Skip to main content

Abstract

This chapter is focused on the mechanical behavior of plasticized starch-based nanocomposites reinforced with carbon nanotubes. It starts with a general introduction about the most important materials that involve those nanocomposites, such as starch and multiwalled carbon nanotubes. Then, a presentation of the most relevant published results on the mechanical properties of starch matrix and starch–carbon nanotubes composites is reported. Factors affecting these properties such as crystallinity, water content and plasticizers are discussed. The mechanical behavior of these composites is discussed in separate sections regarding tensile properties, impact behavior, and viscoelastic behavior as well as the most important influencing factors on these properties. Finally, concluding remarks and future trends on the improvement of the mechanical response of starch–carbon nanotubes composites are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katz HS, Milewsky JV (1978) Handbook of fillers and reinforcements for plastics. Van Nostrand Reinhold/Springer, London, p 652

    Google Scholar 

  2. Shogren RL, Lawton JW, Doane WM, Tiefenbacher KF (1998) Structure and morphology of baked starch foams. Polymer 39:6649

    Google Scholar 

  3. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84

    Google Scholar 

  4. Talja RA, Helén H, Roos YH, Jouppila K (2007) Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydr Polym 67:288

    Google Scholar 

  5. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B Eng 39:933

    Google Scholar 

  6. Siqueira G, Bras J, Dufresne A (2009) Walled carbon nanotubes. Biomacromolecules 10:425

    Google Scholar 

  7. Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K (2003) Physical interactions at carbon nanotube–polymer interface. Polymer 44:7757

    Google Scholar 

  8. Liu H, Xie F, Yu L, Chen L, Li L (2009) Thermal processing of starch-based polymers. Prog Polym Sci 34:1348

    Google Scholar 

  9. Schwach E, Avérous L (2004) Tarch-based biodegradable blends: Morphology and interface properties. Polym Int 53:2115

    Google Scholar 

  10. Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: A review. Biomacromolecules 9:1494

    Google Scholar 

  11. Alvarez V, Vazquez A (2006) Influence of fibre chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fibre composites. Compos Part A 37:1672

    Google Scholar 

  12. Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557

    Google Scholar 

  13. Famá L, Gerschenson L, Goyanes S (2009) Starch-vegetable fibre composites to protect food products. Carbohydr Polym 75:230

    Google Scholar 

  14. Famá LM, Pettarin V, Goyanes SN, Bernal CR (2011) Starch/multi-walled carbon nanotubes composites with improved mechanical properties. Carbohydr Polym 83:1226

    Google Scholar 

  15. Famá L, Gañán Rojo PG, Bernal C, Goyanes S (2012) Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus. Carbohydr Polym 87:1989

    Google Scholar 

  16. Wisse E, Govaert LE, Meijer HEH, Meijer EW (2006) Unusual tuning of mechanical properties of thermoplastic elastomers using supramolecular fillers. Macromolecules 39:7425

    ADS  Google Scholar 

  17. So HH, Cho JW, Sahoo NG (2007) Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites. Eur Polym J 43:3750

    Google Scholar 

  18. Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu D, Zhu S (1999) Study on poly(methyl methacrylate) carbon nanotube composites. Mater Sci Eng A 271:395

    Google Scholar 

  19. Ruan SL, Gao P, Yang XG, Yu TX (2003) Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer 44:5643

    Google Scholar 

  20. Mali S, Grossmann E, García MA, Martino MN, Zaritzky NE (2006) Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. Glass 75:453

    Google Scholar 

  21. Zilli D, Goyanes S, Escobar MM, Chiliotte C, Bekeris V, Cukierman AL, Rubiolo GH (2007) Comparative analysis of electric, magnetic, and mechanical properties of epoxy matrix composites with different contents of multiple walled carbon nanotubes. Polym Compos 28:612

    Google Scholar 

  22. De Falco A, Marzocca AJ, Corcuera MA, Ecesiza A, Mondragon I, Rubiolo GH, Goyanes S (2009) Accelerator adsorption onto carbon nanotubes surface affects the vulcanization process of styrene–butadiene rubber composites. J Appl Polym Sci 113:2851

    Google Scholar 

  23. De Falco A, Fascio M, Lamanna M, Corcuera M, Mondragon I, Rubiolo G, D’Accorso N, Goyanes S (2009) Thermal treatment of the carbon nanotubes and their functionalization with styrene. Physi B Condens Matter 404:2780

