google Scholar 

  193. Sahay R, Kumar PS, Sridhar R, Sundaramurthy J, Venugopal J, Mhaisalkar SG, Ramakrishna S (2012) Electrospun composite nanofibers and their multifaceted applications. J Mater Chem 22:12953

    Google Scholar 

  194. Sajeev US, Anand KA, Menon D, Nair S (2008) Control of nanostructures in PVA, PVA/chitosan blends and PCL through electrospinning. Bull Mater Sci 31:343

    Google Scholar 

  195. Sakurai K, Maegawa T, Takahashi T (2000) Glass transition temperature of chitosan and miscibility of chitosan/poly (N-vinyl pyrrolidone) blends. Polymer 41:7051

    Google Scholar 

  196. Salazar-Valencia PJ, Pérez-Merchancano ST, Bolívar-Marinéz LE (2006) Optical properties in Biopolymers: lignin fragments. Braz J Phys 36, pp 840–843

    Google Scholar 

  197. Saligheh O, Arasteh R, Forouharshad M, Farsani RE (2011) Poly (Butylene Terephthalate)/single wall carbon nanotubes composite nanofibers by electrospinning. J Macromol Sci Phys 50:1031

    Google Scholar 

  198. Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forró L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A Mater Sci Proc 69:255

    ADS  Google Scholar 

  199. Samatham R, Kim KJ (2006) Electric current as a control variable in the electrospinning process. Polym Eng Sci 46:954

    Google Scholar 

  200. Sangsanoh P, Supaphol P (2006) Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules 7:2710

    Google Scholar 

  201. Schiffman JD, Schauer CL (2007) Cross-linking chitosan nanofibers. Biomacromolecules 8:2665

    Google Scholar 

  202. Schiffman JD, Schauer CL (2008) A review: electrospinning of biopolymer nanofibers and their applications. Polym Rev 48:317

    Google Scholar 

  203. Schueren LVD, Steyaert I, Schoenmaker BD, Clerck KD (2012) Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohydr Polym 88:1221

    Google Scholar 

  204. Seo DK, Jeun JP, Kim HB, Kang PH (2011) Preparation and characterization of the carbon nanofiber mat produced from electrospun PAN/lignin precursors by electron beam irradiation. Rev Adv Mater Sci 28:31

    Google Scholar 

  205. Shi Z, Zang S, Jiang F, Huang L, Lu D, Ma Y, Yang G (2012) In situ nano-assembly of bacterial cellulose–polyaniline composites. RSC Adv 2:1040

    Google Scholar 

  206. Shin YM, Hohman MM, Brenner MP, Rutledge GC (2001) Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 42:9955

    Google Scholar 

  207. Sill TJ, Recum HAV (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989

    Google Scholar 

  208. Song R, Xue R, He LH, Liu Y, Xiao OL (2008) The structure and properties of chitosan/polyethylene glycol/silica ternary hybrid organic-inorganic films. Chin J Polym Sci 26:621

    Google Scholar 

  209. Srivastava Y, Marquez M, Thorsen T (2007) Multijet electrospinning of conducting nanofibers from microfluidic manifolds. J Appl Polym Sci 106:3171

    Google Scholar 

  210. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96:557

    Google Scholar 

  211. Sui X, Wagner HD (2009) Tough nanocomposites: the role of carbon nanotube type. Nano Lett 9:1423

    ADS  Google Scholar 

  212. Sumin L, Kimura D, Yokoyama A, Lee KH, Park JC, Kim IS (2009) The effect of laundering on the thermal and water transfer properties of mass-produced laminated nanofiber web for use in wear. Text Res J 79:1085

    Google Scholar 

  213. Sun Z, Zussman E, Yarin AL, Wendorff JH, Greiner A (2003) Compound core–shell polymer nanofibers by co‐electrospinning. Adv Mater 15:1929

    Google Scholar 

  214. Supaphol P, Neamnark A, Taepaiboon P, Pavasant P (2012) Effect of degree of acetylation on In vitro biocompatibility of electrospun cellulose acetate-based fibrous matrices. Chiang Mai J Sci 39:209

    Google Scholar 

  215. Suwantong O, Opanasopit P, Ruktanonchai U, Supaphol P (2007) Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 48:7546

