Skip to main content

CNT-Based Inherent Sensing and Interfacial Properties of Glass Fiber-Reinforced Polymer Composites

  • Chapter
Handbook of Polymer Nanocomposites. Processing, Performance and Application

Abstract

Carbon nanotubes (CNTs) are ideal candidates for reinforcement in composite materials due to their nanoscale structure, outstanding mechanical, thermal and electrical properties. Consideration has been given to introducing CNTs into conventional fiber reinforced composites, forming a hierarchical structure, where nanoscale reinforcement is made to work alongside more traditional microscale architecture. CNTs grafting onto fiber surface have been used to create electrically conductive interphases for introducing sensing capabilities in bulk nanocomposites. The intrinsic mechanical properties of CNTs have resulted in considerable interest in their use as reinforcement for composites. Nanocomposites filled with CNT have high stiffness, strength and good electrical conductivity at relatively low concentrations of these reinforcing materials. Gradient specimen which contains electrical contacts with gradually-increasing spacing is an effective test to observe the contact resistance at interface of CNT-polymer nanocomposites. Due to the presence of hydrophobic domains on the heterogeneous surface, CNT-polymer nanocomposites exhibit a hydrophobic property. Strong and durable interfacial adhesion is expected to transfer the stress efficiently from the matrix to the fiber, which may result in greatly improved mechanical properties in composites. Inherent sensing and interfacial properties of fiber reinforced CNT-polymer nanocomposites could be evaluated by electro-micromechanical and wettability measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Böger L, Wichmann MHG, Meyer LO, Schulte K (2008) Load and health monitoring in lass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix. Compos. Sci. Technol 68:1886

    Google Scholar 

  2. Varelidis PC, Kominos NP, Papaspyrides CD (1998) Polyamide coated glass fabric in polyester resin: interlaminar shear strength versus moisture absorption studies. Compos Part A 29(12):1489

    Google Scholar 

  3. Lee SB, Rockett TJ, Hoffman RD (1992) Interactions of water with unsaturated polyester, vinyl ester and acrylic resins. Polymer 33(17):3691

    Google Scholar 

  4. Shen ZQ, Bateman S, Wu DY, McMahon P, DellOlio M, Gotama J (2009) The effects of carbon nanotubes on mechanical and thermal properties of woven glass fibre reinforced polyamide-6 nanocomposites. Compos Sci Technol 69:239

    Google Scholar 

  5. Wichmann MHG, Sumfleth J, Gojny FH, Quaresimin M, Fiedler B, Schulte K (2006) Glass-fibre-reinforced composites with enhanced mechanical and electrical properties – benefits and limitations of a nanoparticle modified matrix. Eng Fract Mech 73:2346

    Google Scholar 

  6. Thostenson ET, Ren Z, Chou TW (2002) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899

    Google Scholar 

  7. Fujiwara A, Iijima R, Suematsu H, Kataura H, Maniwa Y, Suzuki S, Achiba Y (2002) Local electronic transport through a through a junction of SWNT bundles. Physica B 323:227

    ADS  Google Scholar 

  8. Tans SJ, Devoret M, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386:474

    ADS  Google Scholar 

  9. White CT, Todorov TN (1998) Armchair carbon nanotubes as long ballistic conductors. Nature 393:240

    ADS  Google Scholar 

  10. Wei D, Espindola P, Lindfors T, Kvarnstrom C, Heinze J, Ivaska A (2007) In situ conductance and in situ ATR-FTIR study of poly(N-methylaniline) in aqueous solution. J Electroanal Chem 602:203

    Google Scholar 

  11. Pagels M, Heinze J, Geschke B, Rang V (2001) A new approach to the mechanism of polymerisation of oligovinylthiophene. Electrochim Acta 46:3943

    Google Scholar 

  12. Csahok E, Vieil E, Inzelt G (2000) In situ dc conductivity study of the redox transformations and relaxation of polyaniline films. J Electroanal Chem 482:168

    Google Scholar 

  13. Klauk H, Schmid G, Radlik W, Weber W, Zhou L, Sheraw CD, Nichols JA, Jackson TN (2003) Contract resistance in organic thin film transistors. Solid State Electron 47:297

