Skip to main content

Abstract

Applicability of CNT/CNT composites in clean energy applications has been demonstrated in a wide range from solar thermal conversion to more advanced antenna solar energy conversion (ASEC). So far the solar photovoltaic cells are the most promising and reliable way of converting solar power directly to electric power. Repeated demonstrations of single-wall carbon nanotubes’ (SWNT) suitability to form ideal p-n junction diodes enhanced the possibility of photovoltaic cells made out of CNT and CNT/composites. Hydrogen is considered to be a clean energy carrier. But high production cost and lack of a feasible storage system hindered the potential use of hydrogen. Photocatalytic water splitting is one of the cheapest ways of producing hydrogen gas. TiO2 has been the most widely used photocatalyst, but it has a low efficiency and a narrow light-response range. Combining TiO2 with CNT is being investigated as a means of increasing the photocatalytic activity and has proven the ability to fabricate an efficient heterogonous catalyst. Also the convenient adsorption of hydrogen in CNT makes it a good candidate for developing a feasible hydrogen storage system. Lack of an easy and effective CNT purification procedure is a major drawback to have such a storage system. Antenna solar energy conversion is an upcoming technology to convert the power of solar radiation directly to electric power utilizing the wave nature (electromagnetic) of light. It has demonstrated the applicability of CNT/CNT composites for this concept too. A good processability of materials is what requires for fabrication of potential complex geometries in ASEC as well as in photovoltaic cells. Polymer/CNT composites are expected to have good processing characteristics of the polymer and excellent functional properties of the CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes the route toward applications. Science 297(5582):787–792

    Article  ADS  Google Scholar 

  2. Elliott JA, Sandler JKW, Windle AH, Young RJ, Shaffer MS (2004) Collapse of single-wall carbon nanotubes is diameter dependent. Phys Rev Lett 92(9):1–4

    Article  Google Scholar 

  3. Zhu H, Wei J (2009) Applications of carbon materials in photovoltaic solar cells. Sol Energy Mater Sol Cells 93:1461–1470

    Article  Google Scholar 

  4. Liang CW, Roth S (2008) Electrical and optical transport of GaAs/carbon nanotube heterojunctions. Nano Lett 8:1809–1812

    Article  ADS  Google Scholar 

  5. Brabec CJ (2004) Organic photovoltaics: technology and market. Sol Energy Mater Sol Cells 83:273–292

    Article  Google Scholar 

  6. Park SH, Roy A, Beaupre´ S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunctions solar cells with internal quantum efficiency approaching 100 %. Nat Photonics 3:297–303

    Article  ADS  Google Scholar 

  7. Brabec CJ, Durrant JR (2008) Solution-processed organic solar cells. MRS Bull 33:670–675

    Article  Google Scholar 

  8. Thompson BC, Frechet JM (2008) Polymer-fullerene composite solar cells. Angew Chem Int Ed 47:58–77

    Article  Google Scholar 

  9. Chandross M, Mazumdar S, Jeglinski S, Wei X, Vardeny ZV, Kwock EW, Miller TM (1994) Excitons in PPV. Phys Rev B 50:14702–14705

    Article  ADS  Google Scholar 

  10. Kymakis E, Amaratunga GAJ (2002) Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl Phys Lett 80:112–114

    Article  ADS  Google Scholar 

  11. Freitag M, Martin Y, Misewich JA, Martel R, Avouris P (2003) Photoconductivity of single carbon nanotubes. Nano Lett 3:1067

    Article  ADS  Google Scholar 

  12. Wu Z, Chen Z, Du X, Lgan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent conductive carbon nanotube films. Science 305:1273–1276

    Article  ADS  Google Scholar 

  13. Goswami DY, Vijayaraghavan S, Lu S, Tamm G (2004) New and emerging developments in solar energy. Sol Energy 76:33–43

    Article  ADS  Google Scholar 

  14. Brown WC (1984) The history of power transmission by radio waves. IEEE Trans Microw Theor Tech MT32(9):1230e42

    Google Scholar 

  15. Nalwa HS (2000) Handbook of nanostructured materials and nanotechnology, vol 5. Academic, New York

    Google Scholar 

  16. Suzuki S, Watanabe Y, Kiyokura T, Nath KG, Ogino T, Heun S et al (2002) Effects of air exposure and Cs deposition on the electronic structure of multiwalled carbon nanotubes. Surf Rev Lett 9:431