    ADS  Google Scholar 

  24. Jin L, Bower C, Zhou O (1998) Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl Phys Lett 73:1197

    ADS  Google Scholar 

  25. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load tranfer and deformation mechanism in carbon nanotube- polystyrene composites. Appl Phys Lett 76:2868

    ADS  Google Scholar 

  26. Wang Y, Wu J, Wei F (2003) A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio. Carbon 41:2939

    Google Scholar 

  27. Potschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247

    Google Scholar 

  28. Cipriano BH, Kashiwagi T, Raghavan SR, Yang Y, Grulke EA, Yamamoto K, Shields JR, Douglas JF (2007) Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer 48:6086

    Google Scholar 

  29. Huang XY, Jiang PK, Kim C, Liu F, Yin Y (2009) Morphological,electrical, electromagnetic interference (EMI) shielding, and tribological properties of functionalized multi-walled carbon nanotube/poly-methyl methacrylate (PMMA) composites. Eur Polym J 45:377

    Google Scholar 

  30. Zobel HF (1994) In: Alexander RJ, Zobel HF (eds) Starch granule structure. The American Association of cereal chemists. Springer, St Saint Paul, p 1

    Google Scholar 

  31. Zavareze E, Guerra Días A (2011) Impact of heat-moisture treatment and annealing in starches: A review. Carbohydr Polym 83:317

    Google Scholar 

  32. Hoover R, Hughes T, Chung HJ, Liu Q (2010) Composition, molecular structure, properties, and modification of pulse starches: A review. Food Res Int 43:399

    Google Scholar 

  33. Van der Maarel MJEC, Van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starchconvertingenzymes of the α-amylase family. J Biotechnol 94:137

    Google Scholar 

  34. You S, Stevenson SG, Izydorczyk MS, Preston KR (2002) Separation and characterization of barley starch polymers by a flow field-flow fractionation technique in combination with multiangle light scattering and differential refractive index detection. Cereal Chem 79:624

    Google Scholar 

  35. Gallant DJ, Bouchet B, Baldwin PM (1997) Microscopy of starch: Evidence of a new level of granule organization. Carbohydr Polym 32:177

    Google Scholar 

  36. Cuq JL, Aymard C, Cheftel C (1977) Effects of hypochlorite treatments on a methionyl peptide. Food Chem 2:309

    Google Scholar 

  37. Lelievre J (1974) Starch gelatinization. J Appl Polym Sci 18:293

    Google Scholar 

  38. Atwell WA, Hood LF, Lineback DR, Varriano-Marston E, Zobel HF (1988) The terminology and methodology associated with basic starch phenomena. Cereal Food World 33:306

    Google Scholar 

  39. Donovan JW (1979) Phase transitions of the starch-water system. Biopolymers 18:263

    Google Scholar 

  40. Hoover R, Hadziyev D (1981) Characterization of potato starch and its monoglyceride complexes. Starch 33:290

    Google Scholar 

  41. Jenkins PJ, Donald AM (1998) Gelatinization of starch: a combined SAXS/WAXS/DSC and SANS study. Carbohydr Res 308:133

    Google Scholar 

  42. Waigh TA, Gidley MJ, Komanshek BU, Donald AM (2000) The phase transformations in starch during gelatinisation: a liquid crystalline approach. Carbohydr Res 328:165

    Google Scholar 

  43. Kalichevsky MT, Ring SG (1987) Incompatibility of amylose and amylopectin in aqueous solution. Carbohyd Res 162:323

    Google Scholar 

  44. Keetels CJAM, Van Vliet T, Walstra P (1996) Elation and retrogradation of concentrated starch system: 2. Retrogradation. Food Hydrocoll 10:355

    Google Scholar 

  45. Doublier JL, Llamas GA (1993) In: Dickinson E, Walstra P (eds) A rheological description of amylose-amylopectin mixtures. Food colloids and polymers: stability and mechanical properties. Royal Society of Chemistry, Cambridge, p 138

    Google Scholar 

  46. Xie F, Yu L, Su B, Liu P, Wang J, Liu H, Chen L (2009) Rheological properties of starches with different amylose/amylopectin ratios. J Cereal Sci 49:371