    ADS  Google Scholar 

  14. Rep DBA, Morpurgo AF, Klapwijk TM (2003) Doping-dependent charge injection into regioregular poly(3-hexylthiophene). Org Electron 4:201

    Google Scholar 

  15. Oussalah S, Djezzar B, Jerisian R (2005) A comparative study of different contact resistance test structures dedicated to the power process technology. Solid State Electron 49:1617

    ADS  Google Scholar 

  16. Hsieh CT, Chen JM, Huang YH, Kou RR, Lee CT, Shih HC (2006) Influence of fluorine/carbon atomic ratio on superhydrophobic behavior of carbon nanofiber arrays. J Vac Sci Technol B 24(1):113

    Google Scholar 

  17. Jeong HJ, Kim DK, Lee SB, Kwon SH, Kadono K (2001) Preparation of water-repellent glass by sol-gel process using perfluoroalkylsilane and tetraethoxysilane. J Colloid Interface Sci 235:130

    Google Scholar 

  18. Karim A, Slawecki TM, Kumar SK, Douglas JF, Satija SK, Han CC, Russell TP, Liu Y, Overney R, Sokolov J, Rafailovich MH (1998) Phase-separation-induced surface patterns in thin polymer blend films. Macromolecules 31:857

    ADS  Google Scholar 

  19. Dilsiz N, Wightman JP (2000) Effect of acid-base properties of unsized and sized carbon fibers on fiber/epoxy matrix adhesion. Coll Surf A 164:325

    Google Scholar 

  20. Balkenende AR, Boogaard AP, Scholten M, Willard NP (1998) Evaluation of different approaches to assess the surface tension of low-energy solids by means of contact angle measurements. Langmuir 14:5909

    Google Scholar 

  21. Park SJ, Jang YS (2001) Interfacial characteristics and fracture toughness of electrolytically Ni-plated carbon fiber-reinforced phenolic resin matrix composites. J Coll Interf Sci 237:91

    Google Scholar 

  22. Park SJ, Kim MH, Lee JR, Choi SW (2000) Effect of fiber-polymer interactions on fracture toughness behavior of carbon fiber-reinforced epoxy matrix composites. J Coll Interf Sci 228:287

    Google Scholar 

  23. Jin L, Qun F, Chen WH, Huang KB, Ling CY (2006) Effect of electro-polymer sizing of carbon fiber on mechanical properties of phenolic resin composites. Trans Nonferrous Met Soc 16:457

    Google Scholar 

  24. Wang X, Chung DDL (1996) Improving the bond strength between carbon fiber and cement by fiber surface treatment and polymer addition to cement mix. Cem Conc Res 26:1007

    Google Scholar 

  25. Park JM, Lee SI, Kim KW, Yoon DJ (2001) Interfacial properties of electrodeposited carbon fibers/epoxy composites using electro-micromechanical technique and nondestructive evaluation. J Colloid Interf Sci 237:80

    Google Scholar 

  26. Griffith AA (1920) Phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163

    ADS  Google Scholar 

  27. Kim JK, Mai YW (1998) Engineered interfaces in fibre reinforced composites. vol 6. Elsevier, Amsterdam

    Google Scholar 

  28. Labronici M, Ishida H (1994) Toughening Composites by Fiber Coating: a Review. Compos Interfaces 2:199

    Google Scholar 

  29. Bader MG (2000) The composite market. vol 6, Elsevier, Amsterdam

    Google Scholar 

  30. Biederman B, Osada Y (1992) Plasma Polymenzation Processes. Elsevier, New York

    Google Scholar 

  31. Inagaki N (1996) Plasma surface modification and plasma polymerization. Technomic, Lancaster

    Google Scholar 

  32. Li R, Ye L, Mai YW (1997) Application of plasma technologies in fibre-reinforced polymer composites: a review of recent developments. Compos Part A 28(1):73

    Google Scholar 

  33. Cech V (2000) New progress in composite interphases: a use of plasma technologies. Proceedings of FRC 2000, Newcastle, p 246

    Google Scholar 

  34. Segui Y (1997) Plasma deposition from organosilicon monomers. Kluwer, Dordrecht, p 305

    Google Scholar 

  35. Cech V, Prikryl R, Balkova R, Vanek J, Grycova A (2003) The influence of surface modifications of glass on glass fiber/polyester interphase properties. J Adhes Sci Technol 17(10):1299