    Article  Google Scholar 

  17. Goldoni A, Larciprete R, Petaccia L, Lizzit S (2003) Single-wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring. J Am Chem Soc 125:11329

    Article  Google Scholar 

  18. Pham GT, Park Y, Liang Z, Zhang C, Wang B (2007) Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Composites Part B: Engineering 39:209–216

    Google Scholar 

  19. Ajayan P, Zhou O (2001) Applications of carbon nanotubes. In: Mildred S. Dresselhaus, Gene Dresselhaus, Phaedon Avouris Carbon Nanotubes. UNC, Topics in Applied Physics; Volume 80, 2001, Springer Berlin Heidelberg 391–425

    Google Scholar 

  20. Wang WK, Cao LM (2001) Transformation of carbon nanotubes to diamond at high pressure and high temperature. Russ Phys J 44(2):178–182

    Article  Google Scholar 

  21. Chen YC et al (2002) Ultrafast optical switching properties of single wall carbon nanotube polymer composites at 155 lm. Appl Phys Lett 81:975

    Article  ADS  Google Scholar 

  22. Wu P, Kimball B, Carlson J (2004) Light scattering of periodic β aligned carbon nanotubes. Phys Rev Lett 93:013902

    Article  ADS  Google Scholar 

  23. Kempa K et al (2003) Photonic crystals based on periodic arrays of aligned carbon nanotubes. Nano Lett 3:13–18

    Article  ADS  Google Scholar 

  24. Jorio A, Souza Filho AG, Brar VW, Swan AK, Unlu MS, Dresselhaus MS (2002) Polarized resonant Raman study of isolated single-wall carbon nanotubes: symmetry selection rules, dipolar and multipolar antenna effects. Phys Rev B 65:121402R

    Article  ADS  Google Scholar 

  25. Wang Y et al (2004) Receiving and transmitting light-like radio waves: antenna effect in arrays of aligned carbon nanotubes. Appl Phys Lett 85:2607–2609

    Article  ADS  Google Scholar 

  26. Gregorczyk K, Kimball B, Carlson JB (2006) The complex optical response of arrays of aligned multiwalled carbon nanotubes. Nanophotonic Mater III 6321:63210G

    Article  Google Scholar 

  27. Menon M, Andriotis AN, Srivastava D, Ponomareva I, Chernozatonskii LA (2003) Carbon nanotube “T Junctions”: formation pathways and conductivity. Phys Rev Lett 91:145501

    Article  ADS  Google Scholar 

  28. Dag S, Senger RT, Ciraci S (2004) Theoretical study of crossed and parallel carbon nanotube junctions and three-dimensional grid structures. Phys Rev B 70:205407

    Article  ADS  Google Scholar 

  29. Snow ES, Campbell PM, Ancona MG, Novak JP (2005) High mobility carbon-nanotube thin-film transistors on a polymeric substrate. Appl Phys Lett 86:033105

    Article  ADS  Google Scholar 

  30. Srivastava N, Banerjee K (2004) Interconnect challenges for nanoscale electronic circuits. J Mater 56(10):30–31

    Google Scholar 

  31. Wei BQ, Vajtai R, Ajayan PM (2001) Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett 79(8):1172–1174

    Article  ADS  Google Scholar 

  32. Robertson J (2007) Growth of nanotubes for electronics. Mater Today 10:36–43

    Article  Google Scholar 

  33. Zhu L, Xu J, Xiu Y, Sun Y, Hess DW, Wong CP (2006) Growth and electrical characterization of high-aspect-ratio carbon nanotube arrays. Carbon 44:253–258

    Article  Google Scholar 

  34. Chen Z, Merikhi J, Koehler I, Bachmann PK (2006) Sandwich growth of carbon nanotubes. Diamond Relat Mater 15:104–108

    Article  ADS  Google Scholar 

  35. Dragoman D, Dragoman M (2004) Terahertz oscillations in semiconducting carbon nanotube resonant-tunneling diodes. Phys E Low- Dimens Syst Nanostruct 24(3–4):282–289

