Skip to main content

Carbon Nanotube for Bone Repair

  • Chapter

Abstract

In the recent years, significant development has been achieved in tissue engineering for the artificial bone preparation. Metals, polymers, and ceramics are widely used biomaterials for bone implant. Apart from this, the infant material carbon nanotube (CNT) is an emerging biomaterial in the recent days, which are being checked for bone tissue engineering. CNT has unique properties such as electrical, mechanical, and thermal properties. Thus, addition of CNT in the polymer, ceramic, and metal matrix will be enhancing the function of the CNT. In this chapter, CNT–polymers, CNT–hydroxyapatite, and CNT/Bioglass composite biomaterials have been discussed and explored for bone tissue engineering application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Venkatesan J, Kim SK (2010) Chitosan composites for bone tissue engineering – An overview. Mar Drugs 8:2252–2266

    Article  Google Scholar 

  2. Wang L, Shelton R, Cooper P, Lawson M, Triffitt J, Barralet J (2003) Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24:3475–3481

    Article  Google Scholar 

  3. Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353

    Article  Google Scholar 

  4. Fraczek A, Menaszek E, Paluszkiewicz C, Blazewicz M (2008) Comparative in vivo biocompatibility study of single-and multi-wall carbon nanotubes. Acta Biomater 4:1593–1602

    Article  Google Scholar 

  5. Wang W, Yokoyama A, Liao S, Omori M, Zhu Y, Uo M, Akasaka T, Watari F (2008) Preparation and characteristics of a binderless carbon nanotube monolith and its biocompatibility. Mater Sci Eng C 28:1082–1086

    Article  Google Scholar 

  6. Namgung S, Baik KY, Park J, Hong S (2011) Controlling the growth and differentiation of human mesenchymal stem cells by the arrangement of individual carbon nanotubes. ACS Nano 5:7383

    Article  Google Scholar 

  7. Bacakova L, Grausova L, Vacik J, Lavrentiev V, Blazewicz S, Fraczek A, Kromka A, Haenen K (2011) Adhesion and growth of human osteoblast-like cell in cultures on nanocomposite carbon-based materials. Nanosci Nanotechnol Lett 3:99–109

    Article  Google Scholar 

  8. Vandrovcová M, Bačáková L (2011) Adhesion, growth and differentiation of osteoblasts on surface-modified materials developed for bone implants. Physiol Res 60:403

    Google Scholar 

  9. Ryoo SR, Kim YK, Kim MH, Min DH (2010) Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: Proliferation, focal adhesion, and gene transfection studies. ACS Nano 4:6587

    Article  Google Scholar 

  10. Usui Y, Aoki K, Narita N, Murakami N, Nakamura I, Nakamura K, Ishigaki N, Yamazaki H, Horiuchi H, Kato H (2008) Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects. Small 4:240–246

    Article  Google Scholar 

  11. Liu D, Yi C, Zhang D, Zhang J, Yang M (2010) Inhibition of proliferation and differentiation of mesenchymal stem cells by carboxylated carbon nanotubes. ACS Nano 4:2185–2195

    Article  Google Scholar 

  12. Saito N, Usui Y, Aoki K, Narita N, Shimizu M, Hara K, Ogiwara N, Nakamura K, Ishigaki N, Kato H (2009) Carbon nanotubes: biomaterial applications. Chem Soc Rev 38:1897–1903

    Article  Google Scholar 

  13. Zhang Y, Bai Y, Yan B (2010) Functionalized carbon nanotubes for potential medicinal applications. Drug Discov Today 15:428–435

    Article  Google Scholar 

  14. Sahithi K, Swetha M, Ramasamy K, Srinivasan N, Selvamurugan N (2010) Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol 46:281–283

    Article  Google Scholar 

  15. Li X, Fan Y, Watari F (2010) Current investigations into carbon nanotubes for biomedical application. Biomed Mater 5:022001

    Article  ADS  Google Scholar 

  16. Li X, Liu X, Huang J, Fan Y, Cui F (2011) Biomedical investigation of CNT based coatings. Surf Coat Technol 206:759

    Article  Google Scholar 

  17. Carrero-Sanchez J, Elias A, Mancilla R, Arrellin G, Terrones H, Laclette J, Terrones M (2006) Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett 6:1609–1616

