Skip to main content

Application of Carbon Nanotubes for Resolving Issues and Challenges on Electrochemical Capacitors

  • Chapter
Handbook of Polymer Nanocomposites. Processing, Performance and Application

Abstract

In electrochemical capacitors electrode is the key factor to determine the energy density and power density; hence the selection of electrode materials is the most crucial part. The specific energy of commercial supercapacitors is limited to 5–6 Wh kg−1, whereas for batteries the lower limit is 35–40 Wh kg−1. In this chapter, the type of electrochemical capacitors, the storage principles, and the characteristics of composite electrode based on carbon nanotubes and carbon-based materials, transition metal oxides, and conducting polymers are briefly discussed. The composites combine the large pseudocapacitance with the fast charging/discharging double-layer capacitance and excellent mechanical properties of the carbon nanotubes. Most of the commercially available devices use carbon electrodes and organic electrolytes, and research efforts have been done to increase the specific capacitance of supercapacitor electrodes based on carbon nanotubes. Composite electrodes based on carbon nanotubes exhibit excellent electronic conductivity, electrochemical charge-storage properties, fast charge/discharge switching, and specific power making them promising electrode materials for high-power supercapacitors due to their unique properties of carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publisher, New York

    Google Scholar 

  2. Burke A (2000) J Power Sources 91:37

    Google Scholar 

  3. Winter M, Brodd RJ (2004) Chem Rev 104:4245

    Google Scholar 

  4. Miller JR, Simon P (2008) Science 321:651

    Google Scholar 

  5. Simon P, Gogotsi Y (2008) Nat Mater 7:845

    ADS  Google Scholar 

  6. Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS (2009) Int J Hydrogen Energy 34:4889

    Google Scholar 

  7. Zheng JP (2005) J Electrochem Soc 152:A1864

    Google Scholar 

  8. Miller JR (2006) Electrochim Acta 52:1703

    Google Scholar 

  9. Yuan CZ, Gao B, Zhang XG (2007) J Power Sources 173:606

    Google Scholar 

  10. Fan Z, Chen JH, Cui KZ, Sun F, Xu Y, Kuang YF (2007) Electrochim Acta 52:2959

    Google Scholar 

  11. Kim IH, Kim KB (2006) J Electrochem Soc 153:A383

    ADS  Google Scholar 

  12. Lao ZJ, Konstantinov K, Tournaire Y, Ng SH, Wang GX, Liu HK (2006) J Power Sources 162:1451

    Google Scholar 

  13. Toupin M, Brousse T, Belanger D (2002) Chem Mater 14:3946

    Google Scholar 

  14. Wu MS, Huang YA, Yang CH, Jow HH (2007) Int J Hydrogen Energy 32:4153

    Google Scholar 

  15. Wu NL (2002) Mater Chem Phys 75:6

    Google Scholar 

  16. Yang XH, Wang YG, Xiong HM, Xia YY (2007) Electrochim Acta 53:752

    Google Scholar 

  17. Kotz R, Carlen M (2000) Electrochim Acta 45:2483

    Google Scholar 

  18. Frackowiak E, Beguin F (2001) Carbon 39:937

    Google Scholar 

  19. Pandolfo AG, Hollenkamp AF (2006) J Power Sources 157:11

    Google Scholar 

  20. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520

    Google Scholar 

  21. Peng C, Zhang S, Jewell D, Chen GZ (2008) Prog Nat Sci 18:777

    Google Scholar 

  22. Becker HL (1957) US Patent 2,800,616

    Google Scholar 

  23. Pierson HO (1993) Handbook of carbon, graphite, diamond and fullerenes. Noyes Publications, Park Ridge

    Google Scholar 

  24. Fitzer E, Köchling KH, Boehm HP, Marsh H (1995) Pure Appl Chem 67:473

    Google Scholar 

  25. McEnaney B (1999) Structure and bonding in carbon materials. In: Burchell TD (ed) Carbon materials for advanced technologies. Pergamon/Elsevier, Amsterdam, p 1