    Google Scholar 

  47. Olkku J, Rha C (1978) Gelatinization of starch and wheat flour starch–a review. Food Chem 32:293

    Google Scholar 

  48. Lim MH, Wu HB, Reid DS (2000) The effect of starch gelatinization and solute concentrations on T g of starch model system. J Sci Food Agric 80:1757

    Google Scholar 

  49. Tester RF, Debon SJJ (2000) Annealing of starch – a review. Int J Biol Macromol 27:1

    Google Scholar 

  50. Famá L, Goyanes S, Gerschenson L (2007) Influence of storage time at room temperature on the physicochemical properties of cassava starch films. Carbohydr Polym 70:265

    Google Scholar 

  51. Famá L (2008) Estudio de las propiedades fÚsico-quÚmicas de recubrimientos compuestos comestibles y biodegradables. Tesis de Doctorado en Ciencias Exactas y Naturales. Área Física. FCEyN. UBA

    Google Scholar 

  52. Chang P, Chea PB, Seow CC (2000) Plasticizing-antiplasticizing effects of water on physical properties of tapioca starch films in the glassy state. J Food Sci 65:445

    Google Scholar 

  53. Lan H, Hoover R, Jayakody L, Liu Q, Donner E, Baga M, Asare EK, Hucl P, Chibbar RN (2008) Impact of annealing on the molecular structure and physicochemical properties of normal, waxy and high amylose bread wheat starches. Food Chem 111:663

    Google Scholar 

  54. Bonacucina G, Martino PD, Piombetti M, Colombo A, Roversi F, Palmieri GF (2006) Effect of plasticizers on properties of pregelatinised starch acetate (Amprac 01) free films, International Journal of Pharmaceutics. J Pharm 313:72

    Google Scholar 

  55. Cao X, Chen Y, Chang PR, Huneault MA (2007) Preparation and properties of plasticized starch/multiwalled carbon nanotubes composites. J Appl Polym Sci 106:1431

    Google Scholar 

  56. Lawton JW, Fanta GF (1994) Glycerol-plasticized films prepared from starch- poly(vinyl alcohol) mixtures: effect of poly(ethylene-eo-acrylic acid). Carbohydr Polym 23:261

    Google Scholar 

  57. Lourdin D, Della Valle G, Colonna P (1995) Influence of amylose content on starch films and foams. Carbohydr Polym 27:275

    Google Scholar 

  58. Lawton JW (1996) Effect of starch type on the properties of starch containing film. Carbohydr Polym 29:203

    Google Scholar 

  59. Arvanitoyannis I, Billiaderis CG, Ogawa H, Kawasaki N (1998) Biodegradable films made from low-density polyethylene (ldpe), rice starch and potato starch for food packaging applications. Part 1. Carbohydr Polym 36:89

    Google Scholar 

  60. García MA, Martino MN, Zaritzky NE (2001) Composite starch-based coatings applied to strawberries (Fragaria ananassa). Nahrung/Food 45:267

    Google Scholar 

  61. Mali S, Grossmann MV, García MA, Martino MN, Zaritzky NE (2002) Microstructural characterization of yam starch films. Carbohydr Polym 50:379

    Google Scholar 

  62. Vicentini NM, Dupuy N, Leitzelman M, Cereda MP, Sobral PJA (2005) Prediction of cassava starch edible film properties by chemometric analysis of infrared spectra. Spectrosc Lett 38:749

    ADS  Google Scholar 

  63. Rindlav-westling A, Stadingb M, Gatenholma P (1998) Structure, barrier and mechanical properties of amylose and amylopectin films. Carbohydr Polym 36:217

    Google Scholar 

  64. Myllärinen P, Partanen R, Seppälä J, Forssell P (2002) Effect of glycerol on behaviour of amylose and amylopectin films. Carbohydr Polym 50:355

    Google Scholar 

  65. García NL, Famá L, Dufresne A, Aranguren M, Goyanes S (2009) A comparison between the physico-chemical properties of tuber and cereal starches. Food Res Int 42:976

    Google Scholar 

  66. Van Soest JJ, Vliegenthart JF (1997) Crystallinity in starch plastics: consequences for material properties. Trends Biotechnol 15:208

    Google Scholar 

  67. Famá L, Rojas AM, Goyanes S, Gerschenson L (2005) Mechanical properties of tapioca-starch edible films containing sorbates. LWT 38:631

    Google Scholar 

  68. Talja RA, Hele H, Roos H, Jouppila K (2008) Effect of type and content of binary polyol mixtures on physical and mechanical properties of starch-based edible films. Carbohydr Polym 71:269