    Article  ADS  Google Scholar 

  18. Tran PA, Zhang L, Webster TJ (2009) Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Del Rev 61:1097–1114

    Article  Google Scholar 

  19. Lin DW, Bettinger CJ, Ferreira JP, Wang CL, Bao Z (2011) A cell-compatible conductive film from a carbon nanotube network adsorbed on poly-l-lysine. ACS Nano 5:10026

    Article  Google Scholar 

  20. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Article  Google Scholar 

  21. Nimmagadda A, Thurston K, Nollert MU, McFetridge PS (2006) Chemical modification of SWNT alters in vitro cell-SWNT interactions. J Biomed Mater Res 76:614–625

    Article  Google Scholar 

  22. Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2012) Advances in polymeric systems for tissue engineering and biomedical applications. Macromol Biosci 12:286

    Article  Google Scholar 

  23. Hirata E, Uo M, Takita H, Akasaka T, Watari F, Yokoyama A (2011) Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering. Carbon 49:3284

    Article  Google Scholar 

  24. Hirata E, Uo M, Takita H, Akasaka T, Watari F, Yokoyama A (2009) Development of a 3D collagen scaffold coated with multiwalled carbon nanotubes. J Biomed Mater Res 90:629–634

    Article  Google Scholar 

  25. MacDonald RA, Laurenzi BF, Viswanathan G, Ajayan PM, Stegemann JP (2005) Collagen–carbon nanotube composite materials as scaffolds in tissue engineering. J Biomed Mater Res 74:489–496

    Article  Google Scholar 

  26. Liu F, Guo R, Shen M, Cao X, Mo X, Wang S, Shi X (2010) Effect of the porous microstructures of poly (lactic-co-glycolic acid)/carbon nanotube composites on the growth of fibroblast cells. Soft Mater 8:239–253

    Article  Google Scholar 

  27. Lin C, Wang Y, Lai Y, Yang W, Jiao F, Zhang H, Ye S, Zhang Q (2011) Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly (lactic-co-glycolic acid) for bone tissue engineering. Colloid Surf B 83:367–375

    Article  Google Scholar 

  28. Shao S, Zhou S, Li L, Li J, Luo C, Wang J, Li X, Weng J (2011) Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials 32:2821

    Article  Google Scholar 

  29. Shi X, Hudson JL, Spicer PP, Tour JM, Krishnamoorti R, Mikos AG (2005) Rheological behaviour and mechanical characterization of injectable poly (propylene fumarate)/single-walled carbon nanotube composites for bone tissue engineering. Nanotechnology 16:S531

    Article  ADS  Google Scholar 

  30. Shi X, Sitharaman B, Pham QP, Liang F, Wu K, Edward Billups W, Wilson LJ, Mikos AG (2007) Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials 28:4078–4090

    Article  Google Scholar 

  31. Shi X, Hudson JL, Spicer PP, James M, Krishnamoorti R, Mikos AG (2006) Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. Biomacromolecules 7:2237–2242

    Article  Google Scholar 

  32. Martino A, Sittinger M, Risbud M (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26:5983–5990

    Article  Google Scholar 

  33. Peter M, Binulal N, Nair S, Selvamurugan N, Tamura H, Jayakumar R (2010) Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 158:353–361

    Article  Google Scholar 

  34. Abarrategi A, Gutiérrez MC, Moreno-Vicente C, Hortigüela MJ, Ramos V, López-Lacomba JL, Ferrer ML, Del Monte F (2008) Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29:94–102

    Article  Google Scholar 

  35. McKeon-Fischer K, Flagg D, Freeman J (2011) Coaxial electrospun poly (ε-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering. J Biomed Mater Res 99:493

    Article  Google Scholar 

  36. Mattioli-Belmonte M, Vozzi G, Whulanza Y, Seggiani M, Fantauzzi V, Orsini G, Ahluwalia A (2011) Tuning polycaprolactone-carbon nanotube composites for bone tissue engineering scaffolds. Mater Sci Eng 32:152

    Article  Google Scholar 

  37. Pan L, Pei X, He R, Wan Q, Wang J (2012) Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Colloid Surf B 93:226

    Article  Google Scholar 

  38. Wei G, Ma PX (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757

    Article  Google Scholar 

  39. Sopyan I, Mel M, Ramesh S, Khalid K (2007) Porous hydroxyapatite for artificial bone applications. Sci Technolo Adv Mater 8:116–123

    Article  Google Scholar 

  40. Pallela R, Venkatesan J, Kim SK (2011) Polymer assisted isolation of hydroxyapatite from Thunnus obesus bone. Ceram Int 37:3489–3497