    Google Scholar 

  216. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974

    Google Scholar 

  217. Tan SH, Inai R, Kotaki M, Ramakrishna S (2005) Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 46:6128

    Google Scholar 

  218. Tan S, Huang X, Wu B (2007) Some fascinating phenomena in electrospinning processes and applications of electrospun nanofibers. Polym Int 56:1330

    Google Scholar 

  219. Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1:205

    Google Scholar 

  220. Theron SA, Zussman E, Yarin AL (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45:2017

    Google Scholar 

  221. Theron SA, Yarin AL, Zussman E, Kroll E (2005) Multiple jets in electrospinning: experiment and modeling. Polymer 46:2889

    Google Scholar 

  222. Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48:6913

    Google Scholar 

  223. Unnithan AR, Barakat NAM, Nirmala R, Al-Deyab SS, Kim HY (2012) Novel electrospun nanofiber mats as effective catalysts for water photosplitting. Ceram Int 38, pp 5175–5180

    Google Scholar 

  224. Van De Velde K, Kiekens P (2001) Thermoplastic pultrusion of natural fibre reinforced composites. Compos Struct 54:355

    Google Scholar 

  225. Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomedicine 1:15

    Google Scholar 

  226. Veleirinho B, Rei MF, Lopes-DA-Silva JA (2008) Solvent and concentration effects on the properties of electrospun poly (ethylene terephthalate) nanofiber mats. J Polym Sci Part B Polym Phys 46:460

    ADS  Google Scholar 

  227. Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7:415

    Google Scholar 

  228. Vitz J, Erdmenger T, Haenscha C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11:417

    Google Scholar 

  229. Vrieze SD, Camp TV, Nelvig A, Hagström B, Westbroek P, Clerck KD (2009) The effect of temperature and humidity on electrospinning. J Mater Sci 44:1357

    ADS  Google Scholar 

  230. Wan Nadirah WO, Jawaid M, Al Masri A, Abdul Khalil HPS, Suhaily SS, Mohamed AR (2012) Cell wall morphology, chemical and thermal analysis of cultivated pineapple leaf fibres for industrial applications. J Polym Environ 20:404

    Google Scholar 

  231. Wan YQ, Guo Q, Pan N (2004) Thermo-electro-hydrodynamic model for electrospinning process. Int J Nonlin Sci Num 5:5

    Google Scholar 

  232. Wang C, Hsu CH, Lin JH (2006) Scaling laws in electrospinning of polystyrene solutions. Macromolecules 39:7662

    ADS  Google Scholar 

  233. Wang C, Yan E, Huang Z, Zhao Q, Xin Y (2007) Fabrication of highly photoluminescent TiO2/PPV hybrid nanoparticle‐polymer fibers by electrospinning. Macromol Rapid Commun 28:205

    Google Scholar 

  234. Wang K, Gu M, Wang JJ, Qin C, Dai L (2012) Functionalized carbon nanotube/polyacrylonitrile composite nanofibers: fabrication and properties. Polym Adv Technol 23:262

    Google Scholar 

  235. Wannatong L, Sirivat A, Supaphol P (2004) Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polym Int 53:1851

    Google Scholar 

  236. Wei K, Li Y, Kim KO, Nakagawa Y, Kim BS, Abe K, Chen GQ, Kim LS (2011) Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effects in osteoblastic behavior. J Biomed Mater Res A 97A:272

    Google Scholar 

  237. Wendler F, Kosan B, Krieg M, Meister F (2009) Cellulosic shapes from Ionic liquids modified by activated charcoals and nanosilver particles. Lenzinger Ber 87:106

    Google Scholar 

  238. Williamson RE, Burn JE, Hocart CH (2002) Towards the mechanism of cellulose synthesis. Trends Plant Sci 7:461

    Google Scholar 

  239. Wu CS (2005) A comparison of the structure, thermal properties, and biodegradability of polycaprolactone/chitosan and acrylic acid grafted polycaprolactone/chitosan. Polymer 46:147

    Google Scholar 

  240. Xu S, Zhang J, He A, Li J, Zhang H, Han CC (2008) Electrospinning of native cellulose from nonvolatile solvent system. Polymer 49:2911

