Skip to main content

12 Metabolomics and Proteomics to Dissect Fungal Phytopathogenicity

  • Chapter
  • First Online:
  • 2197 Accesses

Part of the book series: The Mycota ((MYCOTA,volume 13))

Abstract

Improvements in DNA-sequencing technology have produced a plethora of sequenced fungal genomes. As a result, the genomic era has opened the door for the dissection of phytopathogenicity via systems biology using sophisticated ‘-omics’ technologies. Proteomic and metabolomic are key analytical techniques that have been used at an increasing frequency in phytopathology. These high-throughput global techniques can provide a detailed metabolic ‘photograph’ of the fungal phytopathogen or pathosystem. This has greatly contributed to the understanding of fungal phytopathogenicity. Here, we provide a comprehensive review of recent literature that significantly contributed to the impact of proteomics and metabolomics on fungal phytopathology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhikari TB, Bai J, Meinhardt SW, Gurung S, Myrfield M, Patel J, Ali S, Gudmestad NC, Rasmussen JB (2009) Tsn1-mediated host responses to ToxA from Pyrenophora tritici-repentis. Mol Plant Microbe Interact 22:1056–1068

    PubMed  CAS  Google Scholar 

  • Aliferis KA, Jabaji S (2010) Metabolite composition and bioactivity of Rhizoctonia solani sclerotial exudates. J Agric Food Chem 58:7604–7615

    PubMed  CAS  Google Scholar 

  • Allen TD, Dawe AL, Nuss DL (2003) Use of cDNA microarrays to monitor transcriptional responses of the chestnut blight fungus Cryphonectria parasitica to infection by virulence-attenuating hypoviruses. Eukaryot Cell 2:1253–1265

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bindschedler LV, Burgis TA, Mills DJ, Ho JT, Cramer R, Spanu PD (2009) In planta proteomics and proteogenomics of the biotrophic barley fungal pathogen Blumeria graminis f. sp. hordei. Mol Cell Proteomics 8:2368–2381

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bindschedler LV, McGuffin LJ, Burgis TA, Spanu PD, Cramer R (2011) Proteogenomics and in silico structural and functional annotation of the barley powdery mildew Blumeria graminis f. sp. hordei. Methods 54:432–441

    PubMed  CAS  Google Scholar 

  • Bollina V, Kumaraswamy GK, Kushalappa AC, Choo TM, Dion Y, Rioux S, Faubert D, Hamzehzarghani H (2010) Mass spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley against Fusarium head blight. Mol Plant Pathol 11:769–782

    PubMed  CAS  Google Scholar 

  • Bollina V, Kushalappa AC, Choo TM, Dion Y, Rioux S (2011) Identification of metabolites related to mechanisms of resistance in barley against Fusarium graminearum, based on mass spectrometry. Plant Mol Biol 77:355–370

    PubMed  CAS  Google Scholar 

  • Bringans S, Hane JK, Casey T, Tan KC, Lipscombe R, Solomon PS, Oliver RP (2009) Deep proteogenomics; high throughput gene validation by multidimensional liquid chromatography and mass spectrometry of proteins from the fungal wheat pathogen Stagonospora nodorum. BMC Bioinformatics 10:301

    PubMed Central  PubMed  Google Scholar 

  • Brito N, Espino JJ, Gonzalez C (2006) The endo-beta-1,4-xylanase Xyn11A is required for virulence in Botrytis cinerea. Mol Plant Microbe Interact 19:25–32

    PubMed  CAS  Google Scholar 

  • Brown NA, Antoniw J, Hammond-Kosack KE (2012) The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis. PLoS One 7:e33731

    PubMed Central  PubMed  CAS  Google Scholar 

  • Casey T, Solomon PS, Bringans S, Tan KC, Oliver RP, Lipscombe R (2010) Quantitative proteomic analysis of G-protein signalling in Stagonospora nodorum using isobaric tags for relative and absolute quantification. Proteomics 10:38–47

    PubMed  CAS  Google Scholar 

  • Chen F, Zhang J, Song X, Yang J, Li H, Tang H, Liao YC (2011) Combined metabonomic and quantitative real-time PCR analyses reveal systems metabolic changes of Fusarium graminearum induced by Tri5 gene deletion. J Proteome Res 10:2273–2285