    Google Scholar 

  36. Park SJ, Jin JS (2003) Effect of silane coupling agent on mechanical interfacial properties of glass fiber-reinforced unsaturated polyester composites. J Polym Sci Pol Phys 41(1):55

    Google Scholar 

  37. Zhao FM, Takeda N (2000) Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber/epoxy composites. Part I: experiment results. Compos Part A 31(11):1203

    Google Scholar 

  38. Prikryl R, Cech V, Kripal L, Vanek J (2005) Adhesion of pp-VTES films to glass substrates and their durability in aqueous environments. Int J Adhes Adhes 25(2):121

    Google Scholar 

  39. Cech V, Inagaki N, Vanek J, Prikryl R, Grycova A, Zemek J (2006) Plasma-polymerized versus polycondensed thin films of vinyltriethoxysilane. Thin Solid Films 502(1–2):181

    ADS  Google Scholar 

  40. Kim JK, Mai YW (1998) Engineered Interfaces in Fibre Reinforced Composites. Elsevier, UK

    Google Scholar 

  41. Brill RP, Palmese GR (2006) Cure behavior of DGEBA vinyl ester–styrene resins near silane-treated interfaces. J Appl Polym Sci 101(5):2784

    Google Scholar 

  42. Wang TWH, Blum FD, Dharani LR (1999) Effect of interfacial mobility on flexural strength and fracture toughness of glass/epoxy laminates. J Mater Sci 34(19):4873

    ADS  Google Scholar 

  43. Saidpour SH, Richardson MOW (1997) Glass fibre coating for optimum mechanical properties of vinyl ester composites. Compos Part A 28(11):97l

    Google Scholar 

  44. Park SJ, Jin JS (2001) Effect of silane coupling agent on interphase and performance of glass fibers/unsaturated polyester composites. J Colloid Interface Sci 242(1):174

    MathSciNet  Google Scholar 

  45. Park R, Jang J (2004) Effect of surface treatment on the mechanical properties of glass fiber/vinylester composites. J Appl Polym Sci 91(6):3730

    Google Scholar 

  46. Gonzalez-Benito J, Baselga J, Aznar AJ (1999) Microstructural and wettability study of surface pretreated glass fibres. J Mater Process Technol 93:129

    Google Scholar 

  47. Olmos D, Lopez-Moron R, Gonza´lez-Benito J (2006) The nature of the glass fibre surface and its effect in the water absorption of glass fibre/epoxy composites. The use of fluorescence to obtain information at the interface. J. Compos Sci Technol 66(15):2758

    Google Scholar 

  48. GonzalezBenito J (2003) The nature of the structural gradient in epoxy curing at a glass fiber/epoxy matrix interface using FTIR imaging. J Colloid Interface Sci 267(2):326

    Google Scholar 

  49. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293

    MATH  Google Scholar 

  50. Johnson DJ (1987) Variable resistors based on composites. J Phys D Appl Phys 20:386

    Google Scholar 

  51. Hltchon JW, Phillips DC (1979) The dependence of the strength of carbon fibres on length. Fibre Sci Technol 12:217

    Google Scholar 

  52. Bennett SC, Johnson DJ, Johnson W (1983) Strength structure relationships in PAN based C-fibres. J Mater Sci 18:3337

    ADS  Google Scholar 

  53. Own SH, Subramanian RV, Saunders SC (1986) A bimodal lognormal model of the distribution of strength of carbon fibres: effects of electrodeposition of titanium di (dioctyl pyrophosphate) oxyacetate. J Mater Sci 21:3912

    ADS  Google Scholar 

  54. Goda K, Fukunada H (1986) The evaluation of the strength distribution of silicon carbide and alumina fibres by a muti-modal Weibull distribution. J Mater Sci 21:4475

    ADS  Google Scholar 

  55. Beetz CP (1982) The analysis of carbon-fiber strength distributions exhibiting multiple-modes of failure. Fibre Sci Technol 16:45

    Google Scholar 

  56. Donnet JB, Bansal RC (1990) Carbon Fibers. Marcel Dekker, New York, p 289

    Google Scholar 

  57. Jung TH, Subramanian RV, Manoranjan VS (1993) Prediction of fibre strength at the critical length: a simulation theory and experimental verification for bimodally distributed carbon fibre strengths. J Mater Sci 28:4489