    Google Scholar 

  26. Inagaki M, Radovic LR (2002) Carbon 40:2263

    Google Scholar 

  27. Bockris JO’M, Kita H (1961) J Electrochem Soc 108:676

    Google Scholar 

  28. Engelsman K, Lorenz WJ, Schmidt E (1980) J Electroanal Chem 114:1

    Google Scholar 

  29. Rudge A, Raistrick I, Gottesfeld S, Ferraris JP (1994) Electrochim Acta 39:273

    Google Scholar 

  30. Andreas HA, Conway BE (2006) Electrochim Acta 28:6510

    Google Scholar 

  31. Li HF, Xi H, Zhu SM, Wen ZY, Wang RD (2006) Micropor Mesopor Mater 96:357

    Google Scholar 

  32. Nakamura M, Nakanishi M, Yamamoto K (1996) J Power Sources 60:225

    Google Scholar 

  33. Kinoshita K (1988) Carbon: electrochemical and physiochemical properties. Wiley-Interscience, New York

    Google Scholar 

  34. An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Adv Funct Mater 11:387

    Google Scholar 

  35. An KH, Jeon KK, Heo JK, Lim SC, Bae DJ, Lee YH (2002) J Electrochem Soc 149:A1058

    Google Scholar 

  36. Lee YH, An KH, Lim SC, Kim WS, Jeong HJ, Doh CH, Moon SI (2002) New Diam Front Carbon Technol 12:209

    Google Scholar 

  37. McEnaney B (2002) Energy storage in carbon materials, IV International Conference Catalysis and Adsorption in Fuel Processing and Environmental Protection, Kudowa Zdrój, Poland, Prace Naukowe Insttutu Chemii i Technologii Nafty I Wegla. Politechniki Wroclawskiej, Konferencje 10(57):s.11