    PubMed  CAS  Google Scholar 

  • Choi YE, Butchko RA, Shim WB (2012) Proteomic comparison of Gibberella moniliformis in limited-nitrogen (fumonisin-inducing) and excess-nitrogen (fumonisin-repressing) conditions. J Microbiol Biotechnol 22:780–787

    PubMed  CAS  Google Scholar 

  • Cooper B, Garrett WM, Campbell KB (2006) Shotgun identification of proteins from uredospores of the bean rust Uromyces appendiculatus. Proteomics 6:2477–2484

    PubMed  CAS  Google Scholar 

  • Coumans JV, Moens PD, Poljak A, Al-Jaaidi S, Pereg L, Raftery MJ (2010) Plant-extract-induced changes in the proteome of the soil-borne pathogenic fungus Thielaviopsis basicola. Proteomics 10:1573–1591

    PubMed  CAS  Google Scholar 

  • Dawe AL, Nuss DL (2001) Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis. Annu Rev Genet 35:1–29

    PubMed  CAS  Google Scholar 

  • Dawe AL, Segers GC, Allen TD, McMains VC, Nuss DL (2004) Microarray analysis of Cryphonectria parasitica Ga- and Gbg-signalling pathways reveals extensive modulation by hypovirus infection. Microbiology 150:4033–4043

    PubMed  CAS  Google Scholar 

  • De Groot PW, Ram AF, Klis FM (2005) Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42:657–675

    PubMed  Google Scholar 

  • Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, Osorio S, Tohge T, Fernie AR, Feussner I, Feussner K, Meinicke P, Stierhof YD, Schwarz H, Macek B, Mann M, Kahmann R (2011) Metabolic priming by a secreted fungal effector. Nature 478:395–398

    PubMed  CAS  Google Scholar 

  • Donofrio NM, Oh Y, Lundy R, Pan H, Brown DE, Jeong JS, Coughlan S, Mitchell TK, Dean RA (2006) Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea. Fungal Genet Biol 43:605–617

    PubMed  CAS  Google Scholar 

  • Egan MJ, Talbot NJ (2008) Genomes, free radicals and plant cell invasion: recent developments in plant pathogenic fungi. Curr Opin Plant Biol 11:367–372

    PubMed  CAS  Google Scholar 

  • El-Bebany AF, Rampitsch C, Daayf F (2010) Proteomic analysis of the phytopathogenic soilborne fungus Verticillium dahliae reveals differential protein expression in isolates that differ in aggressiveness. Proteomics 10:289–303

    PubMed  CAS  Google Scholar 

  • Espino JJ, Gutierrez-Sanchez G, Brito N, Shah P, Orlando R, Gonzalez C (2010) The Botrytis cinerea early secretome. Proteomics 10:3020–3034

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eynck C, Koopmann B, Grunewaldt-Stoecker G, Karlovsky P, von Tiedemann A (2007) Differential interactions of Verticillium longisporum and V. dahliae with Brassica napus detected with molecular and histological techniques. Eur J Plant Pathol 118:259–274

    Google Scholar 

  • Fernandez-Acero FJ, Colby T, Harzen A, Cantoral JM, Schmidt J (2009) Proteomic analysis of the phytopathogenic fungus Botrytis cinerea during cellulose degradation. Proteomics 9:2892–2902

    PubMed  CAS  Google Scholar 

  • Fernandez-Acero FJ, Colby T, Harzen A, Carbu M, Wieneke U, Cantoral JM, Schmidt J (2010) 2-DE proteomic approach to the Botrytis cinerea secretome induced with different carbon sources and plant-based elicitors. Proteomics 10:2270–2280

    PubMed  CAS  Google Scholar 

  • Floerl S, Majcherczyk A, Possienke M, Feussner K, Tappe H, Gatz C, Feussner I, Kues U, Polle A (2012) Verticillium longisporum infection affects the leaf apoplastic proteome, metabolome, and cell wall properties in Arabidopsis thaliana. PLoS One 7:e31435

    PubMed Central  PubMed  CAS  Google Scholar 

  • Forseth RR, Schroeder FC (2012) Correlating secondary metabolite production with genetic changes using differential analysis of 2D NMR spectra. Methods Mol Biol 944:207–219