    Article  ADS  Google Scholar 

  36. Lu C et al (2006) Schottky diodes from asymmetric metal-nanotube contacts. Appl Phys Lett 88:133501

    Article  ADS  Google Scholar 

  37. Masalmeh SK, Stadermann HKE, Korving J (1996) Mixing and rectification properties of MIM diodes. Physica B 218:56–59

    Article  ADS  Google Scholar 

  38. Huang S, Woodson M, Smalley R, Liu J (2004) Growth mechanism of oriented long single walled carbon nanotubes using “Fast-Heating” chemical vapor deposition process. Nano Lett 4:1025–1028

    Article  ADS  Google Scholar 

  39. Behnam A et al (2008) Metal–semiconductor–metal photodetectors based on single-walled carbon nanotube film–GaAs Schottky contacts. J Appl Phys 103:114315

    Article  ADS  Google Scholar 

  40. Su WS, Leunga TC et al (2007) Work function of small radius carbon nanotubes and their bundles. Appl Phys Lett 90:163103

    Article  ADS  Google Scholar 

  41. Suzuki S et al (2000) Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles. Appl Phys Lett 76:4007–4009

    Article  ADS  Google Scholar 

  42. Shan B, Cho K (2005) First principles study of work functions of single wall carbon nanotubes. Phys Rev Lett 94:236602

    Article  ADS  Google Scholar 

  43. Guo J, Hasan S, Javey A, Bosman G (2005) Assessment of high frequency performance potential of carbon nanotube transistors. IEEE Trans Nanotechnol 4:715–721

    Article  ADS  Google Scholar 

  44. Chai Y, Zhou XL et al (2005) Nanodiode based on a multiwall CNx/carbon nanotube intramolecular junction. Nanotechnology 16:2134–2137

    Article  ADS  Google Scholar 

  45. Pandey RR, Bruque N, Alam K, Lake RK (2006) Carbon nanotube – molecular resonant tunneling diode. Phys Stat Sol A 203:R5–R7

    Article  ADS  Google Scholar 

  46. Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R 49:89–112

    Article  Google Scholar 

  47. Sivakumar R, Guo S, Nishimura S, Kagawa Y (2007) Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites. Scr Mater 56:265–268

    Article  Google Scholar 

  48. Jiang B, Lianggou Hong B, John T et al (2007) Relationship between chemical structure and dielectric properties plasma-enhanced chemical vapor deposited polymer thin films. Thin Solid Films 515:3513–3520

    Article  ADS  Google Scholar 

  49. Gregor LV (1968) Polymer dielectric films. IBM Journal of Research and Development 12:140–162

    Google Scholar 

  50. Potschke P, Bhattacharyya AR, Janke A (2003) Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate. Polymer 44:8061

    Article  Google Scholar 

  51. Kim YJ, Shin TS, Choi HD, Kwon JH, Chung YC, Yoon HG (2005) Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43:23–30

    Article  Google Scholar 

  52. Liu P (2005) Modifications of carbon nanotubes with polymers. Eur Polym J 41:2693–2703

    Article  Google Scholar 

  53. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R 53:73–197

    Article  Google Scholar 

  54. Liang GD, Tjong SC (2006) Electrical properties of low-density polyethylene/multiwalled carbon nanotube nanocomposites. Mater Chem Phys 100:132–137

    Article  Google Scholar 

  55. Chauvet O, Benoit JM, Corraze B (2004) Electrical, magnetotransport and localization of charge carriers in nanocomposites based on carbon nanotubes. Carbon 42:949–952

    Article  Google Scholar 

  56. Grossiord N, Loos J, Koning CEJ (2005) Strategies for dispersing carbon nanotubes in highly viscous polymers. Mater Chem 15:2349