    Google Scholar 

  69. Ma X, Yu J, Wang N (2008) Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers. Compos Sci Technol 68:268

    Google Scholar 

  70. Li R, Liu C, Ma J (2011) Studies on the properties of graphene oxide-reinforced starch biocomposites. Carbohydr Polym 84:631

    Google Scholar 

  71. Souza Rosa RCR, Andrade CT (2004) Effect of chitin addition on injection-molded thermoplastic corn starch. J Appl Polym Sci 92:2706

    Google Scholar 

  72. Cheetham NWH, Tao L (1998) Solid state NMR studies on the structural and conformational properties of natural maize starches. Carbohydr Polym 36:277

    Google Scholar 

  73. Biliaderis CG (1992) Structures and phase transitions of starch in food systems. Food Technol 46:98

    Google Scholar 

  74. Angellier H, Molina-Boisseau S, Dole P, Dufresne A (2006) Thermoplastic starch-waxy maize starch nanocrystals nanocomposites. Biomacromalecules 7:531

    Google Scholar 

  75. Hulleman SHD, Janssen FHP, Feil H (1998) The role of water during plasticization of native starches. Science 39:2043

    Google Scholar 

  76. Chaudhry H (1987) Applied hydraulic transients, 2nd edn. van Nostrand Reinhold, New York

    Google Scholar 

  77. Shogren RL, Jasberg BK (1994) Aging properties of extruded high-amylose starch. J Environ Polym Degrad 2:99

    Google Scholar 

  78. Godet MC, Buleon A, Tran B, Colonna P (1993) Structural features of fatty acids–amylose complexes. Carbohydr Polym 21:91

    Google Scholar 

  79. Kalichevski M, Orford PD, Ring SG (1990) The retrogradation and gelation of amylopectins from various botanical sources. Carbohydr Polym 198:49

    Google Scholar 

  80. Moniruzzaman M, Winey K (2006) Polymer nanocomposites containning carbon nanotubes. Macromolecules 39:5194

    ADS  Google Scholar 

  81. Liu Z, Zhao L, Chen M, Yu J (2011) Effect of carboxylate multiwalled carbon nanotubes on the performance of thermoplastic starch nanocomposites. Carbohydr Polym 83:447

    Google Scholar 

  82. Wang GJ, Qu ZH, Guo JL, Li Y, Liu L (2006) Study of Multiple-Wall Carbon Nanotubes Functionalized by the Poly(styrene-co-maleic Anhydride). Acta Chim Sin 64:2505

    Google Scholar 

  83. Muscat D, Adhikari B, Adhikari R, Chaudhary DS (2012) J Food Eng 109:189

    Google Scholar 

  84. Thunwall M, Boldizar A, Rigdahl M (2006) Compression molding and tensile properties of thermoplastic potato starch materials. Biomacromolecules 7:981

    Google Scholar 

  85. Lourdin D, Bizot H, Colonna PJ (1997) Antiplasticization in starch–glycerol films. Appl Polym Sci 63:1047

    Google Scholar 

  86. Gaudin S, Lourdin D, Le Botlan D, Ilari JL, Colonna PJ (1999) Plasticisation and mobility in starch-sorbitol films. Cereal Sci 29:273

    Google Scholar 

  87. Bergo PVA, Sobral PJA, Prison JM (2009) Physical Properties of Cassava Starch Films Containing Glycerol. Food Engineering Department, FZEA, University of São Paulo, Brazil

    Google Scholar 

  88. Chen C-H, Lai L-S (2008) Mechanical and water vapor barrier properties of tapioca starch/decolorized hsian-tsao leaf gum films in the presence of plasticizer. Food Hydrocoll 22:1584

    MathSciNet  Google Scholar 

  89. Qiao X, Tang Z, Sun K (2011) Plasticization of corn starch by polyol mixtures. Carbohydr Polym 83:659

    Google Scholar 

  90. Biliaderis CG, Page CM, Maurice TJ, Juliano BO (1986) Thermal characterisation of rice starches: A polymeric approach to phase transitions of granular starch. J Agric Food Chem 34:6

    Google Scholar 

  91. Levine H, Slade L (1986) A polymer physico-chemical approach to the study of commercial starch hydrolysis products (SHPs). Carbohydr Polym 6:213