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fournier I, Wisztorski M, Salzet M (2008) Tissue imaging using MALDI-MS: a new frontier of histopathology proteomics. Expert Rev Proteomics 5:413–424

    PubMed  CAS  Google Scholar 

  • Friesen TL, Stukenbrock EH, Liu ZH, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38:953–956

    PubMed  CAS  Google Scholar 

  • Frisvad JC (2012) Media and growth conditions for induction of secondary metabolite production. Methods Mol Biol 944:47–58

    PubMed  CAS  Google Scholar 

  • Godfrey D, Zhang Z, Saalbach G, Thordal-Christensen H (2009) A proteomics study of barley powdery mildew haustoria. Proteomics 9:3222–3232

    PubMed  CAS  Google Scholar 

  • Gokce E, Franck WL, Oh Y, Dean RA, Muddiman DC (2012) In-depth analysis of the Magnaporthe oryzae conidial proteome. J Proteome Res 11:5827–5835

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gonzalez DJ, Xu Y, Yang YL, Esquenazi E, Liu WT, Edlund A, Duong T, Du L, Molnar I, Gerwick WH, Jensen PR, Fischbach M, Liaw CC, Straight P, Nizet V, Dorrestein PC (2012) Observing the invisible through imaging mass spectrometry, a window into the metabolic exchange patterns of microbes. J Proteomics 75:5069–5076

    PubMed Central  PubMed  CAS  Google Scholar 

  • Güldener U, Seong KY, Boddu J, Cho S, Trail F, Xu JR, Adam G, Mewes HW, Muehlbauer GJ, Kistler HC (2006) Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Fungal Genet Biol 43:316–325

    PubMed  Google Scholar 

  • Gummer JP, Krill C, Du Fall L, Waters OD, Trengove RD, Oliver RP, Solomon PS (2012) Metabolomics protocols for filamentous fungi. Methods Mol Biol 835:237–254

    PubMed  CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hane JK, Lowe RG, Solomon PS, Tan KC, Schoch CL, Spatafora JW, Crous PW, Kodira C, Birren BW, Galagan JE, Torriani SF, McDonald BA, Oliver RP (2007) Dothideomycete plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. Plant Cell 19:3347–3368

    PubMed Central  PubMed  CAS  Google Scholar 

  • Herbert BR, Harry JL, Packer NH, Gooley AA, Pedersen SK, Williams KL (2001) What place for polyacrylamide in proteomics? Trends Biotechnol 19:S3–S9

    PubMed  CAS  Google Scholar 

  • Hong YS, Cilindre C, Liger-Belair G, Jeandet P, Hertkorn N, Schmitt-Kopplin P (2011) Metabolic influence of Botrytis cinerea infection in champagne base wine. J Agric Food Chem 59:7237–7245

    PubMed  CAS  Google Scholar 

  • Ipcho SV, Tan KC, Koh G, Gummer J, Oliver RP, Trengove RD, Solomon PS (2010) The transcription factor StuA regulates central carbon metabolism, mycotoxin production, and effector gene expression in the wheat pathogen Stagonospora nodorum. Eukaryot Cell 9:1100–1108

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ipcho SV, Hane JK, Antoni EA, Ahren D, Henrissat B, Friesen TL, Solomon PS, Oliver RP (2012) Transcriptome analysis of Stagonospora nodorum: gene models, effectors, metabolism and pantothenate dispensability. Mol Plant Pathol 13:531–545

    PubMed  CAS  Google Scholar 

  • Issaq H, Veenstra T (2008) Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): advances and perspectives. Biotechniques 44:697–698, 700

    PubMed  CAS  Google Scholar 

  • Jaffe JD, Berg HC, Church GM (2004) Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics 4:59–77

    PubMed  CAS  Google Scholar 

  • Jennings DH (1995) The physiology of fungal nutrition. Cambridge University Press, Cambridge

    Google Scholar 

  • Jonkers W, Rodriguez Estrada AE, Lee K, Breakspear A, May G, Kistler HC (2012) Metabolome and transcriptome of the interaction between Ustilago maydis and Fusarium verticillioides in vitro. Appl Environ Microbiol 78:3656–3667