    Google Scholar 

  38. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787

    ADS  Google Scholar 

  39. Frackowiak E, Delpeux S, Jurewicz K, Szostak K, Cazorla-Amoros D, B’eguin F (2002) Chem Phys Lett 361:35

    ADS  Google Scholar 

  40. Frackowiak E, Jurewicz K, Szostak K, Delpeux S, B’eguin F (2002) Fuel Process Tech 77/78:213

    Google Scholar 

  41. Brezesinski T, Wang J, Tolbert SH, Dunn BJ (2011) Sol–gel Sci Technol 57:330

    Google Scholar 

  42. Sun Z, Liu Z, Han B, Miao S, Du J, Miao Z (2006) Carbon 44:888

    Google Scholar 

  43. Tao B, Zhang J, Miao F, Hui S, Wan L (2010) Electrochim Acta 55:5258

    Google Scholar 

  44. Byon HR, Lee SW, Chen S, Hammond PT, Yang SH (2011) Carbon 49:457

    Google Scholar 

  45. Chen YM, Cai JH, Huang YS, Lee KY, Tsai DS (2011) Nanotechnology 22:115706

    ADS  Google Scholar 

  46. Lee JY, An KH, Heo JK, Lee YH (2003) J Phys Chem B 107:8812 C

    Google Scholar 

  47. Zhou CF, Kumar S, Doyle CD, Tour JM (2005) Chem Mater 17:1997

    Google Scholar 

  48. Vidotti M, Salvador RP, Ponzio EA, De-Torresi SIC (2007) J Nanosci Nanotech 7:3221

    Google Scholar 

  49. Vidottia M, Silva MR, Salvador RP, De-Torresi SIC, Dall’Antonia LH (2008) Electrochim Acta 53:4030

    Google Scholar 

  50. Zheng JP, Cygan PJ, Jow TR (1995) J Electrochem Soc 142:2699

    Google Scholar 

  51. Zheng JP, Jow TR (1996) J Power Sources 62:155

    Google Scholar 

  52. Lee BJ, Sivakkumar SR, Ko JM, Kim JH, Kim DY (2006) J Power Sources 168:546

    Google Scholar 

  53. Wen J, Zhou Z (2006) Mater Chem Phys 98:442

    Google Scholar 

  54. Kim IH, Kim JH, Lee YH, Kim KB (2005) J Electrochem Soc 152:A2170

    Google Scholar 

  55. Lee JK, Pathan HM, Jung KD, Joo OS (2006) J Power Sources 159:1527

    Google Scholar 

  56. Park JH, Ko JM, Park OO (2003) J Electrochem Soc 150:A864

    Google Scholar 

  57. Liu X, Huber TA, Kopac MC, Pickup PG (2009) Electrochim Acta 54:7141

    Google Scholar 

  58. Seo MK, Saouab A, Park SJ (2010) Mater Sci Eng B 167:65

    Google Scholar 

  59. Yan S, Qu P, Wang H, Tian T, Xiao Z (2008) Mater Res Bullet 43:2818

    Google Scholar 

  60. Yan S, Wang H, Qu P, Zhang Y, Xiao Z (2009) Synth Met 159:158

    Google Scholar 

  61. Kim BC, Wallace GG, Yoon YI, Ko JM, Too CO (2009) Synth Met 159:1389

    Google Scholar 

  62. McKeown DA, Hagans PL, Carette LPL, Russell AE, Swider KE, Rolison DR (1999) J Phys Chem B 103:4825

    Google Scholar 

  63. Dmowski W, Egami T, Swider-Lyons KE, Love CT, Rolison DR (2002) J Phys Chem B 106:12677

    Google Scholar 

  64. Qin X, Durbach S, Wu GT (2004) Carbon 42:451

    Google Scholar 

  65. Arabale G, Wagh D, Kulkarni M, Mulla IS, Vernerkar SP, Vijayamohanan K, Rao AM (2003) Chem Phys Lett 376:207

    ADS  Google Scholar 

  66. Hsieh TF, Chuang CC, Chen WJ, Huang JH, Chen WT, Shu CM (2012) Carbon 50:1740

    Google Scholar 

  67. Deng GH, Xiao X, Chen JH, Zeng XB, He DL, Kuang YF (2005) Carbon 43:1557

    Google Scholar 

  68. Chen Y, Liu C, Li F, Cheng HM (2005) J Alloys Compd 397:282 [79]

    Google Scholar 

  69. Subramanian V, Zhu HW, Wei BQ (2006) Electrochem Commun 8:827

    Google Scholar 

  70. Taguchi A, Inoue S, Akamaru S, Hara M, Watanabe K, Abe T (2006) J Alloys Compd 414:137

    Google Scholar 

  71. Wang HE, Lu Z, Qian D, Fang S, Zhang J (2008) J Alloys Compd 466:250

    Google Scholar 

  72. Adelkhani H, Ghaemi M (2010) J Alloys Compd 493:175

    Google Scholar 

  73. Gong K, Yu P, Su L, Xiong S, Mao L (2007) J Phys Chem C 111:1882

    Google Scholar 

  74. Fan Z, Chen J, Zhang B, Sun F, Liu B, Kuang Y (2008) Mater Res Bull 43:2085

    Google Scholar 

  75. Li J, Yang Q, Zhitomirsky I (2008) J Power Sources 185:1569

    Google Scholar 

  76. Ma SB, Nam KW, Yoon WS, Yang XQ, Ahn KY, Ohd KH, Kim KB (2008) J Power Sources 178:483

    Google Scholar 

  77. Yue H, Huang X, Yang Y (2008) Mater Lett 62:3388

    Google Scholar 

  78. Bordjiba T, Bélanger D (2009) J Electrochem Soc 156:A378

    Google Scholar 

  79. Chou SL, Wang JZ, Chew SY, Liu HK, Dou SX (2008) Electrochem Commun 10:1724

    Google Scholar 

  80. Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2009) Nano Lett 9:1002

    ADS  Google Scholar 

  81. Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Nano Lett 9:2664

    ADS  Google Scholar 