    Article  Google Scholar 

  57. Wang X, Padture NP, Tanaka H (2004) Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nat Mater 3:539

    Article  ADS  Google Scholar 

  58. Zhan D, Kuntz JD, Wan J, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2:38

    Article  ADS  Google Scholar 

  59. Rul S, Lef F et al (2004) Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites. Acta Mater 52:1061–1067

    Article  Google Scholar 

  60. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  ADS  Google Scholar 

  61. Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1:2655–2661

    Article  Google Scholar 

  62. Jing D, Guo* L (2010) Liang Zhao Efficient solar hydrogen production by photocatalytic water splitting: from fundamental study to pilot demonstration. Int J Hydrogen Energy 35:7087–7097

    Article  Google Scholar 

  63. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA et al (2010) Solar water splitting cells. Chem Rev 110:6446e73

    Article  Google Scholar 

  64. Dai K, Peng TY, Ke DN, Wei BQ (2009) Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation. Nanotechnology 20:125603–1–6

    Google Scholar 

  65. Yao Y, Li GH, Ciston S, Lueptow RM, Gray KA (2008) Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity. Environ Sci Technol 42:4952–4957

    Article  ADS  Google Scholar 

  66. Ma LL, Sun HZ, Zhang YG, Lin YL, Li JL, Wang EK, et al. (2008) Preparation, characterization and photocatalytic properties of CdS nanoparticles dotted on the surface of carbon nanotubes. Nanotechnology 19:115709-1–8

    Google Scholar 

  67. Cao J, Sun JZ, Hong J, Li HY, Chen HZ, Wang M (2004) Carbon nanotube/CdS core-shell nanowires prepared by a simple room-temperature chemical reduction method. Adv Mater 16:84–87

    Article  Google Scholar 

  68. Suryawanshi A, Dhanasekaran P, Mhamane D (2012) Doubling of photocatalytic H2 evolution from g-C3N4 via its nanocomposite formation with multiwall carbon nanotubes: electronic and morphological effects. Int J Hydrogen Energy 37:9584–9589

    Google Scholar 

  69. Ahmmad B, Kusumoto Y (2008) Carbon nanotubes synergistically enhance photocatalytic activity of TiO2. Catal Commun 9:1410–1413

    Article  Google Scholar 

  70. Xiaojing Liu, Peng Zeng, Tianyou Peng (2012) Preparation of multiwalled carbon nanotubes/Cd0.8Zn0.2S nanocomposite and its photocatalytic hydrogen production under visible-light. Int J Hydrogen Energy 37:1375–1384

    Google Scholar 

  71. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377

    Article  ADS  Google Scholar 

  72. Yang RT (2000) Hydrogen storage by alkali-doped carbon nanotubes-revisited. Carbon 38:623

    Article  Google Scholar 

  73. Hirscher M, Becher M, Haluska M, von Zeppelin F, Chen XH, Dettlaff-Weglikowska U, Roth S (2003) Are carbon nanostructures an efficient hydrogen storage medium? J Alloys Compd 356–357:433

    Article  Google Scholar 

  74. Liu C, Cheng H-M (2005) Carbon nanotubes for clean energy applications. J Phys D Appl Phys 38:R231–R252

    Article  ADS  Google Scholar 

  75. Oriňáková R, Oriňák A (2011) Recent applications of carbon nanotubes in hydrogen production and storage. Fuel 90(11):3123–3140

    Article  Google Scholar 

  76. Huang Z, Kang S, Banno M, Yamaguchi T (2012) Pulsating tubules from noncovalent macrocycles. Science 337(6101):1521–1526

    Google Scholar 

  77. Menéndez-Proupin E et al (2012) Ultrathin carbon nanotube with single, double, and triple bonds. Phys Rev Lett 109:105501

    Article  ADS  Google Scholar 

  78. http://spectrum.ieee.org/nanoclast/semiconductors/materials/carbon-nanotubes-get-a-new-and-simple-bulk-sorting-process

  79. Ozalp N, Epstein M, Kogan A (2010) Cleaner pathways of hydrogen, carbon nano-materials and metals production via solar thermal processing. J Clean Prod 18:900–907

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha Wijewardane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wijewardane, S. (2015). The Role of CNT and CNT/Composites for the Development of Clean Energy. In: Kar, K., Pandey, J., Rana, S. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45229-1_43

Download citation

Publish with us

Policies and ethics