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jung YH, Jeong SH, Kim SH, Singh R, Lee JE, Cho YS, Agrawal GK, Rakwal R, Jwa NS (2012) Secretome analysis of Magnaporthe oryzae using in vitro systems. Proteomics 12:878–900

    PubMed  CAS  Google Scholar 

  • Kaspar S, Peukert M, Svatos A, Matros A, Mock HP (2011) MALDI-imaging mass spectrometry—an emerging technique in plant biology. Proteomics 11:1840–1850

    PubMed  CAS  Google Scholar 

  • Kim YT, Lee YR, Jin J, Han KH, Kim H, Kim JC, Lee T, Yun SH, Lee YW (2005) Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Mol Microbiol 58:1102–1113

    PubMed  CAS  Google Scholar 

  • Kim JM, Park JA, Kim DH (2012a) Comparative proteomic analysis of chestnut blight fungus, Cryphonectria parasitica, under tannic-acid-inducing and hypovirus-regulating conditions. Can J Microbiol 58:863–871

    PubMed  CAS  Google Scholar 

  • Kim SG, Wang Y, Lee KH, Park ZY, Park J, Wu J, Kwon SJ, Lee YH, Agrawal GK, Rakwal R, Kim ST, Kang KY (2012b) In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. J Proteomics 78C:58–71

    Google Scholar 

  • Koulman A, Tapper BA, Fraser K, Cao M, Lane GA, Rasmussen S (2007) High-throughput direct-infusion ion trap mass spectrometry: a new method for metabolomics. Rapid Commun Mass Spectrom 21:421–428

    PubMed  CAS  Google Scholar 

  • Kozak M (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361:13–37

    PubMed  CAS  Google Scholar 

  • Kumaraswamy KG, Kushalappa AC, Choo TM, Dion Y, Rioux S (2011) Mass spectrometry based metabolomics to identify potential biomarkers for resistance in barley against fusarium head blight (Fusarium graminearum). J Chem Ecol 37:846–856

    PubMed  CAS  Google Scholar 

  • Lee K, Pan JJ, May G (2009) Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize. FEMS Microbiol Lett 299:31–37

    PubMed  CAS  Google Scholar 

  • Lee YJ, Perdian DC, Song Z, Yeung ES, Nikolau BJ (2012) Use of mass spectrometry for imaging metabolites in plants. Plant J 70:81–95

    PubMed  CAS  Google Scholar 

  • Li B, Wang W, Zong Y, Qin G, Tian S (2012) Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis. J Proteome Res 11:4249–4260

    PubMed  CAS  Google Scholar 

  • Liang Y, Rahman MH, Strelkov SE, Kav NN (2010a) Developmentally induced changes in the sclerotial proteome of Sclerotinia sclerotiorum. Fungal Biol 114:619–627

    PubMed  CAS  Google Scholar 

  • Liang Y, Strelkov SE, Kav NN (2010b) The proteome of liquid sclerotial exudates from Sclerotinia sclerotiorum. J Proteome Res 9:3290–3298

    PubMed  CAS  Google Scholar 

  • Liu Z, Zhang Z, Faris JD, Oliver RP, Syme R, McDonald MC, McDonald BA, Solomon PS, Lu S, Shelver WL, Xu S, Friesen TL (2012) The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PLoS Pathog 8:e1002467

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lowe RG, Lord M, Rybak K, Trengove RD, Oliver RP, Solomon PS (2008) A metabolomic approach to dissecting osmotic stress in the wheat pathogen Stagonospora nodorum. Fungal Genet Biol 45:1479–1486

    PubMed  CAS  Google Scholar 

  • Lowe RG, Allwood JW, Galster AM, Urban M, Daudi A, Canning G, Ward JL, Beale MH, Hammond-Kosack KE (2010) A combined (1)H nuclear magnetic resonance and electrospray ionization-mass spectrometry analysis to understand the basal metabolism of plant-pathogenic Fusarium spp. Mol Plant Microbe Interact 23:1605–1618

    PubMed  CAS  Google Scholar 

  • Luster DG, McMahon MB, Carter ML, Fortis LL, Nunez A (2010) Proteomic analysis of germinating urediniospores of Phakopsora pachyrhizi, causal agent of Asian soybean rust. Proteomics 10:3549–3557