  82. Zhou Y, He B, Zhang F, Li H (2004) J Solid State Electrochem 8:482

    Google Scholar 

  83. Raymundo-Pinero E, Khomenko V, Frackowiak E, Beguin F (2005) J Electrochem Soc 152:A229

    Google Scholar 

  84. Fan Z, Chen J, Wang M, Cui K, Zhou H, Kuang Y (2006) Diam Relat Mater 15:1478

    ADS  Google Scholar 

  85. Li J, Zhitomirsky I (2009) J Mater Process Tech 209:3452

    Google Scholar 

  86. Nam KW, Lee CW, Yang XQ, Cho BW, Yoon WS, Kim KB (2009) J Power Sources 188:323

    Google Scholar 

  87. Lin CK, Wu CH, Tsai CY, Chen CY, Wang SC (2010) Surf Coat Tech 205:1595

    Google Scholar 

  88. Amade R, Jover E, Caglar B, Mutlu T, Bertran E (2011) J Power Sources 196:5779

    Google Scholar 

  89. Wang Y, Liu H, Sun X, Zhitomirsky I (2009) Scr Mater 61:1079

    Google Scholar 

  90. Lin YP, Tsai CB, Ho WH, Wu NL (2011) Mater Chem Phys 130:367

    Google Scholar 

  91. Tang W, Hou YY, Wang XJ, Bai Y, Zhu YS, Sun H, Yue YB, Wu YP, Zhu K, Holze R (2012) J Power Sources 197:330

    Google Scholar 

  92. Teng F, Santhanagopalan S, Wang Y, Meng DD (2010) J Alloys Compd 499:259

    Google Scholar 

  93. Li X, Wei B (2012) Nano Energy 1:479

    Google Scholar 

  94. Fan Z, Xie M, Jin X, Yan J, Wei T (2011) J Electroanal Chem 659:191

    Google Scholar 

  95. Yan J, Fan Z, Wei T, Cheng J, Shao B, Wang K, Song L, Zhang M (2009) J Power Sources 194:1202

    Google Scholar 

  96. Kang YJ, Kim B, Chung H, Kim W (2010) Synth Met 160:2510

    Google Scholar 

  97. Zhang J, Wang Y, Zang J, Xin G, Yuan Y, Qu X (2012) Carbon 50:5196

    Google Scholar 

  98. Sivakkumar SR, Ko JM, Kim DY, Kim BC, Wallace GG (2007) Electrochim Acta 52:7377

    Google Scholar 

  99. Li Q, Liu J, Zou J, Chunder A, Chen Y, Zhai L (2011) J Power Sources 196:565

    Google Scholar 

  100. Wang H, Peng C, Peng F, Yu H, Yang J (2011) Mater Sci Eng B 176:1073

    Google Scholar 

  101. Li Q, Anderson JM, Chen Y, Zhai L (2012) Electrochim Acta 59:548

    Google Scholar 

  102. Ko JM, Kim KM (2009) Mater Chem Phys 114:837

    Google Scholar 

  103. Zheng H, Wang J, Jia Y, Ma C (2012) J Power Sources 216:508

    Google Scholar 

  104. Zheng H, Tang F, Jia Y, Wang L, Chen Y, Lim M, Zhang L, Lu GM (2009) Carbon 47:1534

    Google Scholar 

  105. Ma SB, Nam KW, Yoon WS, Yang XQ, Ahn KY, Oh KH, Kim KB (2007) Electrochem Commun 9:2807

    Google Scholar 

  106. Wang JG, Yang Y, Huang ZH, Kang F (2012) Electrochim Acta 75:213

    Google Scholar 

  107. Nam KW, Kim KB (2002) J Electrochem Soc 149:A346

    Google Scholar 

  108. Cheng J, Gao GP, Yang YS (2006) J Power Sources 159:734

    Google Scholar 

  109. Nelson PA, Owen JR (2003) J Electrochem Soc 150:A1313

    Google Scholar 

  110. Zhang FB, Zhou YK, Li HL (2004) Mater Chem Phys 83:260

    Google Scholar 

  111. Wang YG, Xia YY (2006) Electrochim Acta 51:3223

    Google Scholar 

  112. Nam KW, Kim KH, Lee ES, Yoon WS, Yang XQ, Kim KB (2008) J Power Sources 182:642

    Google Scholar 

  113. Chang HY, Chang HC, Lee KY (2013) Vacuum 87:164

    Google Scholar 

  114. Lee JY, Liang K, An KH, Lee YH (2005) Synth Met 150:153

    Google Scholar 

  115. Hwang SG, Ryu SH, Yun SR, Ko JM, Kim KM, Ryu KS (2011) Mater Chem Phys 130:507

    Google Scholar 

  116. Kim SJ, Park GJ, Kim BC, Chung JK, Wallace GG, Park SY (2012) Synth Met 161:2641

    Google Scholar 

  117. Zhang Y, Sun X, Pan L, Li H, Sun Z, Sun C, Tay BK (2009) J Alloys Compd 480:L17

    Google Scholar 

  118. Zhang Y, Sun X, Pan L, Li H, Sun Z, Sun C, Tay BK (2009) Solid State Ion 180:1525

    Google Scholar 

  119. Kim DW, Rhee KY, Park SJ (2012) J Alloys Compd 530:6

    Google Scholar 

  120. Li ZJ, Chang TX, Yun GQ, Jia Y (2012) Powder Technol 224:306

    Google Scholar 

  121. Jayalakshmi M, Rao MM, Venugopal N, Kim KB (2007) J Power Sources 166:578

    Google Scholar 

  122. Lang J, Yan X, Xue Q (2011) J Power Sources 196:7841

    Google Scholar 

  123. Battumur T, Ambade SB, Ambade RB, Pokharel P, Lee DS, Han SH, Lee W, Lee SH (2013) Curr Appl Phys 13:196–204

    ADS  Google Scholar 

  124. Shakir I, Shahid M, Cherevko S, Chung CH, Kang DJ (2011) Electrochim Acta 58:76

    Google Scholar 

  125. Bolto BA, McNeill R, Weiss DE (1963) Aust J Chem 16:1090

    Google Scholar 

  126. Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, McDiarmid AG (1977) Phys Rev Lett 39:1098