    ADS  Google Scholar 

  58. Chua PS, Piggott MR (1985) The glass fibre–polymer interface: I–theoretical consideration for single fibre pull-out tests. Compos Sci Technol 22:33

    Google Scholar 

  59. Beckert W, Lauke B (1997) Critical discussion of the single-fibre pull-out test: does it measure adhesion? Compos Sci Technol 57:1689

    Google Scholar 

  60. Gundel DB, Majumdar BS, Miracle DB (1995) Evaluation of the intrinsic transverse respinse of fiber-reinforced composites using a crossshaped sample geometry. Scripta Metall Mater 33:2057

    Google Scholar 

  61. Tandon GP, Kim RY (2002) Fiber–Matrix Interfacial Failure Characterization Using a Cruciform-Shaped Specimen. J Compos Mater 36:2667

    Google Scholar 

  62. Koyanagi J, Ogihara S (2011) Temperature dependence of glass fiber/epoxy interface normal strength examined by a cruciform specimen method. Compos Part B 42:1492

    Google Scholar 

  63. Ogihara S, Koyanagi J (2010) Investigation of combined stress state failure criterion for glass fiber/epoxy interface by the cruciform specimen method. Compos Sci Technol 70:143

    Google Scholar 

  64. Koyanagi J, Nakatani H, Ogihara S (2012) Comparison of glass–epoxy interface strengths examined by cruciform specimen and single-fiber pull-out tests under combined stress state. Compos Part A 43:1819

    Google Scholar 

  65. Koyanagi J, Yoneyama S, Nemoto A, Melo J (2010) Time and temperature dependence of carbon/epoxy interface strength. Compos Sci Technol 70:1395

    Google Scholar 

  66. Koyanagi J, Shah PD, Kimura S, Ha SK, Kawada H (2009) Mixed-mode interfacial debonding simulation in single-fiber composite under a transverse load. J Solid Mech Mater Eng 3:796

    Google Scholar 

  67. Zhandarov SF, Pisanova EV (1997) The local bond strength and its determination by fragmentation and pull-out tests. Compos Sci Technol 57:957

    Google Scholar 

  68. Zhandarov S, Mader E (2005) Characterization of fiber/matrix interface strength: applicability of different tests, approaches and parameters. Compos Sci Technol 65:149

    Google Scholar 

  69. Piggott MR (1997) Compos Sci Technol 57:965

    Google Scholar 

  70. Zhou XF, Wagner HD, Nutt SR (2001) Interfacial properties of polymer composites measured by push-out and fragmentation tests. Compos Part A 32:1543

    Google Scholar 

  71. Yang L, Thomason JL (2010) Interface strength in glass fibre–polypropylene measured using the fibre pull-out and microbond methods. Compos Part A 41:1077

    Google Scholar 

  72. Park JM, Kim JW, Yoon DJ (2002) Comparison of Interfacial Properties of Electrodeposited Single Carbon Fiber/Epoxy Composites Using Tensile and Compressive Fragmentation Tests and Acoustic Emission. J Colloid Interf Sci 247:231

    Google Scholar 

  73. Liu Z, Yuan X, Beck AJ, Jones FR (2011) Analysis of a modified microbond test for the measurement of interfacial shear strength of an aqueous-based adhesive and a polyamide fibre. Compos Sci Technol 71:1529

    Google Scholar 

  74. Yang L, Thomason JL, Zhu W (2011) The influence of thermo-oxidative degradation on the measured interface strength of glass fibre-polypropylene. Compos Part A 42:1293

    Google Scholar 

  75. Drzal LT, Micheal RJ, Koenig MF, Lloyd PF (1983) Adhesion of graphite fibers to epoxy matrices. II. The effect of fiber finish. J Adhes 16:133

    Google Scholar 

  76. Iroh JO, Yuan W (1996) Surface-Properties of Carbon-Fibers Modified by Electrodeposition of Polyamic Acid Polymer. Polymer 37:4197

    Google Scholar 

  77. Drzal LT (1983) Composite Interphase Characterization. SAMPE J 19:7

    Google Scholar 

  78. Piggott MR (1989) The interface in carbon fibre composites. Carbon 27:657

    Google Scholar 

  79. Blackketter DM, Vpadhyaya D, King TR, King JA (1993) Polym Compos 14:430

    Google Scholar 

  80. Huttinger KJ, Krekel G (1991) Polydimethylsiloxane coated carbon fibres for the production of carbon-fibre reinforced carbon. Carbon 29:1065

    Google Scholar 

  81. Chang TH, Zhang J, Yumitori S, Jones FR, Anderson CW (1994) Sizing resin structure and interphase formation in carbon fibre composites. Composites 25:661

    Google Scholar 

  82. Bradley RH, Ling X, Shutherland I (1993) An investigation of carbon fibre surface chemistry and reactivity based on XPS and surface free energy. Carbon 31:1115

    Google Scholar 

  83. Fowkes FM, Adhes J (1987) Role of acid-base interfacial bonding in adhesion. Sci Tech 1:7

    Google Scholar 

  84. Fowkes FM, Tischler DO, Wolfe JA, Lannigan LA, Ademu-John CM, Halliwell MJ (1984) Acid- base complexes of polymers. J Polym Sci Chem Ed 22:547

    Google Scholar 

  85. Tsutsumi K, Ban K, Shibata KS, Okazaki S, Kogoma M (1996) Wettability and Adhesion Characteristics of Plasma-Treated Carbon Fibers. J Adhes 57:45

    Google Scholar 

  86. Drzal LT, Madhukar M, Waterbury MC (1994) Adhesion to carbon fiber surfaces: surface chemical and energetic effects. Compos Struct 27:65

    Google Scholar 

  87. Chan D, Hozbor MA, Bayramli E, Powell RL (1991) Surface characterization of intermediate modulus graphite fibers via surface free energy measurement and ESCA. Carbon 29:1091

    Google Scholar 

  88. Le CV, Ly NG, Stevens MG (1996) Measuring the Contact Angles of Liquid Droplets on Wool Fibers and Determining Surface Energy Components. Text Res J 66:389

    Google Scholar 

  89. Hoecker F, Karger-Kocsis J (1996) Surface energetics of carbon fibers and its effects on the mechanical performance of CF/EP composites. J Appl Polym Sci 59:139

    Google Scholar 

  90. Huang Y, Gardner DJ, Chen M, Biermann CJ (1995) Surface energetics and acid-base character of sized and unsized paper handsheets. J Adhes Sci Technol 9:1403

    Google Scholar 

  91. Neumann AW, Spelt JK (1996) Theromodynamic status of contact angles. Applied surface thermodynamics. Marcel Dekker, New York

    Google Scholar 

  92. Kim SH (2008) Fabrication of Superhydrophobic Surfaces. J Adhes Sci Technol 22:235

    Google Scholar 

  93. Park JM, Kim DS, Kim SR (2003) Interfacial properties and microfailure degradation mechanisms of bioabsorbable fibers/poly-L-lactide composites using micromechanical test and nondestructive acoustic emission. Compos Sci Technol 63:403

    Google Scholar 

  94. Park JM, Kim DS, Kim SR (2004) Nondestructive evaluation of interfacial damage properties for plasma-treated biodegradable poly(p-dioxanone) fiber/poly(L-lactide) composites by micromechanical test and surface wettability. Compos Sci Technol 64:847

    Google Scholar 

  95. Owen DK, Wendth RC (1969) Estimation of the surface free energy of polymer. J Appl Polym Sci 13:1741

    Google Scholar 

  96. Rausch J, Zhuang RC, Mäder E (2009) Application of nanomaterials in sizings for glass fibre/polypropylene hybrid yarn spinning. Mater Technol 1(24):29

    Google Scholar 

  97. Warrier A, Godara A, Rochez O, Mezzo L, Luizi F, Gorbatikh L (2010) The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Compos A 41(4):532

    Google Scholar 

  98. Godara A, Gorbatikh L, Kalinka G, Warrier A, Rochez O, Mezzo L (2010) Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Compos Sci Technol 70(9):1346

    Google Scholar 

  99. Boccaccini AR, Chicatun F, Cho J, Bretcanu O, Roether JA, Novak S (2007) Carbon nanotube coatings on bioglass-based tissue engineering scaffolds. Adv Funct Mater 17(15):2815