    PubMed  CAS  Google Scholar 

  • Magan N, Cayley GR, Lacey J (1984) Effect of water activity and temperature on mycotoxin production by Alternaria alternata in culture and on wheat grain. Appl Environ Microbiol 47:1113–1117

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21:255–261

    PubMed  CAS  Google Scholar 

  • Manning VA, Chu AL, Steeves JE, Wolpert TJ, Ciuffetti LM (2009) A host-selective toxin of Pyrenophora tritici-repentis, Ptr ToxA, induces photosystem changes and reactive oxygen species accumulation in sensitive wheat. Mol Plant Microbe Interact 22:665–676

    PubMed  CAS  Google Scholar 

  • Manteau S, Abouna S, Lambert B, Legendre L (2003) Differential regulation by ambient pH of putative virulence factor secretion by the phytopathogenic fungus Botrytis cinerea. FEMS Microbiol Ecol 43:359–366

    PubMed  CAS  Google Scholar 

  • Mardis ER (2006) Anticipating the 1,000 dollar genome. Genome Biol 7:112

    PubMed Central  PubMed  Google Scholar 

  • Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7:352–356

    PubMed  CAS  Google Scholar 

  • Moco S, Bino RJ, De Vos RCH, Vervoort J (2007) Metabolomics technologies and metabolite identification. Trends Anal Chem 26:855–866

    CAS  Google Scholar 

  • Morais do Amaral A, Antoniw J, Rudd JJ, Hammond-Kosack KE (2012) Defining the predicted protein secretome of the fungal wheat leaf pathogen Mycosphaerella graminicola. PLoS One 7:e49904

    PubMed Central  PubMed  Google Scholar 

  • Motteram J, Lovegrove A, Pirie E, Marsh J, Devonshire J, van de Meene A, Hammond-Kosack K, Rudd JJ (2011) Aberrant protein N-glycosylation impacts upon infection-related growth transitions of the haploid plant-pathogenic fungus Mycosphaerella graminicola. Mol Microbiol 81:415–433

    PubMed  CAS  Google Scholar 

  • Mueller O, Kahmann R, Aguilar G, Trejo-Aguilar B, Wu A, de Vries RP (2008) The secretome of the maize pathogen Ustilago maydis. Fungal Genet Biol 45(Suppl 1):S63–S70

    PubMed  CAS  Google Scholar 

  • Nielsen KF, Smedsgaard J (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J Chromatogr A 1002:111–136

    PubMed  CAS  Google Scholar 

  • Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378

    PubMed  CAS  Google Scholar 

  • Pandelova I, Betts MF, Manning VA, Wilhelm LJ, Mockler TC, Ciuffetti LM (2009) Analysis of transcriptome changes induced by Ptr ToxA in wheat provides insights into the mechanisms of plant susceptibility. Mol Plant 2:1067–1083

    PubMed  CAS  Google Scholar 

  • Parker D, Beckmann M, Zubair H, Enot DP, Caracuel-Rios Z, Overy DP, Snowdon S, Talbot NJ, Draper J (2009) Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea. Plant J 59:723–737

    PubMed  CAS  Google Scholar 

  • Pedras MS, Chumala PB, Jin W, Islam MS, Hauck DW (2009) The phytopathogenic fungus Alternaria brassicicola: phytotoxin production and phytoalexin elicitation. Phytochemistry 70:394–402

    PubMed  CAS  Google Scholar 

  • Peluffo L, Lia V, Troglia C, Maringolo C, Norma P, Escande A, Esteban Hopp H, Lytovchenko A, Fernie AR, Heinz R, Carrari F (2010) Metabolic profiles of sunflower genotypes with contrasting response to Sclerotinia sclerotiorum infection. Phytochemistry 71:70–80

    PubMed  CAS  Google Scholar 

  • Perpetua NS, Kubo Y, Yasuda N, Takano Y, Furusawa I (1996) Cloning and characterization of a melanin biosynthetic THR1 reductase gene essential for appressorial penetration of Colletotrichum lagenarium. Mol Plant Microbe Interact 9:323–329

    PubMed  CAS  Google Scholar 

  • Pitarch A, Nombela C, Gil C (2008) Cell wall fractionation for yeast and fungal proteomics. Methods Mol Biol 425:217–239

    PubMed  CAS  Google Scholar 

  • Prados-Rosales R, Luque-Garcia JL, Martinez-Lopez R, Gil C, Di Pietro A (2009) The Fusarium oxysporum cell wall proteome under adhesion-inducing conditions. Proteomics 9:4755–4769

    PubMed  CAS  Google Scholar 

  • Proctor RH, Hohn TM, McCormick SP (1995) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact 8:593–601

    PubMed  CAS  Google Scholar 

  • Rampitsch C, Subramaniam R, Djuric-Ciganovic S, Bykova NV (2010) The phosphoproteome of Fusarium graminearum at the onset of nitrogen starvation. Proteomics 10:124–140

    PubMed  CAS  Google Scholar 

  • Rampitsch C, Tinker NA, Subramaniam R, Barkow-Oesterreicher S, Laczko E (2012) Phosphoproteome profile of Fusarium graminearum grown in vitro under nonlimiting conditions. Proteomics 12:1002–1005

    PubMed  CAS  Google Scholar 

  • Rodriguez Estrada AE, Hegeman A, Kistler HC, May G (2011) In vitro interactions between Fusarium verticillioides and Ustilago maydis through real-time PCR and metabolic profiling. Fungal Genet Biol 48:874–885

    PubMed  CAS  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    PubMed  CAS  Google Scholar 

  • Sarrazin E, Dubourdieu D, Darriet P (2007) Characterization of key aroma compounds of botrytized wines, influence of grape botrytization. Food Chem 59:7237–7425

    Google Scholar 

  • Schmidt SM, Panstruga R (2011) Pathogenomics of fungal plant parasites: what have we learnt about pathogenesis? Curr Opin Plant Biol 14:392–399

    PubMed  CAS  Google Scholar 

  • Scott PM (2001) Analysis of agricultural commodities and foods for Alternaria mycotoxins. J AOAC Int 84:1809–1817

    PubMed  CAS  Google Scholar 

  • Shah P, Atwood JA, Orlando R, El Mubarek H, Podila GK, Davis MR (2009a) Comparative proteomic analysis of Botrytis cinerea secretome. J Proteome Res 8:1123–1130

    PubMed  CAS  Google Scholar 

  • Shah P, Gutierrez-Sanchez G, Orlando R, Bergmann C (2009b) A proteomic study of pectin-degrading enzymes secreted by Botrytis cinerea grown in liquid culture. Proteomics 9:3126–3135

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shenton MR, Berberich T, Kamo M, Yamashita T, Taira H, Terauchi R (2012) Use of intercellular washing fluid to investigate the secreted proteome of the rice-Magnaporthe interaction. J Plant Res 125:311–316

    PubMed  CAS  Google Scholar 

  • Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Boucherie H, Mann M (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A 93:14440–14445

    PubMed Central  PubMed  CAS  Google Scholar 

  • Solomon PS, Tan KC, Oliver RP (2003) The nutrient supply of pathogenic fungi; a fertile field for study. Mol Plant Pathol 4:203–210

    PubMed  Google Scholar 

  • Solomon PS, Tan KC, Sanchez P, Cooper RM, Oliver RP (2004) The disruption of a Ga subunit sheds new light on the pathogenicity of Stagonospora nodorum on wheat. Mol Plant Microbe Interact 17:456–466

    PubMed  CAS  Google Scholar 

  • Solomon PS, Tan KC, Oliver RP (2005) Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum. Mol Plant Microbe Interact 18:110–115

    PubMed  CAS  Google Scholar 

  • Solomon PS, Waters OD, Jorgens CI, Lowe RG, Rechberger J, Trengove RD, Oliver RP (2006) Mannitol is required for asexual sporulation in the wheat pathogen Stagonospora nodorum (glume blotch). Biochem J 399:231–239

    PubMed Central  PubMed  CAS  Google Scholar 

  • Son H, Lee J, Lee YW (2012) Mannitol induces the conversion of conidia to chlamydospore-like structures that confer enhanced tolerance to heat, drought, and UV in Gibberella zeae. Microbiol Res 167:608–615

    PubMed  CAS  Google Scholar 

  • Song X, Rampitsch C, Soltani B, Mauthe W, Linning R, Banks T, McCallum B, Bakkeren G (2011) Proteome analysis of wheat leaf rust fungus, Puccinia triticina, infection structures enriched for haustoria. Proteomics 11:944–963

    PubMed  CAS  Google Scholar 

  • Sorensen JL, Hansen FT, Sondergaard TE, Staerk D, Lee TV, Wimmer R, Klitgaard LG, Purup S, Giese H, Frandsen RJ (2012) Production of novel fusarielins by ectopic activation of the polyketide synthase 9 cluster in Fusarium graminearum. Environ Microbiol 14:1159–1170

    PubMed  Google Scholar 

  • Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stuber K, Ver Loren, van Themaat E, Brown JK, Butcher SA, Gurr SJ, Lebrun MH, Ridout CJ, Schulze-Lefert P, Talbot NJ, Ahmadinejad N, Ametz C, Barton GR, Benjdia M, Bidzinski P, Bindschedler LV, Both M, Brewer MT, Cadle-Davidson L, Cadle-Davidson MM, Collemare J, Cramer R, Frenkel O, Godfrey D, Harriman J, Hoede C, King BC, Klages S, Kleemann J, Knoll D, Koti PS, Kreplak J, Lopez-Ruiz FJ, Lu X, Maekawa T, Mahanil S, Micali C, Milgroom MG, Montana G, Noir S, O’Connell RJ, Oberhaensli S, Parlange F, Pedersen C, Quesneville H, Reinhardt R, Rott M, Sacristan S, Schmidt SM, Schon M, Skamnioti P, Sommer H, Stephens A, Takahara H, Thordal-Christensen H, Vigouroux M, Wessling R, Wicker T, Panstruga R (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330:1543–1546

    PubMed  CAS  Google Scholar 

  • Stahl PL, Lundeberg J (2012) Toward the single-hour high-quality genome. Annu Rev Biochem 81:359–378

    PubMed  Google Scholar 

  • Sweigard JA, Carroll AM, Farrall L, Chumley FG, Valent B (1998) Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact 11:404–412

    PubMed  CAS  Google Scholar 

  • Talbot NJ, Ebbole DJ, Hamer JE (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575–1590

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tan KC, Heazlewood JL, Millar AH, Thomson G, Oliver RP, Solomon PS (2008) A signaling-regulated, short-chain dehydrogenase of Stagonospora nodorum regulates asexual development. Eukaryot Cell 7:1916–1929

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tan KC, Heazlewood JL, Millar AH, Oliver RP, Solomon PS (2009a) Proteomic identification of extracellular proteins regulated by the Gna1 Ga subunit in Stagonospora nodorum. Mycol Res 113:523–531

    PubMed  CAS  Google Scholar 

  • Tan KC, Ipcho SV, Trengove RD, Oliver RP, Solomon PS (2009b) Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology. Mol Plant Pathol 10:703–715

    PubMed  CAS  Google Scholar 

  • Tan KC, Trengove RD, Maker GL, Oliver RP, Solomon PS (2009c) Metabolite profiling identifies the mycotoxin alternariol in the pathogen Stagonospora nodorum. Metabolomics 5:330–335

    CAS  Google Scholar 

  • ten Have A, Mulder W, Visser J, van Kan JA (1998) The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant Microbe Interact 11:1009–1016

    PubMed  Google Scholar 

  • Thomma BPHJ, Van Esse HP, Crous PW, De Wit PJGM (2005) Cladosporium fulvum (syn. Passalora fulva), a highly specialized plant pathogen as a model for functional studies on plant pathogenic Mycosphaerellaceae. Mol Plant Pathol 6:379–393

    PubMed  CAS  Google Scholar 

  • Uhlig S, Busman M, Shane DS, Ronning H, Rise F, Proctor R (2012) Identification of early fumonisin biosynthetic intermediates by inactivation of the FUM6 gene in Fusarium verticillioides. J Agric Food Chem 60:10293–10301

    PubMed  CAS  Google Scholar 

  • Van De Wouw AP, Howlett BJ (2011) Fungal pathogenicity genes in the age of ‘omics’. Mol Plant Pathol 12:507–514

    Google Scholar 

  • Viaud MC, Balhadere PV, Talbot NJ (2002) A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell 14:917–930