    ADS  Google Scholar 

  127. Boara G, Sparpaglione M (1995) Synth Met 72:135

    Google Scholar 

  128. Morvant MC, Reynolds JR (1998) Synth Met 92:57

    Google Scholar 

  129. Hung S, Wen T, Gopalan A (2002) Mater Lett 55:165

    Google Scholar 

  130. Noh KA, Kim DW, Jin CS, Shin KH, Kim JH, Ko JM (2003) J Power Sources 124:593

    Google Scholar 

  131. Lota K, Khomenko V, Frackowiak E (2004) J Phys Chem Solids 65:295

    ADS  Google Scholar 

  132. Gupta V, Miura N (2006) Mater Lett 60:1466

    Google Scholar 

  133. Fan LZ, Maier J (2006) Electrochem Commun 8:937

    Google Scholar 

  134. Xu Y, Wang J, Sun W, Wang S (2006) J Power Sources 159:370

    Google Scholar 

  135. Chen WC, Wen TC, Teng HS (2003) Electrochim Acta 48:641

    Google Scholar 

  136. Laforgue A, Simon P, Fauvarque JF, Sarrau JF, Lailler P (2001) J Electrochem Soc 148:A1130

    Google Scholar 

  137. Laforgue A, Simon P, Fauvarque JF, Mastragostino M, Sovai F, Sarrau JF, Lailler P, Conte M, Rossi E, Saguatti S (2003) J Electrochem Soc 150:A645

    Google Scholar 

  138. Feast WJ (1986) Synthesis of conducting polymers. In: Skotheim TA (ed) Handbook of conducting polymers, vol 1. Marcel Dekker Inc, New York, pp 1–43, 981

    Google Scholar 

  139. Nalawa HS, Dalton LR, Schmidt WF, Rabe JG (1985) Polym Commun 27:240

    Google Scholar 

  140. Burke A (2007) Electrochim Acta 53:1083

    Google Scholar 

  141. Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F (2006) J Power Sources 153:413

    Google Scholar 

  142. Deng MG, Yang BC, Hu YD (2005) J Mater Sci 40:5021

    ADS  Google Scholar 

  143. Sivakkumar SR, Kim WJ, Choi JA, MacFarlane DR, Forsyth M, Kim DW (2007) J Power Sources 171:1062

    Google Scholar 

  144. Zhou Y, Qin ZY, Li L, Zhang Y, Wei YL, Wang LF, Zhu MF (2010) Electrochim Acta 55:3904

    Google Scholar 

  145. Meng C, Liu C, Fan S (2009) Electrochem Commun 11:186

    Google Scholar 

  146. Lee H, Kim H, Cho MS, Choi J, Lee Y (2011) Electrochim Acta 56:7460

    Google Scholar 

  147. Mi H, Zhang X, Xu Y, Xiao F (2010) Appl Surf Sci 256:2284

    ADS  Google Scholar 

  148. Ju YW, Choi GR, Jung HR, Lee WJ (2008) Electrochim Acta 53:5796

    Google Scholar 

  149. Lu X, Dou H, Yuan C, Yang S, Hao L, Zhang F, Shen L, Zhang L, Zhang X (2012) J Power Sources 197:319

    Google Scholar 

  150. Sharma RK, Karakoti A, Seal S, Zhai L (2010) J Power Sources 195:1256

    Google Scholar 

  151. Liu R, Cho S, Lee SB (2008) Nanotechnology 19:215710

    ADS  Google Scholar 

  152. Downes C, Nugent J, Ajayan PM, Duquette C, Santhanam KSV (1999) Adv Mater 11:1028

    Google Scholar 

  153. Chen JH, Huang ZP, Wang DZ, Yang SX, Li WZ, Wen JG, Ren ZF (2001) Synth Met 125:289

    Google Scholar 

  154. Lin X, Xu Y (2008) Electrochim Acta 53:4990

    Google Scholar 

  155. Fanga Y, Liua J, Yud DJ, Wickstedd JP, Kalkane K, Topale CO, Flandersb BN, Wuc J, Li J (2010) J Power Sources 195:674