    Google Scholar 

  92. Orford PD, Prker R, Ring SG, Smith AC (1989) Effect of water as a diluent on the glass-transition behavior of malto-oligosaccharides, amylose and amylopectin. Int J Biol Macromol 11:91

    Google Scholar 

  93. Schenz TW (1995) Glass transition and product stability–An overview. Food Hydrocol 9:307

    Google Scholar 

  94. Roos YH (1987) Effect of Moisture on the Thermal Behavior of Strawberries Studied Using Differential Scanning Calorimetry. J Food Sci 52:146

    Google Scholar 

  95. Roos Y, Karel M (1991) Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. J Food Sci 56:38

    Google Scholar 

  96. Bizot H, Le Bail B, Lroux J, Davy P, Parker P, Buleon A (1997) Alorimetric evaluation of the glass transition in hydrated, linear and branched polyanhydro glucose compounds. Carbohydr Polym 32:33

    Google Scholar 

  97. Zeleznak KJ, Hoseney RC (1987) The glass transition in starch. Cereal Chem 64:121

    Google Scholar 

  98. Mathew AP, Dufresne A (2002) Plasticized wazy maize starch: Effect of polyols and relative humidity on material properties. Biomacromolecules 3:1101

    Google Scholar 

  99. Yang J, Yu J, Ma X (2006) Study on the properties of ethylenebisformamide and sorbitol plasticized corn starch (ESPTPS). Carbohydr Polym 66:110

    Google Scholar 

  100. Curvelo AAS, Carvalho AJF, Agnelli JAM (2001) Thermoplastic starch–cellulosic fibers composites: Preliminary results. Carbohydr Polym 45:183

    Google Scholar 

  101. Da Roz AL, Carvalho AJF, Gandini A, Curvelo AAS (2006) The effects of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydr Polym 63:417–424

    Google Scholar 

  102. Ogale AA, Cunningham P, Dawson PL, Acton JC (2000) Viscoelastic, thermal, and microstructural characterization of soy protein isolate film. J Food Sci 65:672

    Google Scholar 

  103. Wilhelm HM, Sierakowski MR, Souza GP, Wypych F (2003) Starch films reinforced with mineral clay. Carbohydr Polym 52:101

    Google Scholar 

  104. Standing M, Rindlav-Westling A, Gatenholm P (2001) Humidity-induced structural transitions in amylose and amylopectin film. Carbohydr Polym 45:209

    Google Scholar 

  105. Forsell P, Mikkilä J, Moates G, Parker R (1997) Phase and glass transitions behaviour of concentrated barley starch–glycerol mixtures, a model for thermoplastic starch. Carbohydr Polym 34:275

    Google Scholar 

  106. Fishman ML, Coffin DR, Konstance RP, Onwulata CI (2000) Extrusion of pectin/starch blends plasticized with glycerol. Carbohydr Polym 41:317

    Google Scholar 

  107. Baughman RH, Cui CX, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotubes actuors. Sci 284:1340

    Google Scholar 

  108. Dresselhaus MS, Dresselhaus G, Eklund PC (1999) Science of fullerenes and carbon nanotubes. Academic, San Diego

    Google Scholar 

  109. Harris PJF (1999) Carbon nanotube and related structures. New materials for the 21st century. Cambridge University Press, Cambridge, UK

    Google Scholar 

  110. Nanocyl (2009) http://www.nanocyl.com/CNT-Expertise-Centre/Carbon-Nanotubes

  111. Coleman J, Khan U, Blau W, Gunko Y (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624

    Google Scholar 

  112. Nuriel S, Liu L, Barber AH, Wagner HD (2005) Direct measurement of multiwall nanotube surface tension. Chem Phys Lett 404:263

    ADS  Google Scholar 

  113. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297:787

    ADS  Google Scholar 

  114. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674

    Google Scholar 

  115. Bianco A, Prato M (2003) Can carbon nanotubes be considered useful tools for biological applications? Adv Mater 15:1765

    Google Scholar 

  116. Cai D, Mataraza JM, Qin ZH, Huang Z, Huang J, Chiles TC, Carnahan D, Kempa K, Ren Z (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2:449

    Google Scholar 

  117. Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB (2004) Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 126:15638

