Skip to main content

Bagasse and Rice Straw Nanocellulosic Materials and Their Applications

  • Chapter
  • First Online:
Handbook of Polymer Nanocomposites. Processing, Performance and Application

Abstract

Agricultural crop residues are important source for isolation of cellulosic fibers in many countries, especially those that do not have forest. Among these residues, rice straw and bagasse are worldwide agricultural residues that exist in large amounts. Nanocellulosic materials, namely, microfibrillated cellulose and cellulose nanocrystals, from these residues have been isolated, characterized, and used in different nanocomposites for different applications. Microfibrillated cellulose has been isolated from bagasse and rice straw using high-shear ultrafine grinder (or the so-called supermasscolloider) and high-intensity ultrasonication. The uses of biological and chemical pretreatments have been also studied for reducing energy and improving the properties of the isolated microfibrillated cellulose. Microfibrillated cellulose from bagasse and rice straw has been used in preparation of nanocomposites using different natural and synthetic polymer matrices such as chitosan, gelatin, and polypropylene. In addition, microfibrillated cellulose from bagasse has been used to improve the properties of paper sheets prepared from bagasse fibers. Cellulose nanocrystals have been isolated from bagasse and rice straw using sulfuric acid hydrolysis. The isolated nanocrystals have been used with alginate and natural rubber as reinforcing elements. Surface-modified cellulose nanocrystals have been used in polycaprolactone nanocomposites to improve tensile and moisture barrier properties of polycaprolactone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaufman PB, Takeoka Y, Carlson TJ, Bigelow WC, Jones JD, Moore PH, Ghosheh NS (1979) Studies on silica deposition in sugarcane (Saccharum spp.) using scanning electron microscopy, energy-dispersive X-ray analysis, neutron activation analysis, and light microscopy. Phytomorphology 29:185

    Google Scholar 

  2. Maeda H, Nakajima M, Hagiwara T, Sawaguchi T, Yano S (2006) Bacterial cellulose/silica hybrid fabricated by mimicking biocomposites. J Mater Sci 41:5646

    Article  ADS  Google Scholar 

  3. Yoshida S, Onishhi Y, Kitagishi K (1959) Soil Plant Food 5:127

    Article  Google Scholar 

  4. Hans JS, Rowell RM (1997) Chemical composition of fibers. In: Rowell MR, Young RA, Rowell JK (eds) Paper and composites from agro-based resources. CRC Lewis Publishers, New York, p 83

    Google Scholar 

  5. Rials TG, Wolcott MP (1997) Physical and mechanical properties of agro-based fibers. In: Rowell MR, Young RA, Rowell JK (eds) Paper and composites from agro-based resources. CRC Lewis Publishers, New York, p 63

    Google Scholar 

  6. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358

    Article  Google Scholar 

  7. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459

    Article  Google Scholar 

  8. Wu Y, Zhou D-G, Wang S-Q, Zhang Y (2009) Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. Bioresources 4:1487

    Google Scholar 

  9. Hassan ML, Mathew AP, Hassan EA, Oksman K (2010) Effect of pretreatment of bagasse pulp on properties of isolated nanofibers and nanopaper sheets. Wood Fiber Sci 43:1

    Google Scholar 

  10. Nordqvist D, Idermark J, Hedenqvist MS (2007) Enhancement of the wet properties of transparent chitosan-acetic-acid-salt films using microfibrillated cellulose. Biomacromolecules 8:2398

    Article  Google Scholar 

  11. Hosokawa J, Nishiyama M, Yoshihara K, Kubo T, Terabe A (1991) Ind Eng Chem Res 30:788

    Article  Google Scholar 

  12. Fadel SM, Hassan ML, Oksman K (2013) Improving tensile strength and moisture barrier properties of gelatin using microfibrillated cellulose. J Compos Mater 47:1977

    Article  Google Scholar 

  13. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (2004) Introduction. In: Comprehensive cellulose chemistry: fundamentals and analytical methods, vol 1. Wiley-VCH, Weinheim, Chap. 2.1

    Google Scholar 

  14. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612

    Article  Google Scholar 

  15. Nishino T, Takano K, Nakamae KJ (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Polym Phys 33:1647

    Article  Google Scholar 

  16. Hajji P, Cavaille JY, Favier V, Gauthier C, Vigier G (1996) Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym Compos 17:612