    Google Scholar 

  156. Hu Y, Zhao Y, Li Y, Li H, Shao H, Qu L (2012) Electrochim Acta 66:279

    Google Scholar 

  157. Gupta V, Miura N (2006) J Power Sources 157:616

    Google Scholar 

  158. Gupta V, Miura N (2006) Electrochim Acta 52:1721

    Google Scholar 

  159. Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Electrochem Commun 10:1056

    Google Scholar 

  160. Zhang J, Kong LB, Wang B, Luo YC, Kang L (2009) Synth Met 159:260

    Google Scholar 

  161. Nuria FA, Martti K, Viera S, Ursula DW, Siegmar R (2004) Diam Relat Mater 13:256

    Google Scholar 

  162. Gao M, Huang S, Dai L, Wallace G, Gao R, Wang Z (2000) Angew Chem 39:3664

    Google Scholar 

  163. Baibarac M, Baltog I, Godon C, Lefrant S, Chauvet O (2004) Carbon 42:3143

    Google Scholar 

  164. Guo M, Chen J, Li J, Tao B, Yao S (2005) Anal Chim Acta 532:71

    Google Scholar 

  165. Shaffer MSP, Fan X, Windle AH (1998) Carbon 36:1603

    Google Scholar 

  166. Sandler J, Shaffer M, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Polymer 40:5967

    Google Scholar 

  167. Shaffer MSP, Windle AH (1999) Adv Mater 11:937

    Google Scholar 

  168. Chen GZ, Shaffer MSP, Coleby D, Dixon G, Zhou W, Fray DJ, Windle AH (2000) Adv Mater 12:522

    Google Scholar 

  169. Frackowiak F, Metenier K, Bertagna V, B’eguin F (2000) Appl Phys Lett 77:2421

    ADS  Google Scholar 

  170. An KH, Jeon KK, Kim WS, Park YS, Lim SC, Bae DJ, Lee YH (2001) J Korean Phys Soc 39:S511

    Google Scholar 

  171. Inagaki M, Konno H, Tanaike O (2010) J Power Sources 195:7880

    Google Scholar 

  172. Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) Appl Phys Lett 70:1480

    ADS  Google Scholar 

  173. Jiang Q, Qu MZ, Zhou GM, Zhang BL, Yu ZL (2002) Mater Lett 57:988

    Google Scholar 

  174. Jiang Y, Lin L (2012) Sens Actuat A Phys doi:10.1016/j.sna.2012.04.012

    Google Scholar 

  175. Frehill F, Vos JG, Benrezzak S, Koos AA, Konya Z, Ruther MG, Blau WJ, Fonseca A, Nagy JB, Biro LP, Minett AI, Panhuis M (2002) J Am Chem Soc 124:13694

    Google Scholar 

  176. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) J Am Chem Soc 124:760

    Google Scholar 

  177. Fu K, Li HP, Zhou B, Kitaygorodskiy A, Allard LF, Sun YP (2004) J Am Chem Soc 126:4669

    Google Scholar 

  178. Paiva MC, Zhou B, Fernando KAS, Lin Y, Kennedy JM, Sun YP (2004) Carbon 42:2849

    Google Scholar 

  179. Masarapu C, Zeng HF, Hung KH, Wei B (2009) ACS Nano 3:2199

    Google Scholar 

  180. Moore JJ, Kang JH, Wen JZ (2012) Mater Chem Phys 134:68

    Google Scholar 

  181. Emmenegger C, Mauron P, Züttel A, Nützenadel C, Schneuwly A, Gallay R, Schlapbach L (2000) Appl Surf Sci 162/163:452