    Article  Google Scholar 

  41. White AA, Best SM, Kinloch IA (2007) Hydroxyapatite–carbon nanotube composites for biomedical applications: a review. Int J App Cer Tech 4:1–13

    Article  Google Scholar 

  42. Zhang H, Liu J, Yao Z, Yang J, Pan L, Chen Z (2009) Biomimetic mineralization of electrospun poly (lactic-co-glycolic acid)/multi-walled carbon nanotubes composite scaffolds in vitro. Mater Lett 63:2313–2316

    Article  Google Scholar 

  43. Tan Q, Zhang K, Gu S, Ren J (2009) Mineralization of surfactant functionalized multi-walled carbon nanotubes (MWNTs) to prepare hydroxyapatite/MWNTs nanohybrid. Appl Surf Sci 255:7036–7039

    Article  ADS  Google Scholar 

  44. Ciapetti G, Granchi D, Devescovi V, Baglio SR, Leonardi E, Martini D, Jurado MJ, Olalde B, Armentano I, Kenny JM (2012) Enhancing osteoconduction of PLLA-based nanocomposite scaffolds for bone regeneration using different biomimetic signals to MSCs. Int J Mol Sci 13:2439–2458

    Article  Google Scholar 

  45. Mei F, Zhong J, Yang X, Ouyang X, Zhang S, Hu X, Ma Q, Lu J, Ryu S, Deng X (2007) Improved biological characteristics of poly (L-lactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles. Biomacromolecules 8:3729–3735

    Article  Google Scholar 

  46. Liao S, Xu G, Wang W, Watari F, Cui F, Ramakrishna S, Chan CK (2007) Self-assembly of nano-hydroxyapatite on multi-walled carbon nanotubes. Acta Biomater 3:669–675

    Article  Google Scholar 

  47. Meng Y, Tang CY, Tsui CP, Chen DZJ (2008) Fabrication and characterization of needle-like nano-HA and HA/MWNT composites. Mater Sci Mater Med 19:75–81

    Article  Google Scholar 

  48. Van der Zande M, Walboomers XF, Brännvall M, Olalde B, Jurado MJ, Álava JI, Jansen JA (2010) Genetic profiling of osteoblast-like cells cultured on a novel bone reconstructive material, consisting of poly-l-lactide, carbon nanotubes and microhydroxyapatite, in the presence of bone morphogenetic protein-2. Acta Biomater 6:4352–4360

    Article  Google Scholar 

  49. Meng D, Ioannou J, Boccaccini ARJ (2009) Bioglass®-based scaffolds with carbon nanotube coating for bone tissue engineering. Mater Sci Mater Med 20:2139–2144

    Article  Google Scholar 

  50. Misra SK, Ohashi F, Valappil SP, Knowles JC, Roy I, Silva SRP, Salih V, Boccaccini AR (2010) Characterization of carbon nanotube (MWCNT) containing P (3HB)/bioactive glass composites for tissue engineering applications. Acta Biomater 6:735–742

    Article  Google Scholar 

  51. Meng D, Rath SN, Mordan N, Salih V, Kneser U, Boccaccini ARJ (2011) In vitro evaluation of 45S5 Bioglass®-derived glass-ceramic scaffolds coated with carbon nanotubes. Biomed Mater Res 99:435

    Article  Google Scholar 

  52. Brammer KS, Choi C, Frandsen CJ, Oh S, Johnston G, Jin S (2011) Comparative cell behavior on carbon coated TiO2 nanotube surfaces for Osteoblasts vs. Osteo-progenitor cells. Acta Biomater 7:2697

    Article  Google Scholar 

  53. Lewitus DY, Landers J, Branch JR, Smith KL, Callegari G, Kohn J, Neimark AV (2011) Biohybrid carbon nanotube/agarose fibers for neural tissue engineering. Adv Funct Mater 21:2624

    Article  Google Scholar 

  54. Bhattacharya M, Wutticharoenmongkol-Thitiwongsawet P, Hamamoto DT, Lee D, Cui T, Prasad HS, Ahmad M (2011) Bone formation on carbon nanotube composite. J Biomed Mater Res 96:75–82

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Marine Bioprocess Research Centre of the Marine Bio 21 Center funded by the Ministry of Land, Transport and Maritime, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se Kwon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Venkatesan, J., Kim, S.K. (2015). Carbon Nanotube for Bone Repair. In: Kar, K., Pandey, J., Rana, S. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45229-1_40

Download citation

Publish with us

Policies and ethics