    Article  Google Scholar 

  17. De Souza LM, Borsali R (2004) Macromol Rapid Commun 25:771

    Article  Google Scholar 

  18. Araki J, Wada M, Kuga S, Okano T (1998) Colloids Surf 142:75

    Article  Google Scholar 

  19. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem Rev 110:3479

    Article  Google Scholar 

  20. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers 2:728

    Article  Google Scholar 

  21. Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73:371

    Article  Google Scholar 

  22. Teixeira EM, Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78:422

    Article  Google Scholar 

  23. Pasquini D, Teixeira EM, Curvelo AAS, Mohamed MN, Dufresne A (2010) Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Ind Crop Prod 32:486

    Article  Google Scholar 

  24. Bras J, Hassan ML, Bruzzese C, Hassan EA, Dufresne A (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crop Prod 32:627

    Article  Google Scholar 

  25. Dufresne A (2008) Cellulose-based composites and nanocomposites. In: Gandini A, Belgacem MN (eds) Monomers, polymers and composites from renewable resources. Elsevier, Oxford, p 401

    Chapter  Google Scholar 

  26. Garcia de Rodriguez NL, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261

    Article  Google Scholar 

  27. Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248

    Article  Google Scholar 

  28. Azizi Samir MAS, Alloin F, Sanchez J-Y, Elkessi N, Dufresne A (2004) Preparation of Cellulose Whiskers Reinforced Nanocomposites from an Organic Medium Suspension. Macromolecules 37:1386

    Article  ADS  Google Scholar 

  29. Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210

    Article  Google Scholar 

  30. Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 9999:1

    Article  Google Scholar 

  31. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425

    Article  Google Scholar 

  32. Schubert US, Winter A, Newkome GR (2011) Terpyridine-based materials – for catalytic, optoelectronic and life science applications. Wiley-VCH, Weinheim, p 509

    Book  Google Scholar 

  33. Hassan ML, Oksman K, El-Wakil NA, Hassan EA, Fadel SM (2009) Preparation and characterization of cellulose whiskers from bagasse, rice straw, and sugar beet and their use in alginate nanocomposites. 10th international conference on wood & biofiber plastic composites & cellulose nanocomposites symposium, Madison, 11–13 May 2009

    Google Scholar 

  34. Hassan ML, Hassan EA, Oksman K (2011) Effect of pretreatment of bagasse fibers on the properties of chitosan/microfibrillated cellulose nanocomposites. J Mater Sci 46:1732

    Article  ADS  Google Scholar 

  35. Hassan EA, Hassan ML, Oksman K (2011) Improving bagasse pulp paper sheet properties with microfibrillated cellulose isolated from xylanase-treated bagasse. Wood Fiber Sci 43:76

    Google Scholar 

  36. Hassan ML, Bras J, Hassan EA, Fadel SM, Dufresne A (2012) Polycaprolactone/modified bagasse whisker nanocomposites with improved moisture-barrier and biodegradability properties. J Appl Polym Sci 125:E10

    Article  Google Scholar 

  37. Hassan ML, Fadel SM, El-Wakil NA, Oksman K (2012) Chitosan/rice straw nanofibers nanocomposites: Preparation, mechanical, and dynamic thermomechanical properties. J Appl Polym Sci 125:E216

    Article  Google Scholar 

  38. Hassan ML, Mathew AP, Hassan EA, El-Wakil NA, Oksman K (2012) Nanofibers from bagasse and rice straw: Process optimization and properties. Wood Sci Technol 46:193

    Article  Google Scholar 

  39. Hassan ML, Moorefield CM, Elbatal HS, Newkome GR (2012) New metallo-supramolecular terpyridine-modified cellulose functional nanomaterials. J Macromol Sci A 49:1

    Article  Google Scholar 

  40. Hassan ML, Moorefield CM, Elbatal HS, Newkome GR, Modarelli DA, Romano NC (2012) Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene. Mater Sci Eng B-Adv 177:350

    Article  Google Scholar 

  41. Favier V, Cavaille JY, Canova GR, Shrivastava SC (1997) Mechanical percolation in cellulose whisker nanocomposites. Polymer Engineering and Science, 37:1732

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad L. Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hassan, M.L. (2015). Bagasse and Rice Straw Nanocellulosic Materials and Their Applications. In: Pandey, J., Takagi, H., Nakagaito, A., Kim, HJ. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45232-1_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45232-1_53

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45231-4

  • Online ISBN: 978-3-642-45232-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics