Skip to main content

Synthesis and Characterization of Poly(Phenylene Sulfide)-Grafted Carbon Nanotube Nanocomposites

  • Chapter
  • 3371 Accesses

Abstract

Poly(phenylene sulfide) (PPS) is a semicrystalline engineering thermoplastic with outstanding mechanical and thermal properties, good chemical and flame resistance, as well as easy processability, widely used in the electronics, automotive, aeronautic, and chemical industries. To further extend its structural applications, different types of fillers such as carbon nanotubes (CNTs) have been incorporated in this polymer. However, the direct integration of CNTs leads to nanocomposites with poor mechanical performance. An alternative approach is the chemical modification of PPS via nitration and amination reactions. The modified polymers maintain the exceptional properties of the parent PPS and simultaneously display higher hydrophilicity and a number of reactive groups capable of interacting with functionalized CNTs. Thus, an aminated derivative (PPS-NH2) has been covalently anchored onto the surface of epoxy and acid-functionalized CNTs in a one-pot process. The resulting PPS-NH2-grafted-CNT nanocomposites have been extensively characterized through different techniques to obtain information about the extent of the grafting reactions, their morphology, thermal stability, crystallization behavior, and mechanical and electrical properties, and the results are compared with those attained in nanocomposites prepared by direct reinforcement. The formation of covalent linkages at the polymer-nanotube interface enables improved CNT dispersion, facilitating the stress transfer and enhancing the thermal stability and electrical conductivity of the composites. The results herein offer useful insights into the development of proper functionalization routes and grafting approaches for enhancing the properties of thermoplastic/CNT nanocomposites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194

    Article  ADS  Google Scholar 

  2. Spitalskya Z, Tasisb D, Papagelisb K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357

    Article  Google Scholar 

  3. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483

    Article  ADS  Google Scholar 

  4. Monthioux M, Smith BW, Burteaux B, Claye A, Fischer JE, Luzzi DE (2001) Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation. Carbon 39:1251

    Article  Google Scholar 

  5. Wang W, Lin Y, Sun YP (2005) Poly(N-vinyl carbazole)functionalized single walled carbon nanotubes: synthesis, characterization, and nanocomposite thin films. Polymer 46:8634

    Article  Google Scholar 

  6. Zhao B, Hu H, Yu A, Perea D, Haddon RC (2005) Synthesis and characterization of a water soluble single-walled carbon nanotube graft copolymer. J Am Chem Soc 127:8197

    Article  Google Scholar 

  7. Lin Y, Rao AM, Sadanadan B, Kenik EA, Sun YP (2002) Functionalizing multiple-walled carbon nanotubes with aminopolymers. J Phys Chem B 106:1294

    Article  Google Scholar 

  8. Qu L, Lin Y, Hill DE, Zhou B, Wang W, Sun X (2004) Polyimide functionalized carbon nanotubes: synthesis and dispersion in nanocomposite films. Macromolecules 37:6055

    Article  ADS  Google Scholar 

  9. Huang W, Lin Y, Taylor S, Gaillard J, Rao AM, Sun YP (2002) Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Lett 2:231

    Article  ADS  Google Scholar 

  10. Baudot C, Volpe MV, Kong JC, Tan CM (2009) Epoxy functionalized carbon nanotubes and methods of forming the same. US Patent 299082

    Google Scholar 

  11. Wade JLG (1999) Organic chemistry, 4th edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  12. Mao Y, Gleason KK (2004) Positive-tone nanopatterning of chemical vapor deposited polyacrylic thin films. Langmuir 20:2484

    Article  Google Scholar 

  13. Mitschang P, Blinzler M, Woginger A (2003) Processing technologies for continuous fibre reinforced thermoplastics with novel polymer blends. Compos Sci Technol 63:2099

    Article  Google Scholar 

  14. Lu D, Mai Y-W, Li RKY, Ye L (2003) Impact strength and crystallization behavior of nano-SiOx/poly(phenylene sulfide) (PPS) composites with heat treated PPS. Macromol Mater Eng 288:693

    Article  Google Scholar 

  15. Beck HN (1992) Solubility characteristics of poly (etheretherketone) and poly (phenylene sulfide). Appl Polym Sci 45:1361

    Article  Google Scholar 

  16. Yu S, Wong WM, Hu S, Juay YK (2009) The characteristics of carbon nanotube-reinforced poly(phenylene sulfide) nanocomposites. J Appl Poly Sci 113:3477

    Article  Google Scholar 

  17. Yang J, Xu T, Lu A, Zhang Q, Tan H, Fu Q (2009) Preparation and properties of poly(p-phenylene sulfide)/multiwall carbon nanotube composites obtained by melt compounding. Compos Sci Technol 69:147

    Article  Google Scholar 

  18. Han MS, Lee YK, Lee HS, Yun CH, Kim WN (2009) Electrical, morphological and rheological properties of carbon nanotube composites with polyethylene and poly(phenylene sulfide) by melt mixing. Chem Eng Sci 64:4649

    Article  Google Scholar 

  19. Wu D, Wu L, Zhou W, Yang T, Zhang M (2009) Study on physical properties of multiwalled carbon nanotube/poly(phenylene sulfide) composites. Polym Eng Sci 49:1727

    Article  Google Scholar 

  20. Jiang Z, Hornsby P, McCool R, Murphy A (2012) Mechanical and thermal properties of polyphenylene sulfide/multiwalled carbon nanotube composites. J Appl Polym Sci 123:2676

    Article  Google Scholar 

  21. Barique MA, Seesukphronorarak SS, Wu L, Ohira A (2011) A comparison between highly crystalline and Low crystalline poly(phenylene sulfide) as polymer electrolyte membranes for fuel cells. J Phys Chem B 115:27

    Article  Google Scholar 

  22. Jeon I-Y, Lee H-J, Choi YS, Tan L-S, Baek J-B (2008) Semimetallic transport in nanocomposites derived from grafting of linear and hyperbranched poly(phenylene sulfide)s onto the surface of functionalized multi-walled carbon nanotubes. Macromolecules 41:7423

    Article  ADS  Google Scholar 

  23. Brady DG (1981) Poly(phenylene sulfide)-how, when, why, where, and where now. J Appl Polym Sci Appl Polym Symp 36:231

    Google Scholar 

  24. Tabor BJ, Magre EP, Boon J (1971) The crystal structure of poly-p-phenylene sulphide. Eur Polym J 7:1127

    Article  Google Scholar 

  25. Diez-Pascual AM, Naffakh M (2012) Synthesis and characterization of nitrated and aminated poly(phenylene sulfide) derivatives. Mater Chem Phys 131:605

    Article  Google Scholar 

  26. Piaggio C, Cuniberti G, Dellepiane E, Cmapani G, Goiri G, Masetti M, Novi G, Petrillo G (1989) Vibrational spectra and assignment of poly-(p-phenylene sulfide) and its oligomers. Spectrochim Acta Part A 45:347

    Article  ADS  Google Scholar 

  27. Conceicao TF, Barra GMO, Joussef AC, Bertolino JR, Mireski S, Pires ATN (2008) Preparation and characterization of poly(ether ether ketone) derivatives. J Braz Chem Soc 19:111

    Article  Google Scholar 

  28. Chung T-S (2001) Thermotropic liquid crystal polymers: thin-film polymerization, characterization, blends and application. CRC Press, New York, p 14

    Book  Google Scholar 

  29. Chung JS, Bodziuch J, Cebe PJ (1992) Effects of thermal history on crystal structure of poly(phenylene sulphide). Mater Sci 27:5609

    Article  ADS  Google Scholar 

  30. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978

    Article  MATH  ADS  Google Scholar 

  31. Viswanathan G, Chakrapani N, Yang H, Wei B, Chung H, Cho K, Ryu CY, Ajayan PM (2003) Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J Am Chem Soc 125:925

    Google Scholar 

  32. Blake R, Gun’ko YK, Coleman J, Cadek M, Fonseca A, Nagy JB, Blau WJ (2004) A generic organometallic approach toward ultra-strong carbon nanotube polymer composites. J Am Chem Soc 126:10226

    Article  Google Scholar 

  33. Diez-Pascual AM, Naffakh M (2012) Grafting of an aminated poly(phenylene sulfide) derivative to functionalized single-walled carbon nanotubes. Carbon 50:857

    Article  Google Scholar 

  34. Baek J-B, Tan L-S (2003) Improved syntheses of poly(oxy-1,3-phenylenecarbonyl-1,4-phenylene) and related poly(ether–ketones) using polyphosphoric acid/P2O5 as polymerization medium. Polymer 44:4135

    Article  Google Scholar 

  35. Colthup NB, Day LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy, 3rd edn. Academic, San Diego, p 225

    Google Scholar 

  36. Shreve OD, Heether MR, Knight HB, Swern D (1951) Infrared absorption spectra of some epoxy compounds. Anal Chem 23:277

    Article  Google Scholar 

  37. Chen S, Hsu S-H, Wu M-C, Su WF (2011) Kinetics studies on the accelerated curing of liquid crystalline epoxy resin/multi-walled carbon nanotube nanocomposites. J Polym Sci B Polym Phys 49:301

    Article  ADS  Google Scholar 

  38. Tang XP, Kleinhammes A, Shimoda H, Fleming L, Bennoune KY, Shinha S (2000) Electronic structures of single-walled carbon nanotubes determined by NMR. Science 288:492

    Article  ADS  Google Scholar 

  39. Ernst M, Meier BH (1998) Studies in physical and theoretical chemistry. In: Ando I (ed) Solid state NMR of polymers, vol 84. Elsevier, Amsterdam, p 713

    Chapter  Google Scholar 

  40. Naffakh M, Diez-Pascual AM, Marco C, Ellis G (2012) Morphology and thermal properties of novel poly(phenylene sulfide) hybrid nanocomposites based on single-walled carbon nanotubes and inorganic fullerene-like WS2 nanoparticles. J Mater Chem 22:1418

    Article  Google Scholar 

  41. Mitchell CA, Krishnamoorti R (2007) Dispersion of single-walled carbon nanotubes in poly (e-caprolactone). Macromolecules 40:1538

    Article  ADS  Google Scholar 

  42. Diez-Pascual AM, Naffakh M, Marco C, Ellis G (2012) Mechanical and electrical properties of carbon nanotube/poly(phenylene sulphide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles. Compos Part A 43:603

    Article  Google Scholar 

  43. Diez-Pascual AM, Martınez G, Gonzalez-Domınguez JM, Anson A, Martınez MT, Gomez MA (2010) Grafting of a hydroxylated poly(ether ether ketone) to the surface of single-walled carbon nanotubes. J Mater Chem 38:8285

    Article  Google Scholar 

  44. Perez-Cabero M, Rodríguez-Ramos I, Guerrero-Ruız A (2003) Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor. J Catal 215:305

    Article  Google Scholar 

  45. Jeon I-Y, Tan L-S, Baek J-B (2008) Nanocomposites derived from in situ grafting of linear and hyperbranched poly(ether-ketone)s containing flexible oxyethylene spacers onto the surface of multi-walled carbon nanotubes. J Polym Sci A Polym Chem 46:3471

    Article  ADS  Google Scholar 

  46. Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ (2007) Preparation and properties of electrically conducitve PPS/expanded graphite nanocomposites. Compos Sci Technol 67:2528

    Article  Google Scholar 

  47. Parlevliet PP, van der Werf WAW, Bersee HEN, Beukers A (2008) Thermal effects on microstructural matrix variations in thick-walled composites. Compos Sci Technol 68:896

    Article  Google Scholar 

  48. Cho MH, Bahadur S (2007) A study of the thermal, dynamic mechanical, and tribological properties of polyphenylene sulfide composites reinforced with carbon nanofibers. Tribol Lett 25:237

    Article  Google Scholar 

  49. Kuwae AK, Machida S (1979) Vibrational spectra of nitrobenzene-d0, -p-d and -d5 and normal vibrations of nitrobenzene. Spectrochim Acta 35:27

    Article  Google Scholar 

Download references

Acknowledgments

AD acknowledges the Consejo Superior de Investigaciones Científicas (CSIC) for a JAE Postdoctoral Fellowship and MN the Ministerio de Economía y Competitividad (MINECO) for a “Ramón y Cajal” Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Díez-Pascual .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Díez-Pascual, A.M., Naffakh, M. (2015). Synthesis and Characterization of Poly(Phenylene Sulfide)-Grafted Carbon Nanotube Nanocomposites. In: Kar, K., Pandey, J., Rana, S. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45229-1_29

Download citation

Publish with us

Policies and ethics