    ADS  Google Scholar 

  182. Wang G, Ling Y, Qian F, Yang X, Liu XX, Li Y (2011) J Power Sources 196:5209

    Google Scholar 

  183. Pumera M (2011) Energy Environ Sci 4:668

    Google Scholar 

  184. Buglione L, Pumera M (2012) Electrochem Commun 17:45

    Google Scholar 

  185. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 8:3498

    ADS  Google Scholar 

  186. Qiu L, Yang X, Gou X, Yang W, Ma ZF, Wallace GG, Li D (2010) Chem Eur J 16:10653

    Google Scholar 

  187. Kim KS, Park SJ (2011) Electrochim Acta 56:1629

    Google Scholar 

  188. Lu T, Pan L, Li H, Nie C, Zhu M, Sun Z (2011) J Electroanal Chem 661:270

    Google Scholar 

  189. Yang SY, Chang KH, Tien HW, Lee YF, Li SM, Wang YS, Wang JY, Ma CCM, Hu CC (2011) J Mater Chem 21:2374

    Google Scholar 

  190. Rakhi RB, Alshareef HN (2011) J Power Sources 196:8858

    Google Scholar 

  191. Lu X, Zhang F, Dou H, Yuan C, Yang S, Hao L, Shen L, Zhang L, Zhang X (2012) Electrochim Acta 69:160

    Google Scholar 

  192. Yan J, Wei T, Fan Z, Qian W, Zhang M, Shen X, Wei F (2010) J Power Sources 195:3041

    Google Scholar 

  193. Yu AP, Roes I, Davies A, Chen ZW (2010) Appl Phys Lett 96:253105

    ADS  Google Scholar 

  194. Yang XW, Zhu JW, Qiu L, Li D (2011) Adv Mater 23:2833

    ADS  Google Scholar 

  195. Huang ZD, Zhang B, Liang R, Zheng QB, Oh SW, Lin XY, Yousefi N, Kim JK (2012) Carbon 50:4239

    Google Scholar 

  196. Lu X, Dou H, Gao B, Yuan C, Yang S, Hao L, Shen L, Zhang X (2011) Electrochim Acta 56:5115

    Google Scholar 

  197. Endo M, Maeda T, Takeda T, Kim YJ, Koshiba K, Hara H et al (2001) J Electrochem Soc 148:A910

    Google Scholar 

  198. Endo M, Kim YJ, Maeda T, Koshiba K, Katayama K, Dresselhaus MS (2001) J Mater Res 16:3402

    ADS  Google Scholar 

  199. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) Angew Chem Int Ed 47:373

    Google Scholar 

  200. Korenblit Y, Rose M, Kockrick E, Borchardt L, Kvit A, Kaskel S, Yushin G (2010) Am Chem Soc Nano 4:1337

    Google Scholar 

  201. Miller JR, Outlaw RA, Holloway BC (2010) Science 329:1637

    ADS  Google Scholar 

  202. Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna PL, Simon P (2010) Nat Nano 5:651

    Google Scholar 

  203. Lei ZB, Christov N, Zhang LL, Zhao XS (2011) J Mater Chem 21:2274

    Google Scholar 

  204. Zheng C, Qian W, Wei F (2012) Mater Sci Eng B 177:1138

    Google Scholar 

  205. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Science 313:1760

    ADS  Google Scholar 

  206. Li QY, Li ZS, Lin L, Wang XY, Wang YF, Zhang CH, Wang HQ (2010) Chem Eng J 156:500

    Google Scholar 

  207. Lei Z, Bai D, Zhao XS (2012) Microporous Mesoporous Mater 147:86

    Google Scholar 

  208. Yi B, Chen X, Guo K, Xu L, Chen C, Yan H, Chen J (2011) Mater Res Bull 46:2168

    Google Scholar 

  209. Bordjiba T, Mohamedi M, Dao LH, Aissa B, El Khakani MA (2007) Chem Phys Lett 441:88

    ADS  Google Scholar 

  210. Kim B, Chung H, Kim W (2010) J Phys Chem C 114:15223

    Google Scholar 

  211. Portet C, Yushin G, Gogotsi Y (2007) Carbon 45:2511

    Google Scholar 

  212. Salitra G, Soffer A, Eliad L, Cohen Y, Aurbach D (2000) J Electrochem Soc 147:2486

    Google Scholar 

  213. Chang KH, Hu CC (2006) Appl Phys Lett 88:193102

    ADS  Google Scholar 

  214. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qinc LC (2011) Phys Chem Chem Phys 13:17615

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavan Prasanth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prasanth, R., Shankar, R., Gupta, N., Rana, S., Ahn, JH. (2015). Application of Carbon Nanotubes for Resolving Issues and Challenges on Electrochemical Capacitors. In: Kar, K., Pandey, J., Rana, S. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45229-1_32

Download citation

Publish with us

Policies and ethics