    Google Scholar 

  118. Mohagheghian I, McShane GJ, Stronge WJ (2011) Impact response of polyethylene nanocomposites. Proc Eng 10:704

    Google Scholar 

  119. Fattahpour V, Moosavi M, Mehranpour M (2012) An experimental investigation on the effect of rock strength and perforation size on sand production. J Petrol Sci Eng. 86–87:172

    Google Scholar 

  120. Krogars K, Antikainen O, Heinämäki J, Laitinen N, Yliruusi J (2002) Tablet film-coating with amylose-rich maize starch. Eur J Pharm Sci 17:23

    Google Scholar 

  121. Mehyar GF, Han JH (2004) Physical and mechanical properties of high amylose rice and pea starch films as affected by relative humidity. J Food Sci 69:449

    Google Scholar 

  122. Krogars K, Heinämäki J, Antikainen O, Karjalainen M, Yliruusi J (2003) A novel of amylose corn starch dispersion as an aqueous film coating for tablets. Pharm Develop Technol 8:211

    Google Scholar 

  123. Yan L, Chang PR, Zheng P (2011) Preparation andcharacterization of starchgrafted multiwall carbonnanotube composites. Carbohydr Polym 84:1378

    Google Scholar 

  124. Star A, Stoddart JF (2002) Dispersion and solubilization of singlewalled carbon nanotubes with a hyperbranched polymer. Macromolecules 35:7516

    ADS  Google Scholar 

  125. Ma X, Chang PR, Yu J, Lu P (2008) Haracterization of glycerol plasticized-starch (GPS)/carbon black (CB) membranes prepared by melt extrusion and microwave radiation. Carbohydr Polym 74:895

    Google Scholar 

  126. Macking TJ (1992) A comparison of instrumented impact testing and Gardner impact testing, Santa Barbara, CA: Dynatup Products Division General Research Corp

    Google Scholar 

  127. Talja RA, Roos YH (2001) Phase and state transition effects on dielectric, mechanical, and thermal properties of polyols. Thermochim Acta 380:109

    Google Scholar 

  128. Casey A, Farrell GF, McNamara M, Byrne HJ, Chambers G (2005) Interaction of carbon nanotubes with sugar complexes. Synth Metals 153:357

    Google Scholar 

  129. Shi Kam NW, Dai H (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 127:6021

    Google Scholar 

  130. Jiang W, Qiao W, Sun K (2006) Mechanical and thermal properties of thermoplastic acetylated starch/poly(ethylene–co–vinyl alcohol) blends. Carbohydr Polym 65:139

    Google Scholar 

  131. Chang PR, Zheng P, Liu B, Anderson DP, Yu J, Ma X (2011) Characterization of magnetic soluble starch-functionalized carbon nanotubes and its application for the adsorption of the dyes. J Hazard Mater 186:2144

    Google Scholar 

  132. Bello-Pérez LA, Roger P, Colonna P, Paredes-López (1998) Macromolecular features of amaranth starch. Cereal Chem 75:395

    Google Scholar 

  133. Pérez E, Breene W and Bahanasey Y (1998) Gelatinizations profiles of Peruvian carrot, cocoyam and potato starches a measured with Brabender Viscoamylograph, Rapid Viscoanalyzer and Differential Scanning Calorimeter. Starch/Stðrke 50:14

    Google Scholar 

  134. Yuan RC, Thompson DB, Boyer CD (1993) Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from three wax-containing genotypes in two inbred lines. Cereal Chemistry 70:81

    Google Scholar 

  135. Maaurf AG, Che Man YB, Asbi BA, Junainah AH, Kennedy JF (2001) Gelatinization of sago starch in the presence of sucrose and sodium chloride in assessed by differential scanning calorimetry. Carbohydrate Polymers 45:335

    Google Scholar 

  136. Hizukuri S, Takeda Y, Manuta N, Juliano BO (1989) Molecular structures of rice starches. Carbohydr Res 147:227

    Google Scholar 

Download references

Acknowledgments

The authors want to thank the National Research Council of Argentina (CONICET) (Project 11220090100699) and the UniversDonovanity of Buenos Aires (UBACyT) (Projects: 20020090300055 and 20020100100350) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celina R. Bernal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Famá, L.M., Goyanes, S., Pettarin, V., Bernal, C.R. (2015). Mechanical Behavior of Starch–Carbon Nanotubes Composites. In: Kar, K., Pandey, J., Rana, S. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45229-1_30

Download citation

Publish with us

Policies and ethics