    PubMed Central  PubMed  CAS  Google Scholar 

  • Vincent D, Balesdent MH, Gibon J, Claverol S, Lapaillerie D, Lomenech AM, Blaise F, Rouxel T, Martin F, Bonneu M, Amselem J, Dominguez V, Howlett BJ, Wincker P, Joets J, Lebrun MH, Plomion C (2009) Hunting down fungal secretomes using liquid-phase IEF prior to high resolution 2-DE. Electrophoresis 30:4118–4136

    PubMed  CAS  Google Scholar 

  • Vincent D, Du Fall LA, Livk A, Mathesius U, Lipscombe RJ, Oliver RP, Friesen TL, Solomon PS (2012a) A functional genomics approach to dissect the mode of action of the Stagonospora nodorum effector protein SnToxA in wheat. Mol Plant Pathol 13:467–482

    PubMed  CAS  Google Scholar 

  • Vincent D, Tan KC, Cassidy L, Solomon PS, Oliver RP (2012b) Proteomic techniques for plant-fungal interactions. Methods Mol Biol 835:75–96

    PubMed  CAS  Google Scholar 

  • Wall ME, Raghavan S, Cohn JD, Dunbar J (2011) Genome majority vote improves gene predictions. PLoS Comput Biol 7:e1002284

    PubMed Central  PubMed  CAS  Google Scholar 

  • Walsh C (2005) Postranslational modification of proteins: expanding nature’s inventory. Roberts, Greenwood Village

    Google Scholar 

  • Wang C, Zhang S, Hou R, Zhao Z, Zheng Q, Xu Q, Zheng D, Wang G, Liu H, Gao X, Ma JW, Kistler HC, Kang Z, Xu JR (2011a) Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathog 7:e1002460

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang Y, Wu J, Park ZY, Kim SG, Rakwal R, Agrawal GK, Kim ST, Kang KY (2011b) Comparative secretome investigation of Magnaporthe oryzae proteins responsive to nitrogen starvation. J Proteome Res 10:3136–3148

    PubMed  CAS  Google Scholar 

  • Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    PubMed  CAS  Google Scholar 

  • Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I (1995) Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16:1090–1094

    PubMed  CAS  Google Scholar 

  • Watson JT, Sparkman OD (2007) Introduction to mass spectrometry: instrumentation, applications, and strategies for data interpretation. Wiley, Chichester

    Google Scholar 

  • White MJ, Lopes JM, Henry SA (1991) Inositol metabolism in yeasts. Adv Microb Physiol 32:1–51

    PubMed  CAS  Google Scholar 

  • Wishart DS (2008) Quantitative metabolomics using NMR. Trends Anal Chem 27:228–236

    CAS  Google Scholar 

  • Wisniewski JR, Zougman A, Mann M (2009) Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res 8:5674–5678

    PubMed  CAS  Google Scholar 

  • Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: what’s in a name? Annu Rev Phytopathol 40:251–285

    PubMed  CAS  Google Scholar 

  • Yang F, Jensen JD, Spliid NH, Svensson B, Jacobsen S, Jorgensen LN, Jorgensen HJ, Collinge DB, Finnie C (2010a) Investigation of the effect of nitrogen on severity of Fusarium head blight in barley. J Proteomics 73:743–752

    PubMed  CAS  Google Scholar 

  • Yang F, Jensen JD, Svensson B, Jorgensen HJ, Collinge DB, Finnie C (2010b) Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett. Proteomics 10:3748–3755

    PubMed  CAS  Google Scholar 

  • Yang F, Jensen JD, Svensson B, Jorgensen HJ, Collinge DB, Finnie C (2012) Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat. Mol Plant Pathol 13:445–453

    PubMed  CAS  Google Scholar 

  • Yu JH, Keller N (2005) Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43:437–458

    PubMed  CAS  Google Scholar 

  • Zhu H, Bilgin M, Snyder M (2003) Proteomics. Annu Rev Biochem 72:783–812

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Oliver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tan, KC., Oliver, R.P. (2014). 12 Metabolomics and Proteomics to Dissect Fungal Phytopathogenicity. In: Nowrousian, M. (eds) Fungal Genomics. The Mycota, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45218-5_12

Download citation

Publish with us

Policies and ethics