    Google Scholar 

  100. Bekyarova E, Thostenson ET, Yu A, Kim H, Gao J, Tang J (2007) Multiscale carbon nanotube–carbon fiber reinforcement for advanced epoxy composites. Langmuir 23(7):3970

    Google Scholar 

  101. Muto N, Arai Y, Shin SG, Matsubara H, Yanagida H, Sugita M (2001) Hybrid composites with self-diagnosing function for preventing fatal fracture. Compos Sci Technol 61(6):875

    Google Scholar 

  102. Wang S, Chung DDL (1997) Self-monitoring of strain and damage by a carbon–carbon composite. Carbon 35(5):621

    Google Scholar 

  103. Gao SL, Mäder E, Plonka R (2007) Nanostructured coatings of glass fibers: improvement of alkali resistance and mechanical properties. Acta Mater 55(3):1043

    Google Scholar 

  104. Zhao Q, Wood JR, Wagner HD (2001) Stress fields around defects and fibers in a polymer using carbon nanotubes as sensors. Appl Phys Lett 78(12):1748

    ADS  Google Scholar 

  105. Sureeyatanapas P, Young RJ (2009) SWNT composite coatings as a strain sensor on glass fibres in model epoxy composites. Compos Sci Technol 69(10):1547

    Google Scholar 

  106. Sureeyatanapas P, Hejda M, Eichhorn SJ, Young RJ (2010) Comparing single-walled carbon nanotubes and samarium oxide as strain sensors for model glass-fibre/epoxy composites. Compos Sci Technol 70(1):88

    Google Scholar 

  107. Gao SL, Zhuang RC, Zhang J, Liu JW, Mäder E (2010) Glass fibers with carbon nanotube networks as multifunctional sensors. Adv Funct Mater 20(12):1885

    Google Scholar 

  108. Rausch J, Mäder E (2010) Health monitoring in continuous glass fibre reinforced thermoplastics: manufacturing and application of interphase sensors based on carbon nanotubes. Compos Sci Technol 70(11):1589

    Google Scholar 

  109. Zhang J, Zhuang RC, Liu JW, Mäder E, Heinrich G, Gao SL (2010) Functional interphases with multi-walled carbon nanotubes in glass fibre/epoxy composites. Carbon 48(8):2273

    Google Scholar 

  110. Dart SL, Peterson LE (1952) An improved vibroscope. Textile Res J 22(12):819

    Google Scholar 

  111. Siddiqui NA, Sham ML, Tang BZ, Munir A, Kim JK (2009) Tensile strength of glass fibres with carbon nanotube–epoxy nanocomposite coating. Compos Part A 40(10):1606

    Google Scholar 

  112. Gao SL, Mäder E, Abdkader A, Offermann P (2003) Sizings on alkaliresistant glass fibers: environmental effects on mechanical properties. Langmuir 19(6):2496

    Google Scholar 

  113. Netravali AN, Henstenburg RB, Phoenix SL, Schwartz P (1989) Interfacial shear strength studies using the single-filament composite test. Part I: experiments on graphite fibers in epoxy. Polym Compos 10(4):226

    Google Scholar 

  114. Kelly A, Tyson WR (1965) Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. J Mech Phys Solids 13:329

    ADS  Google Scholar 

  115. Park JM, Kim DS, Kim SJ, Kim PG, Yoon DJ, DeVries KL (2007) Inherent sensing and interfacial evaluation of carbon nanofiber and nanotube/epoxy composites using electrical resistance measurement and micromechanical technique. Compos Part B 38(7):847

    Google Scholar 

  116. Böger L, Wichmann MHG, Meyer LO, Schulte K (2008) Compos Sci Technol 68(7–8):1886

    Google Scholar 

  117. Thostenson ET, Chou TW (2008) Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks. Nanotechnology 19:215713

    ADS  Google Scholar 

  118. Rausch J, Mäder E (2010) Health monitoring in continuous glass fibre reinforced thermoplastics: Tailored sensitivity and cyclic loading of CNT-based interphase sensors. Compos Sci Technol 70(11):2023

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joung-Man Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, ZJ., Kwon, DJ., Gu, GY., Park, JM. (2015). CNT-Based Inherent Sensing and Interfacial Properties of Glass Fiber-Reinforced Polymer Composites. In: Kar, K., Pandey, J., Rana, S. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45229-1_42

Download citation

Publish with us

Policies and ethics