    Google Scholar 

  241. Yang D, Zhang J, Zhang J, Nie J (2008) Aligned electrospun nanofibers induced by magnetic field. J Appl Polym Sci 110:3368

    Google Scholar 

  242. Yang DJ, Kamienchick I, Youn DY, Rothschild A, Kim ID (2010) Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading. Adv Funct Mater 20:4258

    Google Scholar 

  243. Yang M, Cao K, Sui L, Qi Y, Zhu J, Waas A, Arruda EM, Kieffer J, Thouless MD, Kotov NA (2011) Dispersions of aramid nanofibers: a new nanoscale building block. AcsNano 5:6945

    Google Scholar 

  244. Yao L, Lee C, Kim J (2010) Fabrication of electrospun meta-aramid nanofibers in different solvent systems. Fibers Polym 11:1032. http://www.researchgate.net/publication/241053217_Fabrication_of_electrospun_meta-aramid_nanofibers_in_different_solvent_systems

  245. Yao L, Lee C, Kim J (2011) Electrospun meta-aramid/cellulose acetate and meta-aramid/cellulose composite nanofibers. Fiber Polym 12:197

    Google Scholar 

  246. Yeo L, Friend JR (2006) Electrospinning carbon nanotube polymer composite nanofibers. J Exp Nanosci 1:177

    Google Scholar 

  247. Yun GY, Kim HS, Kim J, Kim K, Yang C (2008) Effect of aligned cellulose film to the performance of electro-active paper actuator. Sens Actuators A 141:530

    Google Scholar 

  248. Zamri MFMA, Zein SHS, Abdullah AZ, Basir NI (2011) Improved electrical conductivity of polyvinyl alcohol/multiwalled carbon nanotube nanofibre composite films with MnO2 as filler synthesised using the electrospinning process. IJET-IJENS 11:20

    Google Scholar 

  249. Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour Technol 100:2580

    Google Scholar 

  250. Zeleny J (1914) The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys Rev Second Ser 3:69

    ADS  Google Scholar 

  251. Zhang M, Li J (2009) Carbon nanotube in different shapes. Mater Today 12, pp 12–18

    Google Scholar 

  252. Zhang H, Qian XM (2010) The Applications of electrospun nanofibers in the medical materials. Adv Mater Res 148–149:1138

    Google Scholar 

  253. Zhang H, Wu J, Zhang J, He JS (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272

    ADS  Google Scholar 

  254. Zhang H, Wang Z, Zhang Z, Wu J, Zhang J, He J (2007) Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698

    Google Scholar 

  255. Zhao ML, Sui G, Deng XL, Lu JG, Ryu SK, Yang XP (2006) PLLA/HA electrospin hybrid nanofiber scaffolds: morphology, in vitro degradation and cell culture potential. Adv Mater Res 11–12:243

    Google Scholar 

  256. Zhao T, Wang H, Zhang Y, Wang B, Jiang J (2007) The preparation and characterization of poly(m-phenylene- isophthalamide) fibers using ionic liquids. Int J Mol Sci 8:680

    Google Scholar 

  257. Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12:2617

    Google Scholar 

  258. Zhu S, Wu Y, Chen O, Yu Z, Wang C, Jin S, Dinga Y, Wuc G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325

    Google Scholar 

  259. Ziabari M, Mottaghitalab V, Haghi AK (2009) Application of direct tracking method for measuring electrospun nanofiber diameter. Braz J Chem Eng 26:53

    Google Scholar 

  260. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43:4403

    Google Scholar 

  261. Zucchelli A, Focarete ML, Gualandi C, Ramakrishna S (2011) Electrospun nanofibers for enhancing structural performance of composite materials. Polym Adv Technol 22:339

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. S. Abdul Khalil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abdul Khalil, H.P.S., Davoudpour, Y., Bhat, A.H., Rosamah, E., Tahir, P.M. (2015). Electrospun Cellulose Composite Nanofibers. In: Pandey, J., Takagi, H., Nakagaito, A., Kim, HJ. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45232-1_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45232-1_61

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45231-4

  • Online ISBN: 978-3-642-45232-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics